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Overview

1 A new GMM method
Examples of skew distributions
Normal mixtures
Introducing mixtures of non-normal distributions
Cluster analysis with non-normal mixtures
Non-normal mixtures of latent variable models:

GMM of BMI in the NLSY multiple-cohort study
GMM of BMI in the Framingham data
Math and high school dropout in the LSAY study
Cat’s cradle concern

Disadvantages and advantages of non-normal mixtures
Mplus specifications

2 A new SEM method: Non-normal SEM
Path analysis
Factor analysis
SEM

References:
Asparouhov & Muthén (2014). Non-normal mixture modeling and
SEM. Mplus Web Note No. 19. - More to come
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Examples of Skewed Distributions

Body Mass Index (BMI) in obesity studies (long right tail)

Mini Mental State Examination (MMSE) cognitive test in
Alzheimer’s studies (long left tail)

PSA scores in prostate cancer studies (long right tail)

Ham-D score in antidepressant studies (long right tail)
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Body Mass Index (BMI): kg/m2

Normal 18 < BMI < 25, Overweight 25 < BMI < 30, Obese > 30
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NLSY Multiple-Cohort Data Ages 12 to 23

Accelerated longitudinal design - NLSY97

12 13 14 15 16 17 18 19 20 21 22 23

1997 1,165 1,715 1,847 1,868 1,709 613
1998 104 1,592 1,671 1,727 1,739 1,400 106
1999 108 1,659 1,625 1,721 1,614 1,370 65
2000 57 1,553 1,656 1,649 1,597 1,390 132
2001 66 1,543 1,615 1,602 1,582 1,324 109
2002 1,614 1,587 1,643 1,582 1,324 106
2003 112 1,497 1,600 1,582 1,564 1,283

Totals 1,165 1,819 3,547 5,255 6,680 7,272 8,004 7,759 6,280 4,620 2,997 1,389

NLSY, National Longitudinal Survey of Youth

Source: Nonnemaker et al. (2009). Youth BMI trajectories: Evidence
from the NLSY97, Obesity
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BMI at Age 15 in the NLSY (Males, n = 3194)
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Descriptive statistics for BMI15_2:

n = 3194
Mean:        23.104    Min:         13.394

Variance:    20.068    20%-tile:    19.732
Std dev.:     4.480    40%-tile:    21.142

Skewness:     1.475    Median:      22.045
Kurtosis:     3.068    60%-tile:    22.955

% with Min:   0.03%    80%-tile:    25.840
% with Max:   0.03%    Max:         49.868
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Mixtures for Male BMI at Age 15 in the NLSY

Skewness = 1.5, kurtosis = 3.1
Mixtures of normals with 1-4 classes have BIC = 18,658,
17,697, 17,638, 17,637 (tiny class)
3-class mixture shown below
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Several Classes or One Non-Normal Distribution?

Pearson (1895)
Hypertension debate:

Platt (1963): Hypertension is a ”disease” (separate class)
Pickering (1968): Hypertension is merely the upper tail of a
skewed distribution

Schork et al (1990): Two-component mixture versus lognormal

Bauer & Curran (2003): Growth mixture modeling classes may
merely reflect a non-normal distribution so that classes have no
substantive meaning

Muthén (2003) comment on BC: Substantive checking of classes
related to antecedents, concurrent events, consequences (distal
outcomes), and usefulness

Multivariate case more informative than univariate
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What If We Could Instead Fit The Data
With a Skewed Distribution?

Then a mixture would not be necessitated by a non-normal
distribution, but a single class may be sufficient
A mixture of non-normal distributions is possible
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Introducing Mixtures of Non-Normal Distributions
in Mplus Version 7.2

In addition to a mixture of normal distributions, it is now possible to
use

Skew-normal: Adding a skew parameter to each variable
T: Adding a degree of freedom parameter (thicker or thinner
tails)
Skew-T: Adding skew and df parameters (stronger skew possible
than skew-normal)

References

Azzalini (1985), Azzalini & Dalla Valle (1996): skew-normal
Arellano-Valle & Genton (2010): extended skew-t
McNicholas, Murray, 2013, 2014: skew-t as a special case of the
generalized hyperbolic distribution
McLachlan, Lee, Lin, 2013, 2014: restricted and unrestricted
skew-t
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Skew T-Distribution Formulas

Y can be seen as the sum of a mean, a part that produces skewness,
and a part that adds a symmetric distribution:

Y = µ +δ |U0|+U1,

where U0 has a univariate t and U1 a multivariate t distribution.
Expectation, variance (δ is a skew vector, ν the df):

E(Y) = µ +δ
Γ(ν−1

2 )

Γ(ν

2 )

√
ν

π
,

Var(Y) =
ν

ν−2
(Σ+δδ

T)−

(
Γ(ν−1

2 )

Γ(ν

2 )

)2
ν

π
δδ

T

Marginal and conditional distributions:

Marginal is also a skew-t distribution

Conditional is an extended skew-t distribution
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Examples of Skew-T Distributions
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BMI at Age 15 in the NLSY (Males, n = 3194)

Skewness = 1.5, kurtosis = 3.1
Mixtures of normals with 1-4 classes: BIC = 18,658, 17,697,
17,638, 17,637 (tiny class). 3-class model uses 8 parameters
1-class Skew-T distribution: BIC = 17,623 (2-class BIC
= 17,638). 1-class model uses 4 parameters
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Mixture Modeling of the Australian Institute of Sports Data:
BMI and BFAT (n = 202)

AIS data often used in the statistics literature to illustrate quality
of cluster analysis using mixtures, treating gender as unknown

Murray, Brown & McNicholas forthcoming in Computational
Statistics & Data Analysis: ”Mixtures of skew-t factor
analyzers”:
How well can we identify cluster (latent class) membership
based on BMI and BFAT?

Compared to women, men have somewhat higher BMI and
somewhat lower BFAT

Non-normal mixture models with unrestricted means, variances,
covariance

Bengt Muthén Non-Normal Growth Mixture Modeling 14/ 50



Australian Sports Institute Data on BMI and BFAT (n = 202)

Table : Comparing classes with unknown gender

Normal 2c:
LL = -1098, # par.’s = 11, BIC = 2254

Class 1 Class 2
Male 78 24

Female 0 100

Normal 3c:
LL = -1072, # par.’s = 17, BIC = 2234

Class 1 Class 2 Class 3
Male 85 1 16

Female 1 14 85

Skew-Normal 2c:
LL = -1069, # par.’s = 15, BIC = 2218

Class 1 Class 2
Male 84 18

Female 1 99

T 2c:
LL = -1090, # par.’s = 13, BIC = 2250

Class 1 Class 2
Male 95 7

Female 2 98

Skew-T 2c:
LL = -1068, # par.’s = 17, BIC = 2227

Class 1 Class 2
Male 95 7

Female 2 98

PMSTFA 2c:
BIC = 2224

Class 1 Class 2
Male 97 5

Female 5 95
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Cluster Analysis by ”Mixtures of Factor Analyzers”
(McLachlan)

Reduces the number of µc, Σc parameters for c = 1,2, . . .C by
applying the Σc structure of an EFA with orthogonal factors:

Σc = Λc Λ
′
c +Θc (1)

This leads to 8 variations by letting Λc and Θc be invariant or not
across classes and letting Θc have equality across variables or not
(McNicholas & Murphy, 2008).
Interest in clustering as opposed to the factors, e.g. for genetic
applications.
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Non-Normal Mixtures of Latent Variable Models

Models:

Mixtures of Exploratory Factor Models (McLachlan, Lee, Lin;
McNicholas, Murray)

Mixtures of Confirmatory Factor Models; FMM (Mplus)

Mixtures of SEM (Mplus)

Mixtures of Growth Models; GMM (Mplus)

Choices:

Intercepts, slopes (loadings), and residual variances invariant?

Scalar invariance (intercepts, loadings) allows factor means to
vary across classes instead of intercepts (not typically used in
mixtures of EFA, but needed for GMM)

Skew for the observed or latent variables? Implications for the
observed means. Latent skew suitable for GMM - the observed
variable means are governed by the growth factor means
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Growth Mixture Modeling of NLSY BMI Age 12 to 23
for Black Females (n = 1160)

Normal BIC: 31684 (2c), 31386 (3c), 31314 (4c), 31338 (5c)
Skew-T BIC: 31411 (1c), 31225 (2c), 31270 (3c)
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2-Class Skew-T versus 4-Class Normal
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2-Class Skew-T: Estimated Percentiles
(Note: Not Growth Curves)
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2-Class Skew-T: Intercept Growth Factor (Age 17)
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Regressing Class on a MOMED Covariate (”c ON x”):
2-Class Skew-T versus 4-Class Normal
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Recall the estimated trajectory means for skew-t versus normal:
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Framingham BMI, Females Ages 25 to 65

Classic data set

Different age range: 25 to 65

Individually-varying times of observations

Quadratic growth mixture model

Normal distribution BIC is not informative:
16557 (1c), 15995 (2c), 15871 (3c), 15730 (4c), 15674 (5c)

Skew-T distribution BIC points to 3 classes:
15611 (1c), 15327 (2c), 15296 (3c), 15304 (4c)
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Framingham BMI, Females Ages 25 to 65: 3-Class Skew-T
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BMI and Treatment for High Blood Pressure

BMI = kg/m2 with normal range 18.5 to 25, overweight 25 to 30,
obese > 30

Risk of developing heart disease, high blood pressure, stroke,
diabetes

Framingham data contains data on blood pressure treatment at
each measurement occasion

Survival component for the first treatment can be added to the
growth mixture model with survival as a function of trajectory
class
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Parallel Process Model with Growth Mixture for BMI
and Discrete-Time Survival for Blood Pressure Treatment
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Treatment probabilities are significantly different for the 3 trajectory
classes (due to different f intercepts) and in the expected order.
Probability plots can be made for each class as a function of age
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GMM of BMI in the HRS Data

Health and Retirement Study (HRS) data

Different age range: 65 to death

GMM + non-ignorable dropout as a function of latent trajectory
class

Zajacova & Ailshire (2013). Body mass trajectories and
mortality among older adults: A joint growth
mixture-discrete-time survival model. The Gerontologist
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Growth Mixture Modeling: Math Achievement
Trajectory Classes and High School Dropout.

An Example of Substantive Checking via Predictive Validity
M
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 Poor Development: 20% Moderate Development: 28% Good Development: 52% 

Dropout:  69% 8% 1% 

Source: Muthén (2003). Statistical and substantive checking in
growth mixture modeling. Psychological Methods.

- Does the normal mixture solution hold up when checking with
non-normal mixtures?
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Growth Mixture Modeling: Math Achievement
Trajectory Classes and High School Dropout
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Growth Mixture Modeling: Math Achievement
Trajectory Classes and High School Dropout
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Descriptive statistics for MATH10:

n = 2040
Mean:        63.574    Min:         29.600
Variance:   186.295    20%-tile:    51.430
Std dev.:    13.649    40%-tile:    61.810
Skewness:    -0.317    Median:      65.305
Kurtosis:    -0.467    60%-tile:    68.400
% with Min:   0.05%    80%-tile:    75.280
% with Max:   0.25%    Max:         95.170

(1076 missing cases were not included.)
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Growth Mixture Modeling: Math Achievement
Trajectory Classes and High School Dropout

Best solutions, 3 classes (LL, no. par’s, BIC):

Normal distribution: -34459, 32, 69175
T distribution: -34453, 35, 69188

Skew-normal distribution: -34442, 38, 69191

Skew-t distribution: -34439, 42, 69207

Percent in low, flat class and odds ratios for dropout vs not,
comparing low, flat class with the best class:

Normal distribution: 18 %, OR = 17.1

T distribution: 19 %, OR = 20.6

Skew-normal distribution: 26 %, OR = 23.8

Skew-t distribution: 26 %, OR = 37.3
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Cat’s Cradle Concern

 

Source: Sher, Jackson, Steinley (2011). Alcohol use trajectories and
the ubiquitous cat’s cradle: Cause for concern? Journal of Abnormal
Psychology.
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Cat’s Cradle Concern: A Simulated Case (n = 2,000)

Data generated by a 3-class skew-t. 3-class skew-t, BIC=43566:
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4-class normal - cat’s cradle with a high/chronic class, BIC=44935:
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Disadvantages of Non-Normal Mixture Modeling

Much slower computations than normal mixtures, especially for
large sample sizes

Needs larger samples; small class sizes can create problems (but
successful analyses can be done at n = 100-200)

Needs more random starts than normal mixtures to replicate the
best loglikelihood

Lower entropy

Needs continuous variables

Needs continuous variables with many distinct values: Likert
scales treated as continuous variables may not carry enough
information

Models requiring numerical integration not yet implemented
(required with factors behind categorical and count variables,
although maybe not enough information)
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Advantages of Non-Normal Mixture Modeling

Non-normal mixtures

Can fit the data considerably better than normal mixtures

Can use a more parsimonious model

Can reduce the risk of extracting latent classes that are merely
due to non-normality of the outcomes

Can check the stability/reproducibility of a normal mixture
solution

Can describe the percentiles of skewed distributions
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Mplus Specifications

DISTRIBUTION=SKEWT/SKEWNORMAL/TDIST in the
ANALYSIS command makes it possible to access non-normality
parameters in the MODEL command

Skew parameters are given as {y}, {f}, where the default is {f}
and class-varying. Having both {y} and {f} is not identified

Degrees of freedom parameters are given as {df} where the
default is class-varying

df < 1: mean not defined, df < 2: variance not defined, df < 3:
skewness not defined. Density can still be obtained

Class-varying {f} makes it natural to specify class-varying f
variance

Normal part of the distribution can get zero variances (fixed
automatically), with only the non-normal part remaining
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Mplus Input Example: NLSY BMI 2-Class Skew-T GMM

VARIABLE: NAMES = id gender age 1996 age 1997 race1 bmi12 2
bmi13 2 bmi14 2 bmi15 2 bmi16 2 bmi17 2 bmi18 2 bmi19 2
bmi20 2 bmi21 2 bmi22 2 bmi23 2 black hisp mixed c1 c2 c3
c1 wom c2 wom c3 wom momedu par bmi bio1 bmi bio2 bmi
bmi par currsmkr97 bingedrnk97 mjuse97 cent msa
liv2prnts adopted income hhsize97;
USEVARIABLES = bmi12 2 bmi13 2 bmi14 2
bmi15 2 bmi16 2 bmi17 2 bmi18 2
bmi19 2 bmi20 2 bmi21 2 bmi22 2 bmi23 2;
USEOBSERVATIONS = gender EQ -1;
MISSING = ALL (9999);
CLASSES = c(2);

ANALYSIS: TYPE = MIXTURE;
STARTS = 400 80;
PROCESSORS = 8;
DISTRIBUTION = SKEWT;
ESTIMATOR = MLR;
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Mplus Input Example, Continued

MODEL: %OVERALL%
i s q |bmi12 2@-.5 bmi13 2@-.4 bmi14 2@-.3
bmi15 2@-.2 bmi16 2@-.1 bmi17 2@0 bmi18 2@.1
bmi19 2@.2 bmi20 2@.3 bmi21 2@.4 bmi22 2@.5 bmi23 2@.6;
%c#1%
i-q;
i-q WITH i-q;

bmi12 2-bmi23 2(1);
%c#2%
i-q;
i-q WITH i-q;
bmi12 2-bmi23 2(2);

OUTPUT: TECH1 TECH4 TECH8 RESIDUAL;
PLOT: TYPE = PLOT3;

SERIES = bmi12 2-bmi23 2(s);
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Mplus Output Example: NLSY BMI 2-Class Skew-T GMM

Skew and Df Parameters

Latent Class 1

I 6.236 0.343 18.175 0.000
S 3.361 0.542 6.204 0.000
Q -2.746 1.399 -1.963 0.050

DF 3.516 0.403 8.732 0.000

Latent Class 2

I 4.020 0.279 14.408 0.000
S -0.875 0.381 -2.296 0.022
Q 3.399 1.281 2.653 0.008

DF 3.855 0.562 6.859 0.000
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Mplus Output Example, Continued

Technical 4 Output: Estimates
derived from the model for Class 1

Estimated means for the
latent variables

I S Q
1 28.138 10.516 -2.567

Estimated covariance matrix for
the latent variables

I S Q
I 48.167
S 25.959 40.531
Q -21.212 32.220 113.186
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Mplus Output Example, Continued

Estimated correlation matrix
for the latent variables

I S Q

I 1.000
S 0.588 1.000
Q -0.287 0.476 1.000

Estimated skew for the
latent variables

I S Q
1 6.653 3.437 -1.588
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Single-Class (Non-Mixture) Applications
with Non-Normal Distributions

Non-Normal SEM with Skew-normal, t, and skew-t distributions:

Allowing a more general model, including non-linear conditional
expectation functions

Chi-square test of model fit

Percentile estimation of the factor distributions
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Non-Normal SEM

ML robustness to non-normality doesn’t hold if residuals and factors
are not independent or if factors don’t have an unrestricted covariance
matrix (Satorra, 2002).
Asparouhov-Muthén (2014):

There is a preconceived notion that standard structural
models are sufficient as long as the standard errors of the
parameter estimates are adjusted for failure of the
normality assumption, but this is not really correct. Even
with robust estimation the data is reduced to means and
covariances. Only the standard errors of the parameter
estimates extract additional information from the data. The
parameter estimates themselves remain the same, i.e., the
structural model is still concerned with fitting only the
means and the covariances and ignoring everything else.
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Non-Normal SEM

Y = ν +Λη + ε

η = α +Bη +ΓX+ξ

where
(ε,ξ )∼ rMST(0,Σ0,δ ,DF)

and

Σ0 =

(
Θ 0
0 Ψ

)
.

The vector of parameters δ is of size P+M and can be decomposed
as δ = (δY ,δη). From the above equations we obtain the conditional
distributions

η |X∼ rMST((I−B)−1(α+ΓX),(I−B)−1
Ψ((I−B)−1)T ,(I−B)−1

δη ,DF)

Y|η ∼ rMST(ν +Λη ,Θ,δY ,DF)

Y|X ∼ rMST(µ,Σ,δ2,DF)
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SEM Chi-Square Testing with Non-Normal Distributions

Adding skew and df parameters to the means, variances, and
covariances of the unrestricted H1 model
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Path Analysis Model
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Regression of BMI17 on BMI12: Skew-T vs Normal
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Indirect and Direct Effects in Mediation Modeling

Regular indirect and direct effects are not valid

Modeling non-normality and non-linearity needs the more
general definitions based on counterfactuals

The key component of the causal effect definitions,
E[Y(x,M(x∗)|C = c,Z = z], can be expressed as follows integrating
over the mediator M (C is covariate, Z is moderator, X is ”cause”):

E[Y(x,M(x∗)) | C = c,Z = z] =∫ +∞

−∞

E[Y|C = c,Z = z,X = x,M = m]× f (M;E[M|C = c,Z = z,X = x∗) ∂M.

Muthén & Asparouhov (2014). Causal effects in mediation modeling:
An introduction with applications to latent variables. Forthcoming in
Structural Equation Modeling.

Bengt Muthén Non-Normal Growth Mixture Modeling 48/ 50



Non-Normal Factor Distribution

Wall, Guo, & Amemiya (2012). Mixture factor analysis for
approximating a nonnormally distributed continuous latent factor with
continuous and dichotomous observed variables. Multivariate
Behavioral Research.

MIXTURE FACTOR ANALYSIS 281

(c)

(d)

FIGURE 2 (Continued).
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Non-Normal Factor Distribution

Figure 6 of Wall et al. (2012):306 WALL, GUO, AMEMIYA

FIGURE 6 Histograms of simulated underlying factor values and factor score estimates

obtained from the normal factor model and the mixture factor model with 4 components

(Mix4) for the illustrative numerical example.

(Figure 7), the normal factor model has shrunk the large values down more than

it should (i.e., on the high end true values are larger than predicted by the normal

model) and it spreads out values on the low end more than it should (i.e., more

variability on the low end in the normal factor model predictions than there is

in the true latent factor). Both of these “misses” by the normal factor model are

corrected to some extent by the factor mixture model with 4 components. That

is, the factor score estimates from the mixture factor model line up more closely

with the true underlying factor values (bottom left of Figure 7). We further note

that the estimated probabilities of class membership found in the mixture factor

model with 4 components were 82.8%, 13.5%, 3.4%, and 0.2%. The component

with probability 0.2% included just one observation corresponding to the single

large value of the true underlying factor near 10. Thus, despite whether this

latent value might be described as an outlier or just a typical observation from a

skewed distribution (as it is here), the mixture factor model provides an accurate

predicted value for it.

DISCUSSION

In a latent factor model with both continuous and dichotomous observed vari-

ables, it was found that misspecifying the latent variable as normal and using

normal maximum likelihood leads to downward bias in the estimated path

relating the factor to the dichotomous outcome that worsens as the true la-

tent factor distribution deviates further from normality (e.g., becomes more
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Factor distribution can be more parsimoniously specified as skew-t
than their mixture of normals. Percentiles are obtained for the
estimated distribution.
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