Mplus VERSION 7
MUTHEN & MUTHEN
09/22/2012  11:34 PM

INPUT INSTRUCTIONS

  TITLE:	this is an example of two-level path
  	analysis with a continuous and a categorical dependent variable
  DATA:	FILE IS ex9.3.dat;
  VARIABLE:	NAMES ARE u y x1 x2 w clus;
  	CATEGORICAL = u;
  	WITHIN = x1 x2;
  	BETWEEN = w;
  	CLUSTER IS clus;
  ANALYSIS:	TYPE = TWOLEVEL;
  	ALGORITHM = INTEGRATION;
  MODEL:
  	%WITHIN%
  	y ON x1 x2;
  	u ON y x2;
  	%BETWEEN%
  	y u ON w;
  OUTPUT:	TECH1 TECH8;





INPUT READING TERMINATED NORMALLY



this is an example of two-level path
analysis with a continuous and a categorical dependent variable

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                        1000

Number of dependent variables                                    2
Number of independent variables                                  3
Number of continuous latent variables                            0

Observed dependent variables

  Continuous
   Y

  Binary and ordered categorical (ordinal)
   U

Observed independent variables
   X1          X2          W

Variables with special functions

  Cluster variable      CLUS

  Within variables
   X1          X2

  Between variables
   W


Estimator                                                      MLR
Information matrix                                        OBSERVED
Optimization Specifications for the Quasi-Newton Algorithm for
Continuous Outcomes
  Maximum number of iterations                                 100
  Convergence criterion                                  0.100D-05
Optimization Specifications for the EM Algorithm
  Maximum number of iterations                                 500
  Convergence criteria
    Loglikelihood change                                 0.100D-02
    Relative loglikelihood change                        0.100D-05
    Derivative                                           0.100D-02
Optimization Specifications for the M step of the EM Algorithm for
Categorical Latent variables
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-02
  Basis for M step termination                           ITERATION
Optimization Specifications for the M step of the EM Algorithm for
Censored, Binary or Ordered Categorical (Ordinal), Unordered
Categorical (Nominal) and Count Outcomes
  Number of M step iterations                                    1
  M step convergence criterion                           0.100D-02
  Basis for M step termination                           ITERATION
  Maximum value for logit thresholds                            15
  Minimum value for logit thresholds                           -15
  Minimum expected cell size for chi-square              0.100D-01
Optimization algorithm                                         EMA
Integration Specifications
  Type                                                    STANDARD
  Number of integration points                                  15
  Dimensions of numerical integration                            1
  Adaptive quadrature                                           ON
Link                                                         LOGIT
Cholesky                                                       OFF

Input data file(s)
  ex9.3.dat
Input data format  FREE


SUMMARY OF DATA

     Number of clusters                        110



UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

    U
      Category 1    0.487      487.000
      Category 2    0.513      513.000



THE MODEL ESTIMATION TERMINATED NORMALLY



MODEL FIT INFORMATION

Number of Free Parameters                       11

Loglikelihood

          H0 Value                       -1965.264
          H0 Scaling Correction Factor      0.9805
            for MLR

Information Criteria

          Akaike (AIC)                    3952.528
          Bayesian (BIC)                  4006.513
          Sample-Size Adjusted BIC        3971.576
            (n* = (n + 2) / 24)



MODEL RESULTS

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

Within Level

 Y          ON
    X1                 0.229      0.034      6.642      0.000
    X2                 0.454      0.033     13.694      0.000

 U          ON
    Y                  0.745      0.085      8.760      0.000
    X2                 0.533      0.107      5.006      0.000

 Residual Variances
    Y                  1.004      0.049     20.557      0.000

Between Level

 Y          ON
    W                  0.577      0.063      9.132      0.000

 U          ON
    W                  1.269      0.132      9.581      0.000

 Intercepts
    Y                  0.096      0.073      1.313      0.189

 Thresholds
    U$1                0.074      0.101      0.735      0.462

 Residual Variances
    U                  0.268      0.140      1.910      0.056
    Y                  0.455      0.069      6.598      0.000


LOGISTIC REGRESSION ODDS RATIO RESULTS

Within Level

 U          ON
    Y                  2.107
    X2                 1.705


QUALITY OF NUMERICAL RESULTS

     Condition Number for the Information Matrix              0.332E-01
       (ratio of smallest to largest eigenvalue)


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION FOR WITHIN


           TAU
              U$1
              ________
 1                  0


           NU
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 1                  0             0             0             0             0


           LAMBDA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U                  0             0             0             0             0
 Y                  0             0             0             0             0
 X1                 0             0             0             0             0
 X2                 0             0             0             0             0
 W                  0             0             0             0             0


           THETA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U                  0
 Y                  0             0
 X1                 0             0             0
 X2                 0             0             0             0
 W                  0             0             0             0             0


           ALPHA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 1                  0             0             0             0             0


           BETA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U                  0             1             0             2             0
 Y                  0             0             3             4             0
 X1                 0             0             0             0             0
 X2                 0             0             0             0             0
 W                  0             0             0             0             0


           PSI
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U                  0
 Y                  0             5
 X1                 0             0             0
 X2                 0             0             0             0
 W                  0             0             0             0             0


     PARAMETER SPECIFICATION FOR BETWEEN


           TAU
              U$1
              ________
 1                 11


           NU
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 1                  0             0             0             0             0


           LAMBDA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U                  0             0             0             0             0
 Y                  0             0             0             0             0
 X1                 0             0             0             0             0
 X2                 0             0             0             0             0
 W                  0             0             0             0             0


           THETA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U                  0
 Y                  0             0
 X1                 0             0             0
 X2                 0             0             0             0
 W                  0             0             0             0             0


           ALPHA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 1                  0             6             0             0             0


           BETA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U                  0             0             0             0             7
 Y                  0             0             0             0             8
 X1                 0             0             0             0             0
 X2                 0             0             0             0             0
 W                  0             0             0             0             0


           PSI
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U                  9
 Y                  0            10
 X1                 0             0             0
 X2                 0             0             0             0
 W                  0             0             0             0             0


     STARTING VALUES FOR WITHIN


           TAU
              U$1
              ________
 1              0.000


           NU
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 1              0.000         0.000         0.000         0.000         0.000


           LAMBDA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U              1.000         0.000         0.000         0.000         0.000
 Y              0.000         1.000         0.000         0.000         0.000
 X1             0.000         0.000         1.000         0.000         0.000
 X2             0.000         0.000         0.000         1.000         0.000
 W              0.000         0.000         0.000         0.000         1.000


           THETA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U              0.000
 Y              0.000         0.000
 X1             0.000         0.000         0.000
 X2             0.000         0.000         0.000         0.000
 W              0.000         0.000         0.000         0.000         0.000


           ALPHA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 1              0.000         0.000         0.000         0.000         0.000


           BETA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U              0.000         0.000         0.000         0.000         0.000
 Y              0.000         0.000         0.000         0.000         0.000
 X1             0.000         0.000         0.000         0.000         0.000
 X2             0.000         0.000         0.000         0.000         0.000
 W              0.000         0.000         0.000         0.000         0.000


           PSI
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U              1.000
 Y              0.000         1.010
 X1             0.000         0.000         0.520
 X2             0.000         0.000         0.000         0.492
 W              0.000         0.000         0.000         0.000         0.000


     STARTING VALUES FOR BETWEEN


           TAU
              U$1
              ________
 1             -0.052


           NU
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 1              0.000         0.000         0.000         0.000         0.000


           LAMBDA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U              1.000         0.000         0.000         0.000         0.000
 Y              0.000         1.000         0.000         0.000         0.000
 X1             0.000         0.000         1.000         0.000         0.000
 X2             0.000         0.000         0.000         1.000         0.000
 W              0.000         0.000         0.000         0.000         1.000


           THETA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U              0.000
 Y              0.000         0.000
 X1             0.000         0.000         0.000
 X2             0.000         0.000         0.000         0.000
 W              0.000         0.000         0.000         0.000         0.000


           ALPHA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 1              0.000         0.155         0.000         0.000         0.000


           BETA
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U              0.000         0.000         0.000         0.000         0.000
 Y              0.000         0.000         0.000         0.000         0.000
 X1             0.000         0.000         0.000         0.000         0.000
 X2             0.000         0.000         0.000         0.000         0.000
 W              0.000         0.000         0.000         0.000         0.000


           PSI
              U             Y             X1            X2            W
              ________      ________      ________      ________      ________
 U              1.000
 Y              0.000         1.010
 X1             0.000         0.000         0.000
 X2             0.000         0.000         0.000         0.000
 W              0.000         0.000         0.000         0.000         0.534


TECHNICAL 8 OUTPUT


   E STEP  ITER  LOGLIKELIHOOD    ABS CHANGE   REL CHANGE  ALGORITHM
              1 -0.22620531D+04    0.0000000    0.0000000  EM
              2 -0.19884138D+04  273.6393009    0.1209694  EM
              3 -0.19704953D+04   17.9184413    0.0090114  EM
              4 -0.19679949D+04    2.5004758    0.0012690  EM
              5 -0.19669883D+04    1.0065694    0.0005115  EM
              6 -0.19664130D+04    0.5753179    0.0002925  EM
              7 -0.19660606D+04    0.3523350    0.0001792  EM
              8 -0.19658349D+04    0.2257735    0.0001148  EM
              9 -0.19656847D+04    0.1501699    0.0000764  EM
             10 -0.19655815D+04    0.1031630    0.0000525  EM
             11 -0.19655086D+04    0.0729218    0.0000371  EM
             12 -0.19654557D+04    0.0528805    0.0000269  EM
             13 -0.19654165D+04    0.0392413    0.0000200  EM
             14 -0.19653868D+04    0.0297300    0.0000151  EM
             15 -0.19653638D+04    0.0229447    0.0000117  EM
             16 -0.19653458D+04    0.0180069    0.0000092  EM
             17 -0.19653315D+04    0.0143415    0.0000073  EM
             18 -0.19653199D+04    0.0115717    0.0000059  EM
             19 -0.19653105D+04    0.0094439    0.0000048  EM
             20 -0.19653027D+04    0.0077844    0.0000040  EM
             21 -0.19652962D+04    0.0064722    0.0000033  EM
             22 -0.19652908D+04    0.0054215    0.0000028  EM
             23 -0.19652862D+04    0.0045712    0.0000023  EM
             24 -0.19652823D+04    0.0038756    0.0000020  EM
             25 -0.19652790D+04    0.0033020    0.0000017  EM
             26 -0.19652762D+04    0.0028250    0.0000014  EM
             27 -0.19652738D+04    0.0024257    0.0000012  EM
             28 -0.19652717D+04    0.0020895    0.0000011  EM
             29 -0.19652699D+04    0.0018047    0.0000009  EM
             30 -0.19652683D+04    0.0015626    0.0000008  EM
             31 -0.19652670D+04    0.0013557    0.0000007  EM
             32 -0.19652658D+04    0.0011785    0.0000006  EM
             33 -0.19652648D+04    0.0010261    0.0000005  EM
             34 -0.19652639D+04    0.0008947    0.0000005  EM


     Beginning Time:  23:34:51
        Ending Time:  23:34:52
       Elapsed Time:  00:00:01



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2012 Muthen & Muthen

Back to examples