```Mplus VERSION 8
MUTHEN & MUTHEN
04/10/2017   3:29 AM

INPUT INSTRUCTIONS

title:
this is an example of a GMM for a
categorical outcome using automatic
starting values and random starts

montecarlo:
names are u1-u4 x;
generate = u1-u4(4);
categorical = u1-u4;
genclasses = c(2);
classes = c(2);
nobs = 1000;
seed = 3454367;
nrep = 1;
save = ex8.4.dat;

analysis:
type = mixture;
algorithm = integration;

model population:

%overall%

[x@0]; x@1;

i s | u1@0 u2@1 u3@2 u4@3;

[u1\$1-u4\$1*-.5] (1);
[u1\$2-u4\$2*0] (2);
[u1\$3-u4\$3*.5] (3);
[u1\$4-u4\$4*1] (4);

i*1; s*.5;

c#1 on x*1;
i on x*.4;
s on x*.3;

%c#1%
[i*3 s*1];

%c#2%
[i@0 s*.5];

model:

%overall%

i s | u1@0 u2@1 u3@2 u4@3;

[u1\$1-u4\$1*-.5] (1);
[u1\$2-u4\$2*0] (2);
[u1\$3-u4\$3*.5] (3);
[u1\$4-u4\$4*1] (4);

i*1; s*.5;

c#1 on x*1;
i on x*.4;
s on x*.3;

%c#1%
[i*3 s*1];

%c#2%
[i@0 s*.5];

output:
tech8 tech9;

this is an example of a GMM for a
categorical outcome using automatic
starting values and random starts

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                        1000

Number of replications
Requested                                                    1
Completed                                                    1
Value of seed                                              3454367

Number of dependent variables                                    4
Number of independent variables                                  1
Number of continuous latent variables                            2
Number of categorical latent variables                           1

Observed dependent variables

Binary and ordered categorical (ordinal)
U1          U2          U3          U4

Observed independent variables
X

Continuous latent variables
I           S

Categorical latent variables
C

Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
Maximum number of iterations                                 100
Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
Maximum number of iterations                                 500
Convergence criteria
Loglikelihood change                                 0.100D-02
Relative loglikelihood change                        0.100D-05
Derivative                                           0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
Number of M step iterations                                    1
M step convergence criterion                           0.100D-02
Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
Number of M step iterations                                    1
M step convergence criterion                           0.100D-02
Basis for M step termination                           ITERATION
Maximum value for logit thresholds                            15
Minimum value for logit thresholds                           -15
Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA
Integration Specifications
Type                                                    STANDARD
Number of integration points                                  15
Dimensions of numerical integration                            2
Cholesky                                                        ON

SAMPLE STATISTICS FOR THE FIRST REPLICATION

SAMPLE STATISTICS

Means
X
________
0.003

Covariances
X
________
X              1.015

Correlations
X
________
X              1.000

MODEL FIT INFORMATION

Number of Free Parameters                       14

Loglikelihood

H0 Value

Mean                             -3463.892
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000        -3463.892      -3463.892
0.980       0.000        -3463.892      -3463.892
0.950       0.000        -3463.892      -3463.892
0.900       0.000        -3463.892      -3463.892
0.800       0.000        -3463.892      -3463.892
0.700       0.000        -3463.892      -3463.892
0.500       0.000        -3463.892      -3463.892
0.300       0.000        -3463.892      -3463.892
0.200       0.000        -3463.892      -3463.892
0.100       0.000        -3463.892      -3463.892
0.050       0.000        -3463.892      -3463.892
0.020       0.000        -3463.892      -3463.892
0.010       0.000        -3463.892      -3463.892

Information Criteria

Akaike (AIC)

Mean                              6955.783
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000         6955.783       6955.783
0.980       0.000         6955.783       6955.783
0.950       0.000         6955.783       6955.783
0.900       0.000         6955.783       6955.783
0.800       0.000         6955.783       6955.783
0.700       0.000         6955.783       6955.783
0.500       0.000         6955.783       6955.783
0.300       0.000         6955.783       6955.783
0.200       0.000         6955.783       6955.783
0.100       0.000         6955.783       6955.783
0.050       0.000         6955.783       6955.783
0.020       0.000         6955.783       6955.783
0.010       0.000         6955.783       6955.783

Bayesian (BIC)

Mean                              7024.492
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000         7024.492       7024.492
0.980       0.000         7024.492       7024.492
0.950       0.000         7024.492       7024.492
0.900       0.000         7024.492       7024.492
0.800       0.000         7024.492       7024.492
0.700       0.000         7024.492       7024.492
0.500       0.000         7024.492       7024.492
0.300       0.000         7024.492       7024.492
0.200       0.000         7024.492       7024.492
0.100       0.000         7024.492       7024.492
0.050       0.000         7024.492       7024.492
0.020       0.000         7024.492       7024.492
0.010       0.000         7024.492       7024.492

Sample-Size Adjusted BIC (n* = (n + 2) / 24)

Mean                              6980.027
Std Dev                              0.000
Number of successful computations        1

Proportions                   Percentiles
Expected    Observed         Expected       Observed
0.990       0.000         6980.027       6980.027
0.980       0.000         6980.027       6980.027
0.950       0.000         6980.027       6980.027
0.900       0.000         6980.027       6980.027
0.800       0.000         6980.027       6980.027
0.700       0.000         6980.027       6980.027
0.500       0.000         6980.027       6980.027
0.300       0.000         6980.027       6980.027
0.200       0.000         6980.027       6980.027
0.100       0.000         6980.027       6980.027
0.050       0.000         6980.027       6980.027
0.020       0.000         6980.027       6980.027
0.010       0.000         6980.027       6980.027

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL

Latent
Classes

1        502.70186          0.50270
2        497.29814          0.49730

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON ESTIMATED POSTERIOR PROBABILITIES

Latent
Classes

1        502.70047          0.50270
2        497.29953          0.49730

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES
BASED ON THEIR MOST LIKELY LATENT CLASS MEMBERSHIP

Class Counts and Proportions

Latent
Classes

1              519          0.51900
2              481          0.48100

CLASSIFICATION QUALITY

Entropy                         0.593

Average Latent Class Probabilities for Most Likely Latent Class Membership (Row)
by Latent Class (Column)

1        2

1   0.872    0.128
2   0.104    0.896

Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)

1        2

1   0.901    0.099
2   0.133    0.867

Logits for the Classification Probabilities for the Most Likely Latent Class Membership (Column)
by Latent Class (Row)

1        2

1      2.206    0.000
2     -1.874    0.000

MODEL RESULTS

ESTIMATES              S. E.     M. S. E.  95%  % Sig
Population   Average   Std. Dev.   Average             Cover Coeff
Latent Class 1

I        |
U1                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
U2                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
U3                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
U4                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000

S        |
U1                  0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
U2                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
U3                  2.000     2.0000     0.0000     0.0000     0.0000 1.000 0.000
U4                  3.000     3.0000     0.0000     0.0000     0.0000 1.000 0.000

I          ON
X                   0.400     0.1276     0.0000     0.1656     0.0742 1.000 0.000

S          ON
X                   0.300     0.4244     0.0000     0.0835     0.0155 1.000 1.000

S        WITH
I                   0.000     0.2608     0.0000     0.1216     0.0680 0.000 1.000

Intercepts
I                   3.000     3.0454     0.0000     0.2960     0.0021 1.000 1.000
S                   1.000     0.9845     0.0000     0.1793     0.0002 1.000 1.000

Thresholds
U1\$1               -0.500    -0.4181     0.0000     0.1731     0.0067 1.000 1.000
U1\$2                0.000     0.0942     0.0000     0.1718     0.0089 1.000 0.000
U1\$3                0.500     0.5259     0.0000     0.1733     0.0007 1.000 1.000
U1\$4                1.000     1.0799     0.0000     0.1785     0.0064 1.000 1.000
U2\$1               -0.500    -0.4181     0.0000     0.1731     0.0067 1.000 1.000
U2\$2                0.000     0.0942     0.0000     0.1718     0.0089 1.000 0.000
U2\$3                0.500     0.5259     0.0000     0.1733     0.0007 1.000 1.000
U2\$4                1.000     1.0799     0.0000     0.1785     0.0064 1.000 1.000
U3\$1               -0.500    -0.4181     0.0000     0.1731     0.0067 1.000 1.000
U3\$2                0.000     0.0942     0.0000     0.1718     0.0089 1.000 0.000
U3\$3                0.500     0.5259     0.0000     0.1733     0.0007 1.000 1.000
U3\$4                1.000     1.0799     0.0000     0.1785     0.0064 1.000 1.000
U4\$1               -0.500    -0.4181     0.0000     0.1731     0.0067 1.000 1.000
U4\$2                0.000     0.0942     0.0000     0.1718     0.0089 1.000 0.000
U4\$3                0.500     0.5259     0.0000     0.1733     0.0007 1.000 1.000
U4\$4                1.000     1.0799     0.0000     0.1785     0.0064 1.000 1.000

Residual Variances
I                   1.000     0.2417     0.0000     0.3223     0.5749 0.000 0.000
S                   0.500     0.4309     0.0000     0.1231     0.0048 1.000 1.000

Latent Class 2

I        |
U1                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
U2                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
U3                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
U4                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000

S        |
U1                  0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
U2                  1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000
U3                  2.000     2.0000     0.0000     0.0000     0.0000 1.000 0.000
U4                  3.000     3.0000     0.0000     0.0000     0.0000 1.000 0.000

I          ON
X                   0.400     0.1276     0.0000     0.1656     0.0742 1.000 0.000

S          ON
X                   0.300     0.4244     0.0000     0.0835     0.0155 1.000 1.000

S        WITH
I                   0.000     0.2608     0.0000     0.1216     0.0680 0.000 1.000

Intercepts
I                   0.000     0.0000     0.0000     0.0000     0.0000 1.000 0.000
S                   0.500     0.5028     0.0000     0.0987     0.0000 1.000 1.000

Thresholds
U1\$1               -0.500    -0.4181     0.0000     0.1731     0.0067 1.000 1.000
U1\$2                0.000     0.0942     0.0000     0.1718     0.0089 1.000 0.000
U1\$3                0.500     0.5259     0.0000     0.1733     0.0007 1.000 1.000
U1\$4                1.000     1.0799     0.0000     0.1785     0.0064 1.000 1.000
U2\$1               -0.500    -0.4181     0.0000     0.1731     0.0067 1.000 1.000
U2\$2                0.000     0.0942     0.0000     0.1718     0.0089 1.000 0.000
U2\$3                0.500     0.5259     0.0000     0.1733     0.0007 1.000 1.000
U2\$4                1.000     1.0799     0.0000     0.1785     0.0064 1.000 1.000
U3\$1               -0.500    -0.4181     0.0000     0.1731     0.0067 1.000 1.000
U3\$2                0.000     0.0942     0.0000     0.1718     0.0089 1.000 0.000
U3\$3                0.500     0.5259     0.0000     0.1733     0.0007 1.000 1.000
U3\$4                1.000     1.0799     0.0000     0.1785     0.0064 1.000 1.000
U4\$1               -0.500    -0.4181     0.0000     0.1731     0.0067 1.000 1.000
U4\$2                0.000     0.0942     0.0000     0.1718     0.0089 1.000 0.000
U4\$3                0.500     0.5259     0.0000     0.1733     0.0007 1.000 1.000
U4\$4                1.000     1.0799     0.0000     0.1785     0.0064 1.000 1.000

Residual Variances
I                   1.000     0.2417     0.0000     0.3223     0.5749 0.000 0.000
S                   0.500     0.4309     0.0000     0.1231     0.0048 1.000 1.000

Categorical Latent Variables

C#1        ON
X                   1.000     1.2103     0.0000     0.3032     0.0442 1.000 1.000

Intercepts
C#1                 0.000     0.0076     0.0000     0.2072     0.0001 1.000 0.000

QUALITY OF NUMERICAL RESULTS

Average Condition Number for the Information Matrix      0.241E-03
(ratio of smallest to largest eigenvalue)

TECHNICAL 1 OUTPUT

PARAMETER SPECIFICATION FOR LATENT CLASS 1

NU
U1            U2            U3            U4            X
________      ________      ________      ________      ________
0             0             0             0             0

LAMBDA
I             S             X
________      ________      ________
U1                 0             0             0
U2                 0             0             0
U3                 0             0             0
U4                 0             0             0
X                  0             0             0

THETA
U1            U2            U3            U4            X
________      ________      ________      ________      ________
U1                 0
U2                 0             0
U3                 0             0             0
U4                 0             0             0             0
X                  0             0             0             0             0

ALPHA
I             S             X
________      ________      ________
1             2             0

BETA
I             S             X
________      ________      ________
I                  0             0             3
S                  0             0             4
X                  0             0             0

PSI
I             S             X
________      ________      ________
I                  5
S                  6             7
X                  0             0             0

PARAMETER SPECIFICATION FOR LATENT CLASS 2

NU
U1            U2            U3            U4            X
________      ________      ________      ________      ________
0             0             0             0             0

LAMBDA
I             S             X
________      ________      ________
U1                 0             0             0
U2                 0             0             0
U3                 0             0             0
U4                 0             0             0
X                  0             0             0

THETA
U1            U2            U3            U4            X
________      ________      ________      ________      ________
U1                 0
U2                 0             0
U3                 0             0             0
U4                 0             0             0             0
X                  0             0             0             0             0

ALPHA
I             S             X
________      ________      ________
0             8             0

BETA
I             S             X
________      ________      ________
I                  0             0             3
S                  0             0             4
X                  0             0             0

PSI
I             S             X
________      ________      ________
I                  5
S                  6             7
X                  0             0             0

PARAMETER SPECIFICATION FOR LATENT CLASS INDICATOR MODEL PART

TAU(U) FOR LATENT CLASS 1
U1\$1          U1\$2          U1\$3          U1\$4          U2\$1
________      ________      ________      ________      ________
9            10            11            12             9

TAU(U) FOR LATENT CLASS 1
U2\$2          U2\$3          U2\$4          U3\$1          U3\$2
________      ________      ________      ________      ________
10            11            12             9            10

TAU(U) FOR LATENT CLASS 1
U3\$3          U3\$4          U4\$1          U4\$2          U4\$3
________      ________      ________      ________      ________
11            12             9            10            11

TAU(U) FOR LATENT CLASS 1
U4\$4
________
12

TAU(U) FOR LATENT CLASS 2
U1\$1          U1\$2          U1\$3          U1\$4          U2\$1
________      ________      ________      ________      ________
9            10            11            12             9

TAU(U) FOR LATENT CLASS 2
U2\$2          U2\$3          U2\$4          U3\$1          U3\$2
________      ________      ________      ________      ________
10            11            12             9            10

TAU(U) FOR LATENT CLASS 2
U3\$3          U3\$4          U4\$1          U4\$2          U4\$3
________      ________      ________      ________      ________
11            12             9            10            11

TAU(U) FOR LATENT CLASS 2
U4\$4
________
12

PARAMETER SPECIFICATION FOR LATENT CLASS REGRESSION MODEL PART

ALPHA(C)
C#1           C#2
________      ________
13             0

GAMMA(C)
I             S             X
________      ________      ________
C#1                0             0            14
C#2                0             0             0

STARTING VALUES FOR LATENT CLASS 1

NU
U1            U2            U3            U4            X
________      ________      ________      ________      ________
0.000         0.000         0.000         0.000         0.000

LAMBDA
I             S             X
________      ________      ________
U1             1.000         0.000         0.000
U2             1.000         1.000         0.000
U3             1.000         2.000         0.000
U4             1.000         3.000         0.000
X              0.000         0.000         1.000

THETA
U1            U2            U3            U4            X
________      ________      ________      ________      ________
U1             1.000
U2             0.000         1.000
U3             0.000         0.000         1.000
U4             0.000         0.000         0.000         1.000
X              0.000         0.000         0.000         0.000         0.000

ALPHA
I             S             X
________      ________      ________
3.000         1.000         0.000

BETA
I             S             X
________      ________      ________
I              0.000         0.000         0.400
S              0.000         0.000         0.300
X              0.000         0.000         0.000

PSI
I             S             X
________      ________      ________
I              1.000
S              0.000         0.500
X              0.000         0.000         0.500

STARTING VALUES FOR LATENT CLASS 2

NU
U1            U2            U3            U4            X
________      ________      ________      ________      ________
0.000         0.000         0.000         0.000         0.000

LAMBDA
I             S             X
________      ________      ________
U1             1.000         0.000         0.000
U2             1.000         1.000         0.000
U3             1.000         2.000         0.000
U4             1.000         3.000         0.000
X              0.000         0.000         1.000

THETA
U1            U2            U3            U4            X
________      ________      ________      ________      ________
U1             1.000
U2             0.000         1.000
U3             0.000         0.000         1.000
U4             0.000         0.000         0.000         1.000
X              0.000         0.000         0.000         0.000         0.000

ALPHA
I             S             X
________      ________      ________
0.000         0.500         0.000

BETA
I             S             X
________      ________      ________
I              0.000         0.000         0.400
S              0.000         0.000         0.300
X              0.000         0.000         0.000

PSI
I             S             X
________      ________      ________
I              1.000
S              0.000         0.500
X              0.000         0.000         0.500

STARTING VALUES FOR LATENT CLASS INDICATOR MODEL PART

TAU(U) FOR LATENT CLASS 1
U1\$1          U1\$2          U1\$3          U1\$4          U2\$1
________      ________      ________      ________      ________
-0.500         0.000         0.500         1.000        -0.500

TAU(U) FOR LATENT CLASS 1
U2\$2          U2\$3          U2\$4          U3\$1          U3\$2
________      ________      ________      ________      ________
0.000         0.500         1.000        -0.500         0.000

TAU(U) FOR LATENT CLASS 1
U3\$3          U3\$4          U4\$1          U4\$2          U4\$3
________      ________      ________      ________      ________
0.500         1.000        -0.500         0.000         0.500

TAU(U) FOR LATENT CLASS 1
U4\$4
________
1.000

TAU(U) FOR LATENT CLASS 2
U1\$1          U1\$2          U1\$3          U1\$4          U2\$1
________      ________      ________      ________      ________
-0.500         0.000         0.500         1.000        -0.500

TAU(U) FOR LATENT CLASS 2
U2\$2          U2\$3          U2\$4          U3\$1          U3\$2
________      ________      ________      ________      ________
0.000         0.500         1.000        -0.500         0.000

TAU(U) FOR LATENT CLASS 2
U3\$3          U3\$4          U4\$1          U4\$2          U4\$3
________      ________      ________      ________      ________
0.500         1.000        -0.500         0.000         0.500

TAU(U) FOR LATENT CLASS 2
U4\$4
________
1.000

STARTING VALUES FOR LATENT CLASS REGRESSION MODEL PART

ALPHA(C)
C#1           C#2
________      ________
0.000         0.000

GAMMA(C)
I             S             X
________      ________      ________
C#1            0.000         0.000         1.000
C#2            0.000         0.000         0.000

POPULATION VALUES FOR LATENT CLASS 1

NU
U1            U2            U3            U4            X
________      ________      ________      ________      ________
0.000         0.000         0.000         0.000         0.000

LAMBDA
I             S             X
________      ________      ________
U1             1.000         0.000         0.000
U2             1.000         1.000         0.000
U3             1.000         2.000         0.000
U4             1.000         3.000         0.000
X              0.000         0.000         1.000

THETA
U1            U2            U3            U4            X
________      ________      ________      ________      ________
U1             0.000
U2             0.000         0.000
U3             0.000         0.000         0.000
U4             0.000         0.000         0.000         0.000
X              0.000         0.000         0.000         0.000         0.000

ALPHA
I             S             X
________      ________      ________
3.000         1.000         0.000

BETA
I             S             X
________      ________      ________
I              0.000         0.000         0.400
S              0.000         0.000         0.300
X              0.000         0.000         0.000

PSI
I             S             X
________      ________      ________
I              1.000
S              0.000         0.500
X              0.000         0.000         1.000

POPULATION VALUES FOR LATENT CLASS 2

NU
U1            U2            U3            U4            X
________      ________      ________      ________      ________
0.000         0.000         0.000         0.000         0.000

LAMBDA
I             S             X
________      ________      ________
U1             1.000         0.000         0.000
U2             1.000         1.000         0.000
U3             1.000         2.000         0.000
U4             1.000         3.000         0.000
X              0.000         0.000         1.000

THETA
U1            U2            U3            U4            X
________      ________      ________      ________      ________
U1             0.000
U2             0.000         0.000
U3             0.000         0.000         0.000
U4             0.000         0.000         0.000         0.000
X              0.000         0.000         0.000         0.000         0.000

ALPHA
I             S             X
________      ________      ________
0.000         0.500         0.000

BETA
I             S             X
________      ________      ________
I              0.000         0.000         0.400
S              0.000         0.000         0.300
X              0.000         0.000         0.000

PSI
I             S             X
________      ________      ________
I              1.000
S              0.000         0.500
X              0.000         0.000         1.000

POPULATION VALUES FOR LATENT CLASS INDICATOR MODEL PART

TAU(U) FOR LATENT CLASS 1
U1\$1          U1\$2          U1\$3          U1\$4          U2\$1
________      ________      ________      ________      ________
-0.500         0.000         0.500         1.000        -0.500

TAU(U) FOR LATENT CLASS 1
U2\$2          U2\$3          U2\$4          U3\$1          U3\$2
________      ________      ________      ________      ________
0.000         0.500         1.000        -0.500         0.000

TAU(U) FOR LATENT CLASS 1
U3\$3          U3\$4          U4\$1          U4\$2          U4\$3
________      ________      ________      ________      ________
0.500         1.000        -0.500         0.000         0.500

TAU(U) FOR LATENT CLASS 1
U4\$4
________
1.000

TAU(U) FOR LATENT CLASS 2
U1\$1          U1\$2          U1\$3          U1\$4          U2\$1
________      ________      ________      ________      ________
-0.500         0.000         0.500         1.000        -0.500

TAU(U) FOR LATENT CLASS 2
U2\$2          U2\$3          U2\$4          U3\$1          U3\$2
________      ________      ________      ________      ________
0.000         0.500         1.000        -0.500         0.000

TAU(U) FOR LATENT CLASS 2
U3\$3          U3\$4          U4\$1          U4\$2          U4\$3
________      ________      ________      ________      ________
0.500         1.000        -0.500         0.000         0.500

TAU(U) FOR LATENT CLASS 2
U4\$4
________
1.000

POPULATION VALUES FOR LATENT CLASS REGRESSION MODEL PART

ALPHA(C)
C#1           C#2
________      ________
0.000         0.000

GAMMA(C)
I             S             X
________      ________      ________
C#1            0.000         0.000         1.000
C#2            0.000         0.000         0.000

TECHNICAL 8 OUTPUT

TECHNICAL 8 OUTPUT FOR REPLICATION 1

ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE      CLASS COUNTS    ALGORITHM
1 -0.34733695D+04    0.0000000    0.0000000    496.925   503.075    EM
2 -0.34648739D+04    8.4956180    0.0024459    498.088   501.912    FS
3 -0.34641196D+04    0.7542556    0.0002177    505.385   494.615    FS
4 -0.34638995D+04    0.2201640    0.0000636    501.858   498.142    FS
5 -0.34638954D+04    0.0041095    0.0000012    503.255   496.745    FS
6 -0.34638922D+04    0.0031690    0.0000009    502.464   497.536    FS
7 -0.34638917D+04    0.0004716    0.0000001    502.700   497.300    FS

TECHNICAL 9 OUTPUT

Error messages for each replication (if any)

SAVEDATA INFORMATION

Order of variables

U1
U2
U3
U4
X
C

Save file
ex8.4.dat

Save file format           Free
Save file record length    10000

Beginning Time:  03:29:47
Ending Time:  03:29:48
Elapsed Time:  00:00:01

MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2017 Muthen & Muthen
```