Mplus 8: Dynamic SEM

Applications

Ellen L. Hamaker *Utrecht University*

Tihomir Asparouhov & Bengt Muthén Muthén & Muthén

May 23, 2016

Intensive longitudinal data

Two approaches we can take when T is large and N>1:

- 1. Top-down approach (i.e., dynamic multilevel modeling):
 - use time series models as level 1
 - allow for quantitative individual differences in model dynamics at level 2
 - can be used with relative small T (say 20), but requires at least moderate N (say >30)
- 2. Bottom-up approach (i.e., replicated time series analysis)
 - use time series models to model N=1 data
 - allow for quantitative and qualitative differences between persons
 - \bullet can be used with small N (say 2), but requires relative large T (say >50)

Alternative approach: **pooled time series analysis** (requires N*T>50).

Outline

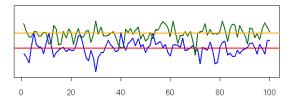
- 1. Top-down approach:
 - Univariate multilevel AR(1) model
 - Multiple indicator multilevel AR(1) model
 - Multilevel VAR(1) model
- 2. Bottom-up approach:
 - Comparison of linear models and regime-switching models
- 3. Discussion

Univariate multilevel AR(1) model: Random mean

Centering part:

$$PA_{it} = \mu_i + PA_{it}^*$$

- μ_i is the individual's **mean** (i.e., baseline, trait, equilibrium) of positive affect
- PA_{it}^* is the within-person centered (cluster-mean centered) score

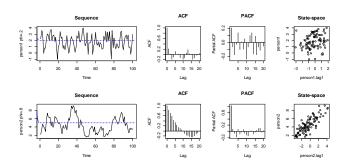


Univariate multilevel AR(1) model: Random inertia

Autoregressive part:

$$PA_{it}^* = \phi_i PA_{i,t-1}^* + \zeta_{it}$$

- ϕ_i is the **autoregressive parameter** (i.e., inertia, carry-over, or regulatory weakness)
- ζ_{it} is the **innovation** (residual, disturbance, dynamic error) (with $\zeta_{it} \sim N(0, \sigma_{\zeta}^2)$)



Univariate multilevel AR(1) model: Level 1

Putting these together we can write:

Level 1: Random mean and inertia

$$PA_{it} = \mu_i + \phi_i PA_{i,t-1}^* + \zeta_{it}$$

where $\zeta_{it} \sim N(0, \sigma^2)$.

Level 2:

$$\mu_i = \mu + v_{0i}$$
$$\phi_i = \phi + v_{1i}$$

$$\begin{bmatrix} v_{0i} \\ v_{1i} \end{bmatrix} \sim MN \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \psi_{11} \\ \psi_{21} & \psi_{22} \end{bmatrix} \end{bmatrix}$$

Intermezzo: Centering level 1 predictors?

There are three ways in which we can include level 1 predictors:

- non-centered (NC)
- grand mean centered (GMC)
- cluster mean centered (CMC)

NC and GMC are **equivalent** (i.e., alternative parametrizations).

CMC is **equivalent under some circumstances** (i.e., no random slopes, and predictor means included as level 2 predictor of random intercept), but not always.

Converging consensus: The slope from NC/GMC can be an "uninterpretable blend" of the within and between relationship (Raudenbush & Bryck, 2002).

Intermezzo: Centering the lagged predictor?

Hamaker and Grasman (2015) compared four ways of centering the **lagged predictor** in a multilevel AR(1) model:

• NC: no centering

• CMC($\bar{y}_{.i}$): cluster mean centering using the sample mean

• CMC($\hat{\mu}_i$): cluster mean centering using the multilevel estimate

• CMC(μ_i): cluster mean centering using the true mean

Table 4 | Bias and coverage rates for fixed autoregressive parameter ϕ in multilevel autoregressive model under diverse scenarios.

AR parameter	Sample size		Bias				CR _{0.95}			
	N	Т	NC	$C(\bar{y}_{\cdot i})$	$C(\hat{\mu}_i)$	$C(\mu_i)$	NC	$C(\bar{y}_{\cdot i})$	$C(\hat{\mu}_i)$	$C(\mu_i)$
$\phi_i \sim N(0.3, 0.1)$	20	20	0.002	-0.072	-0.069	-0.068	0.928	0.762	0.785	0.787
		50	0.000	-0.027	-0.027	-0.026	0.940	0.900	0.901	0.898
		100	0.000	-0.013	-0.013	-0.013	0.932	0.932	0.932	0.932
	50	20	0.005	-0.071	-0.069	-0.067	0.893	0.480	0.512	0.518
		50	0.001	-0.027	-0.026	-0.026	0.936	0.800	0.804	0.805
		100	0.000	-0.013	-0.013	-0.013	0.946	0.902	0.902	0.903
	100	20	0.006	-0.070	-0.068	-0.066	0.892	0.196	0.227	0.242
		50	0.001	-0.027	-0.027	-0.027	0.930	0.623	0.630	0.637
		100	0.000	-0.013	-0.013	-0.013	0.930	0.851	0.854	0.851

Intermezzo: Centering the lagged predictor?

Conclusion (from Hamaker & Grasman, 2015):

- CMC leads to a downward bias in the estimation of the AR parameter
- CMC is better when interest is in a level 2 predictor of the AR parameter

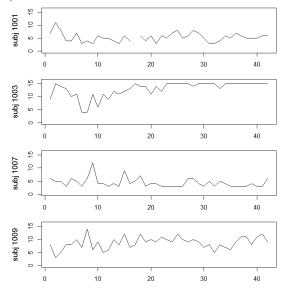
Note that when N=1, the OLS estimate of the AR parameter is known to be biased (e.g., Marriott & Pope, 1954).

BUT: CMC in Mplus is not associated with this bias (nor is it in WinBUGS, see Jongerling et al., 2015), probably because the **same** (individual) parameter is used as the intercept and for CMC of the lagged predictor.

NOTE: CMC is the default in Mplus when creating lagged variables.

Daily diary data on positive affect (PA)

Data: 89 females measured for 42 days (see Jongerling, Laurenceau & Hamaker, 2015).



Input: Create an observed lagged variable

```
TITLE: Multilevel AR(1) with random mean
DATA: file is fem.dat:
VARIABLE:
names=subj couple day dhappy
dexcited denerget denthusi
                                  PA:
cluster=subi:
useobs are
(subj .ne. 1003) .and.
(subi .ne. 1107) .and.
(subi .ne. 1223) .and.
(subi .ne. 1233) .and.
(subi .ne. 1249) .and.
(subi .ne. 1327) .and.
(subj .ne. 1425);
MISSING = all(999);
USEVAR are PA:
LAGVAR = PA(1): ! CREATE AN OBSERVED LAGGED VARIABLE
```

NOTE: Using LAGVAR = PA(1); gives a lagged variable based on lagging the observed variable PA by one.

Input: Random AR parameter and random mean

TYPE IS TWOLEVEL random;

ANALYSIS:

```
estimator=bayes;
fbiter=10000;
bseed = 7487;
proc = 2;

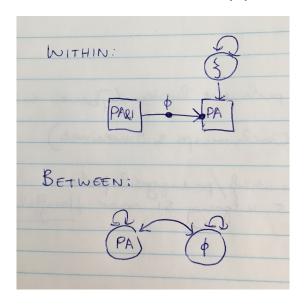
MODEL:

%WITHIN%
phi | PA on PA&1; ! AUTOREGRESSION IS RANDOM

%BETWEEN%
PA with phi; ! CORRELATED RANDOM MEAN AND AR
```

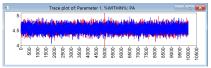
NOTE: The lagged variable (created by **LAGVAR** = PA(1);) is referred to as PA&1.

Path diagram of the multilevel AR(1) model



Results: Trace plots (10,000 iterations)

Level 1 residual variance:



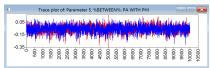
AR parameter:

Average mean:

Variance of AR parameter:



Cov. mean and AR parameter:



Variance of mean:

Results: Parameter estimates

MODEL RESULTS						
	Estimate	Posterior S.D.			C.I. Upper 2.5%	Significance
Within Level						
Residual Variances PA	4.563	0.109	0.000	4.357	4.784	*
Between Level						
PA WITH PHI	-0.053	0.049	0.129	-0.152	0.039	
Means PA PHI	7.393 0.263	0.231 0.021	0.000 0.000	6.933 0.221	7.842 0.304	*
Variances PA PHI	4.470 0.010	0.752 0.005	0.000 0.000	3.316 0.002	6.260 0.022	*

Testing whether a random effect is significant is problematic; instead we can compare two models (with and without a random effect).

Input: Fixed AR parameter and random mean

```
ANALYSIS: TYPE IS TWOLEVEL random;
            estimator=baves:
            fbiter=10000:
            bseed = 6186:
MODEL:
  %WITHIN%
 PA on PA&1 (phi); ! AUTOREGRESSION
  %BETWEEN%
 PA:
                   ! RANDOM MEAN
OUTPUT: TECH8 TECH1;
PLOT: TYPE = PLOT2:
```

In this model there is no random AR parameter; only a random mean.

Random AR parameter?

Warning: Make sure the DIC is **stable** (this may take *many more iterations* than apparent from trace plots).

To ensure the DIC is stable, run the model at least **twice with a different seed**: This should give the same DIC and pD.

Here we compare the model with a fixed AR parameter (ϕ) to a model with a random AR parameter (ϕ_i) .

Model	DIC	рD
ϕ	16501	192
ϕ_i	16498	216

Only slight preference for model with random AR parameter.

Literature on inertia

Affective inertia has been empirically related to

- neuroticism (+) and agreeableness (-) (Suls, Green & Hillis, 1998)
- concurrent depression (+) (Kuppens, Allen & Sheeber, 2010, *Psychological Science*)
- future depression (+) (Kuppens, Sheeber, Yap, Whittle, Simmons & Allen, 2012)
- rumination (+) (Koval, Kuppens, Allen & Sheeber, 2012)
- self-esteem (-) (Houben, Van den Noortgate & Kuppens, 20150)
- life-satisfaction (-) (Houben et al., 2015)
- PA (-) and NA (+) (Houben et al., 2015)

Note that inertia in positive affects seems also maladaptive.

Autoregressive parameter in **daily drinking behavior** has been positively related to being female (Rovine & Walls, 2006); however, the **average** was close to **zero**.

Extension 1: Random innovation variance

Level 1: Random mean, inertia, and innovation variance

$$PA_{ti} = \mu_i + \phi_i PA_{t-1,i}^* + \sigma_i \zeta_{ti}$$

where $\zeta_{ti} \sim N(0,1)$.

Level 2:

$$\mu_i = \mu + v_{0i}$$

$$\phi_i = \phi + v_{1i}$$

$$\sigma_i = \sigma + v_{2i}$$

$$\begin{bmatrix} v_{0i} \\ v_{1i} \\ v_{2i} \end{bmatrix} \sim MN \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \psi_{11} \\ \psi_{21} & \psi_{22} \\ \psi_{31} & \psi_{32} & \psi_{33} \end{bmatrix} \end{bmatrix}$$

Why random innovation variance? Statistical

For N=1 we have: $y_t = \mu + \phi(y_{t-1} - \mu) + \zeta_t$, such that:

$$Var(y_t) = E\left[\left\{y_t - \mu\right\}^2\right] = E\left[\left\{\mu + \phi(y_{t-1} - \mu) + \zeta_t - \mu\right\}^2\right]$$
$$= E\left[\left\{\phi(y_{t-1} - \mu) + \zeta_t\right\}^2\right]$$
$$= \phi^2 E\left[\left\{y_{t-1} - \mu\right\}^2\right] + \sigma^2$$

where
$$E[\{y_t - \mu\}^2] = E[\{y_{t-1} - \mu\}^2] = \sigma_y^2$$

$$\sigma_y^2 = \phi^2 \sigma_y^2 + \sigma^2$$

$$\sigma_y^2 - \phi^2 \sigma_y^2 = \sigma^2$$

$$(1 - \phi^2)\sigma_y^2 = \sigma^2$$

$$\sigma_y^2 = \frac{\sigma^2}{1 - \phi^2}$$

Hence, individual differences in σ_y^2 can come from individual differences in ϕ and/or σ^2 .

Why random innovation variance? Substantive

Level 1: Random mean, inertia, and innovation variance

$$PA_{ti} = \mu_i + \phi_i PA_{t-1,i}^* + \sigma_i \zeta_{ti}$$

where $\zeta_{ti} \sim N(0,1)$.

Substantive interpretation of random innovation variance:

- individual differences in exposure
- individual differences in reactivity

Level 1: Reactivity to Positive Events (PE)

$$PA_{ti} = \mu_i + \phi_i PA_{t-1,i}^* + \beta_i PE_{ti}^* + \zeta_{ti}$$

Some results for stress sensitivity and reward experience:

- Suls et al. (1998)
- Wichers: relationship with depression and effect of therapy

Extension 2: Measurement error

Level 1: Measurement equation

$$PA_{it} = \mu_i + \eta_{it} + \epsilon_{it}$$

where

- μ_i is the individual's mean
- ullet η_{it} is the individual's true score at occasion t
- ϵ_{it} is the individual's measurement error at occasion t (could also consider individual differences in its variance)

Level 1: Transition equation

$$\eta_{it} = \phi_i \eta_{i,t-1} + \sigma_i \zeta_{it}$$

where $\zeta_{it} \sim N(0,1)$.

Some thoughts about measurement error in a multilevel AR(1) model:

- advantage: separate signal from noise
- advantage: reliability per person
- disadvantage: AR-effects in error end up in signal
- disadvantage: not identified when $\phi = 0$

Outline

- 1. Top-down approach:
 - Univariate multilevel AR(1) model
 - Multiple indicator multilevel AR(1) model
 - Multilevel VAR(1) model
- 2. Bottom-up approach:
 - Comparison of linear models and regime-switching models
- 3. Discussion

Multiple indicator AR(1) model for PA

We have three indicators: excited (EXC), energetic (ENE), and enthusiastic (ENT).

Level 1: Within-person factor model

$$\begin{bmatrix} EXC_{it} \\ ENE_{it} \\ ENT_{it} \end{bmatrix} = \begin{bmatrix} \mu_{EXC,i} \\ \mu_{ENE,i} \\ \mu_{ENT,i} \end{bmatrix} + \begin{bmatrix} 1 \\ \lambda_{2W} \\ \lambda_{3W} \end{bmatrix} PAW_{it} + \begin{bmatrix} \epsilon_{EXC,it} \\ \epsilon_{ENE,it} \\ \epsilon_{ENT,it} \end{bmatrix}$$

- \bullet μ 's are the individual's means
- λ 's are the within-person factor loadings
- ullet PAW_{it} is the individual's latent score at occasion t
- ullet ϵ 's are the individual's measurement errors at occasion t

Multiple indicator AR(1) model for PA

Note that PAW_{it} has a mean of zero for each person (hence no within-person means here).

Level 1: Within-person latent AR(1)

$$PAW_{it} = \phi_i PAW_{i,t-1} + \sigma_i \zeta_{it}$$

- ullet ϕ_i is the individual's autoregressive parameter
- $\sigma_i \zeta_{it}$ is the individual's innovation at occasion t (with $var(\zeta)=1$)

Multiple indicator AR(1) model for PA

Level 2: Between-person factor model

$$\begin{bmatrix} \mu_{EXC,i} \\ \mu_{ENE,i} \\ \mu_{ENT,i} \end{bmatrix} = \begin{bmatrix} \mu_{EXC} \\ \mu_{ENE} \\ \mu_{ENT} \end{bmatrix} + \begin{bmatrix} 1 \\ \lambda_{2B} \\ \lambda_{3B} \end{bmatrix} PAB_i + \begin{bmatrix} \epsilon_{EXC,i} \\ \epsilon_{ENE,i} \\ \epsilon_{ENT,i} \end{bmatrix}$$

Level 2: Fixed and random effects

$$PAB_i = v_{0i}$$

$$\phi_i = \phi + v_{1i}$$

$$\zeta_i = \zeta + v_{2i}$$

$$\begin{bmatrix} v_{0i} \\ v_{1i} \\ v_{2i} \end{bmatrix} \sim MN \begin{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \psi_{11} \\ \psi_{21} & \psi_{22} \\ \psi_{31} & \psi_{32} & \psi_{33} \end{bmatrix} \end{bmatrix}$$

Input: Multiple indicator AR(1) model

Allowing for:

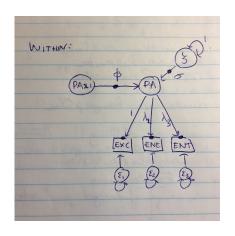
- random means
- random autoregression
- random innovation SD

MODEL:

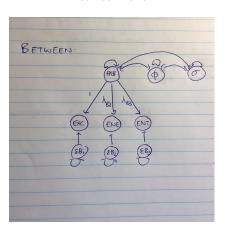
```
%WTTHTN%
PA BY excited energet enthusi (&1);! FACTOR MODEL AND LAGGED LATENT VARIABLE
PAGO:
                                   ! FIX THE RESIDUAL TO ZERO
zeta BY:
                                   ! CREATE AN INNOVATION TERM
PA with zeta@0:
                                   ! FIX COVARIANCE BETWEEN PA AND ZETA TO ZERO
zeta@1;
                                  ! FIX VARIANCE OF THIS TERM TO 1
sigma | PA on zeta;
                                  ! ALLOW FOR A RANDOM LOADING: INDIVIDUAL SD OF THE INNOVATION
phi | PA on PA&1;
                                  | AUTOREGRESSION IS RANDOM
%BETWEEN%
PAB BY excited energet enthusi; ! FACTOR MODEL
PAB with sigma;
                                 ! ALLOW FOR CORRELATED RANDOM EFFECTS
PAB with phi;
                                  ! ALLOW FOR CORRELATED RANDOM EFFECTS
phi with sigma;
                                   ! ALLOW FOR CORRELATED RANDOM EFFECTS
[phi*0.2]; phi*0.03;
[sigma*1.2]; sigma*0.1;
```

Path diagram

Within level:



Between level:



Results: Parameter estimates (within)

MODEL RESULTS						
	Estimate	Posterior S.D.	One-Tailed P-Value		C.I. Upper 2.5%	Significance
Within Level						
PA BY						
EXCITED	1.000	0.000	0.000	1.000	1.000	
ENERGET	0.953	0.029	0.000	0.898	1.012	*
ENTHUSI	1.049	0.029	0.000	0.993	1.108	*
PA WITH						
ZETA	0.000	0.000	1.000	0.000	0.000	
Variances						
ZETA	1.000	0.000	0.000	1.000	1.000	
Residual Variance	es					

0.000

0.000

0.000

0.000

0.404

0.300

0.294

0.001

0.459

0.346

0.343

0.001

0.014

0.012

0.012

0.000

Remember:
$$Var(PA_i) = \frac{\sigma_i^2}{1 - \phi_i^2}$$

0.431

0.323

0.318

0.001

MODEL RECULTS

EXCITED

ENERGET

ENTHUSI

РΔ

Results: Parameter estimates (between)

PAB	BY						
EXC	ITED	1.000	0.000	0.000	1.000	1.000	
ENE	RGET	1.069	0.069	0.000	0.945	1.218	*
ENT	HUSI	1.035	0.067	0.000	0.915	1.178	*
PAB	WITH						
SIG	MA	0.038	0.022	0.032	-0.002	0.085	
PHI		-0.033	0.022	0.056	-0.080	0.008	
PHI	WITH						
SIG	MA	-0.025	0.009	0.000	-0.046	-0.010	*
Means							
SIG	MA	0.562	0.031	0.000	0.502	0.623	*
PHI		0.393	0.029	0.000	0.336	0.450	*
Interd	epts						
EXC	ITED	2.404	0.082	0.000	2.242	2.565	*
ENE	RGET	2.513	0.083	0.000	2.349	2.676	*
ENT	HUSI	2.470	0.081	0.000	2.311	2.629	*
Varian	ices						
PAB	3	0.470	0.095	0.000	0.321	0.692	*
SIG	MA	0.059	0.012	0.000	0.041	0.087	*
PHI		0.025	0.011	0.000	0.009	0.051	*
Residu	ıal Variances	5					
	ITED	0.086	0.019	0.000	0.056	0.130	*
ENE	RGET	0.037	0.014	0.000	0.012	0.069	*
ENT	HUSI	0.035	0.013	0.000	0.011	0.064	*

NOTE: Means are the fixed effects, variances are the random effects.

Factorial invariance across levels

Are the **factor loadings** for PA **identical across levels**?

Within Level						
PA BY						
EXCITED	1.000	0.000	0.000	1.000	1.000	
ENERGET	0.953	0.029	0.000	0.898	1.012	*
ENTHUSI	1.049	0.029	0.000	0.993	1.108	*
Between Level						
PAB BY						
EXCITED	1.000	0.000	0.000	1.000	1.000	
ENERGET	1.069	0.069	0.000	0.945	1.218	*
ENTHUSI	1.035	0.067	0.000	0.915	1.178	*

If $\lambda_w = \lambda_b$, this implies that within-person, state-like fluctuations are **situated on the same underlying dimension** as stable between-person, trait-like differences.

DICs using 500,000 iterations

DICS using 5	ou, out iterations	
	$\lambda_w \neq \lambda_b$	$\lambda_w = \lambda_b$
	22355	22364
	22349	22358
	22353	22360
Average:	22352	22361

Outline

- 1. Top-down approach:
 - Univariate multilevel AR(1) model
 - Multiple indicator multilevel AR(1) model
 - Multilevel VAR(1) model
- 2. Bottom-up approach:
 - Comparison of linear models and regime-switching models
- 3. Discussion

Multilevel VAR(1) model

In a vector autoregressive (VAR) model, a vector is regressed on preceding versions of itself.

VAR(1):

$$oldsymbol{y}_t = oldsymbol{c} + oldsymbol{\Phi} oldsymbol{y}_{t-1} + oldsymbol{\zeta}_t \qquad ext{with} \quad oldsymbol{\mu} = (oldsymbol{I} - oldsymbol{\Phi})^{-1} oldsymbol{c}$$

Alternative expression of a VAR(1):

$$oldsymbol{y}_t = oldsymbol{\mu} + oldsymbol{\Phi}(oldsymbol{y}_{t-1} - oldsymbol{\mu}) + oldsymbol{\zeta}_t$$

When considering a multilevel extension, we want to allow for individual differences in:

- ullet μ : the trait scores of individuals
- ullet Φ : the inertias and cross-lagged relationships

NOTE: We write $y_{t-1}^* = y_{t-1} - \mu$.

Example of a multilevel VAR(1) model

We make use of bivariate data from Emilio Ferrer: Positive Affect and Rumination (see Schuurman, Grasman & Hamaker, 2016).

Six days of ESM data with N=129 and T about 45.

Within level:

$$\begin{bmatrix} PA_{it} \\ RU_{it} \end{bmatrix} = \begin{bmatrix} \mu_{PA,i} \\ \mu_{RU,i} \end{bmatrix} + \begin{bmatrix} \phi_{11} & \phi_{12} \\ \phi_{21} & \phi_{22} \end{bmatrix} \begin{bmatrix} PA_{it-1}^* \\ RU_{it-1}^* \end{bmatrix} + \begin{bmatrix} \zeta_{PA,it} \\ \zeta_{RU,it} \end{bmatrix}$$
$$= \begin{bmatrix} \mu_{PA,i} + \phi_{11}PA_{it-1}^* + \phi_{12}RU_{it-1}^* + \zeta_{PA,it} \\ \mu_{RU,i} + \phi_{21}PA_{it-1}^* + \phi_{22}RU_{it-1}^* + \zeta_{RU,it} \end{bmatrix}$$

Model specification

```
MODEL:

%WITHIN%
E1 BY PA@1 (&1);
PA@0.01;
E2 BY pieker@1(&1);
pieker@0.01;
E1 with E2;
E1;
E2;
phi11 | E1 on E1&1;
phi22 | E2 on E2&1;
phi12 | E1 on E2&1;
phi21 | E1 on E1&1;
```

At the between level the means and lagged effects are all allowed to correlate.

Results within level

Within Level						
E1 BY PA	1.000	0.000	0.000	1.000	1.000	
E2 BY PIEKER	1.000	0.000	0.000	1.000	1.000	
E1 WITH E2	0.496	0.047	0.000	0.413	0.593	*
Residual Variances PA	0.010	0.000	0.000	0.010	0.010	
PIEKER E1 E2	0.010 1.961 2.640	0.000 0.046 0.062	0.000 0.000 0.000	0.010 1.890 2.518	0.010 2.063 2.759	*

Note that the measurement error variances fixed at 0.01 are negligibly small compared to the total variances.

Results between level

Between Level

PA	WITH						
PHI11		0.025	0.007	0.000	0.014	0.040	*
PHI12		0.015	0.008	0.035	0.000	0.034	
PHI21		-0.033	0.011	0.000	-0.052	-0.010	*
PHI22		-0.028	0.011	0.000	-0.056	-0.009	*
PIEKER	WITH						
PHI11		-0.028	0.008	0.000	-0.046	-0.015	*
PHI12		-0.012	0.010	0.110	-0.034	0.006	
PHI21		0.045	0.013	0.000	0.020	0.074	*
PHI22		0.067	0.015	0.000	0.041	0.103	*
PHI11	WITH						
PHI12		-0.002	0.002	0.040	-0.006	0.000	
PHI21		-0.006	0.002	0.000	-0.010	-0.003	*
PHI22		-0.002	0.002	0.070	-0.005	0.001	
PHI12	WITH						
PHI21		0.000	0.001	0.435	-0.003	0.003	
PHI22		-0.004	0.003	0.055	-0.010	0.001	
PHI21	WITH						
PHI22		-0.002	0.003	0.280	-0.008	0.003	
PA	WITH						
PIEKER		-0.070	0.048	0.085	-0.169	0.018	

Results between level (continued)

Means						
PA	2.244	0.063	0.000	2.117	2.357	*
PIEKER	1.752	0.069	0.000	1.599	1.872	*
PHI11	0.620	0.008	0.000	0.605	0.635	*
PHI22	0.356	0.017	0.000	0.318	0.392	*
PHI12	0.140	0.011	0.000	0.117	0.160	*
PHI21	0.265	0.014	0.000	0.236	0.292	*
Variances						
PA	0.382	0.055	0.000	0.291	0.496	*
PIEKER	0.624	0.092	0.000	0.446	0.811	*
PHI11	0.006	0.001	0.000	0.003	0.009	*
PHI22	0.020	0.004	0.000	0.013	0.030	*
PHI12	0.006	0.002	0.000	0.003	0.010	*
PHI21	0.014	0.003	0.000	0.008	0.022	*

Means are the fixed effects; variances are for the random effects.

Standardizing the cross-lagged parameters

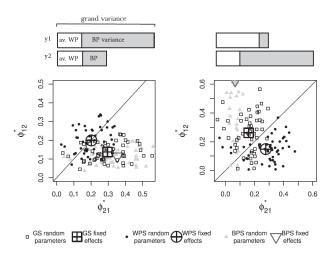
Schuurman et al. (2016) presents three forms of **standardization in multilevel models**:

- total variance (i.e., grand standardization)
- between-person variance (i.e., between standardization)
- average within-person variance
- within-person variance (i.e., within standardization)

Conclusion: last form is most meaningful, as it **parallels standardizing** when N=1.

Standardized fixed effect should be the average standardized within-person effect.

Does it make a difference?



From Schuurman et al. (2016)

Networks based on multilevel VAR models

Borsboom has used the idea of **networks as an alternative to latent variables** (in the context of psychopathology).

Dynamical networks are often based on a VAR(1) model.

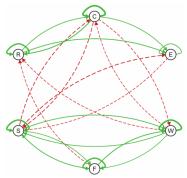
Bringmann et al. (2013) analyzed the lagged relationships between the following variables:

- cheerful (C)
- pleasant event (E)
- worry (W)
- fearful (F)
- sad (S)
- relaxed (R)

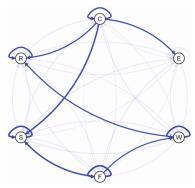
NOTE: They performed **separate multilevel regression analyses** on each of these variables, using all (lagged) variables as predictors.

Results at the population level

Average (fixed effects) network

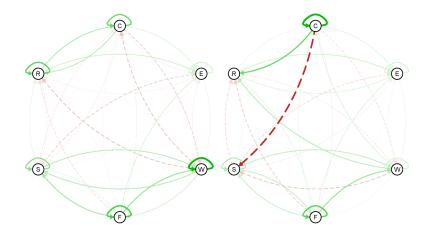


Individual differences network



C=cheerful; E=pleasant event; W=worry; F=fearful; S=sad; and R=relaxed; red solid lines represent positive relationships; green dashed lines represent negative relationship. From Bringmann et al. (2013)

Results at the individual level (2 individuals)



C=cheerful; E=pleasant event; W=worry; F=fearful; S=sad; and R=relaxed From Bringmann et al. (2013)

Outline

- 1. Top-down approach:
 - Univariate multilevel AR(1) model
 - Multiple indicator multilevel AR(1) model
 - Multilevel VAR(1) model
- 2. Bottom-up approach:
 - Comparison of linear models and regime-switching models
- 3. Discussion

Bottom-up: Replicated time series analysis

Characteristics of TSA include:

- N=1
- T is large
- observations are ordered (in time)

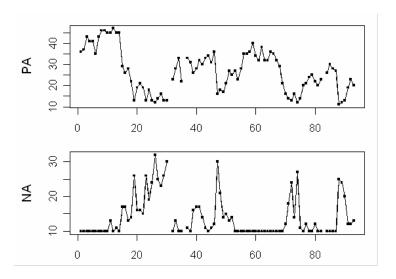
Goals of TSA include:

- prediction and forecasting: weather, currency, earthquakes, epidemic
- signal estimation (Kalman filter): e.g. to control your spacecraft
- identify the nature of the process

Example considered here is based on Hamaker, Grasman and Kamphuis (2016).

Bipolar disorder (BD)

Bipolar disorder is characterized by severe changes in affect and activity: Bipolar patients suffer from **manic** and **depressed episodes**.



BAS dysregulation in BD

BAS may play a crucial role:

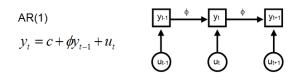
- active BAS: expecting reward; difficulty inhibiting behavior when approaching a goal; hope
- inactive BAS: not expecting reward; difficulty to be motivated; despair

Two forms of BAS dysregulation:

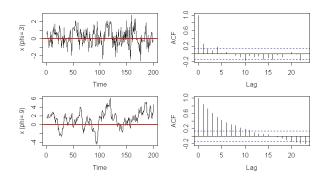
Slow return to baseline

Switches between distinct states

Slow-return-to-baseline model 1: AR(1)



Carry-over. In the AR(1) model today's mood is influenced by yesterday's mood, and the higher φ, the more yesterday's mood carries over to today's mood.



Slow-return-to-baseline model 2: ARIMA(0,1,1)

Balancing preservation and adaption: The closer θ is to 1, the stronger preservation is; if θ is zero, the system fully adapts to perturbations.

$$E[y_t|y_{t-1}] = y_{t-1} - \theta e_{t-1}$$

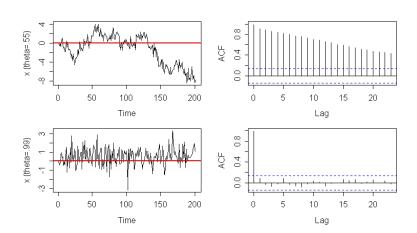
$$= E[y_{t-1}|y_{t-2}] + e_{t-1} - \theta e_{t-1}$$

The parameter θ is considered to indicate the balance between **preservation** and **adaption**.

Slow-return-to-baseline model 2: ARIMA(0,1,1)

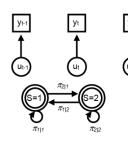


Balancing preservation and adaption: The closer θ is to 1, the stronger preservation is; if θ is zero, the system fully adapts to perturbations.



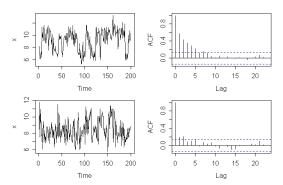
Regime-switching model 1: HM model

$$y_t = \mu_{S_t} + \sigma_{S_t} u_t$$

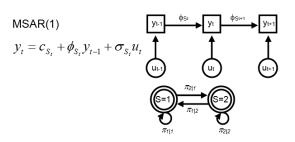


Switching: In the HMM model the system switches between two different WN processes (different means and variances). For each state, there is a probability to stay in it ($\pi_{1|1}$ and $\pi_{2|2}$) and a probabilities to switch ($\pi_{1|2}$ and $\pi_{2|1}$).

51/66

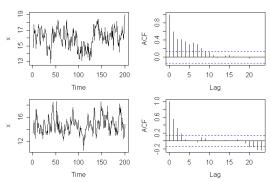


Regime-switching model 2: MSAR(1) model



Switching with carry-over. The MSAR model is characterized by switches between two different AR(1) processes (different constant c, AR parameter φ and variance). Switches are smoother than in the HMM, due to the carry-over.

52 / 66



VAR(1) model and results

```
model:
	y1 with y2;
	y1 y2 on y1&1 y2&1;
```

Note we make use of observed lagged variables y1&1 and y2&1.

MODEL RESUL	TS						
		Estimate	Posterior S.D.	One-Tailed P-Value	95% Lower 2.5%		Significance
Y1 Y1&1 Y2&1	ON	0.881 0.041	0.079 0.140	0.000 0.379	0.717 -0.234	1.042 0.312	ŵ
Y2 Y1&1 Y2&1	ON	-0.101 0.476	0.072 0.124	0.066 0.000	-0.246 0.236	0.037 0.709	ŵ
Y1 W	/ITH	-15.438	3.366	0.000	-23.886	-10.165	*
Intercepts Y1 Y2		2.439 9.931	3.873 3.443	0.242 0.004	-4.875 3.565	10.487 17.121	ŵ
Residual V Y1 Y2	ariances	26.481 22.405	4.307 3.674	0.000 0.000	19.982 17.120	36.577 31.582	ŵ ŵ

VARIMA(0,1,1) model

```
model:
e1 with e2;
y1-y2@0.5; [y1-y2@0];
e1 by y1@1 (&1);
e2 by y2@1 (&1);
y1 on y1&1@1 e1&1;
y2 on y2&1@1 e2&1;
```

where:

- e1 by y1@1; defines e1 as the innovation of the process y1
- e1 by (&1); defines a lagged version of e1 (i.e., innovation at previous time point)
- y1 on y1&1@1; defines the I(1) part (random walk)
- y1 on e1&1; defines the MA(1) part (moving average process)

and:

- y1@0.5; sets the measurement error variance to a negligible small number
- and [y1@0]; sets the mean of the process to zero (because it is a unit root process; mean is not identified)

VARIMA(0,1,1) results

	L R		

			Estimate	Posterior S.D.	One-Tailed P-Value			Significance
E	V1	BY	1.000	0.000	0.000	1.000	1.000	
EZ	2 Y2	BY	1.000	0.000	0.000	1.000	1.000	
Y	L E1&1	ON	-0.200	0.098	0.025	-0.384	-0.000	ŵ
Y	2 E2&1	ON	-0.483	0.098	0.000	-0.658	-0.271	×
Y	l Y1&1	ON	1.000	0.000	0.000	1.000	1.000	
Y	2 Y2&1	ON	1.000	0.000	0.000	1.000	1.000	
EI	L E2	WITH	-17.078	3,639	0.000	-25.295	-11.432	×
I	ntercep	ts	0.000	0.000	1.000	0.000	0.000	
	Y1 Y2		0.000	0.000	1.000	0.000	0.000	
Vä	ariance E1 E2	s	27.380 24.409	4.583 3.974	0.000	20.380 18.196	37.988 33.781	* *
Re	esidual Y1	Variances	0.500	0.000	0.000	0.500	0.500	
	Y2		0.500	0.000	0.000	0.500	0.500	

HMM model

```
model:
    %overall%
    c on c&1:
    y1 with y2; y1-y2; [y1-y2];
model c:
      %C#1%
      y1 WITH y2*-0.12152 (v3);
      [ y1*2.02322 ];
[ v2*1.66623 ]:
      y1*0.40301 (v1);
     v2*0.27785 (v2):
      %C#2%
      v1 WITH v2*-0.12661 (w3);
      [ y1*2.05252 ];
[ y2*1.61515 ];
      y1*0.40550 (w1);
      v2*0.20074 (w2);
model prior:
v1\sim IW(2,2);
v2\sim IW(2,2);
v3~IW(0.2):
w1\sim IW(2,2);
W2\sim IW(2,2);
w3\sim IW(0,2);
```

The overall model part:

- C ON C&1; specifies hidden Markov model
- y1 with y2; ensures the variables are allowed to correlate

Rest is used for specifying starting values and priors

HMM results

MODEL RESULTS

	Estimate	Posterior S.D.	One-Tailed P-Value	95% Lower 2.5%	C.I. Upper 2.5%	Significance
Latent Class Patte	rn 1 1					
Y1 WITH	-29.667	8.942	0.000	-52.482	-16.570	*
Means Y1 Y2	20.767 17.659	1.241 0.962	0.000 0.000	18.314 15.725	23.326 19.515	**
Variances Y1 Y2	59.325 37.273	14.126 8.495	0.000 0.000	39.518 25.278	94.774 58.170	*
Latent Class Patte	rn 1 2					
Y1 WITH Y2	0.176	0.394	0.317	-0.618	0.936	
Means Y1 Y2	33.508 10.044	1.283 0.055	0.000 0.000	30.991 9.949	35.930 10.157	¥r ¥r
Variances Y1 Y2	57.985 0.092	14.079 0.032	0.000 0.000	39.033 0.044	93.425 0.167	*
Categorical Latent	variables					
C#1 ON C&1#1 C&1#2	0.819 0.192	0.061 0.061	0.000 0.000	0.682 0.087	0.921 0.327	*
Class Proportions						
Class 1 Class 2 Class 3 Class 4	0.409 0.091 0.096 0.404	0.031 0.031 0.031 0.031	0.000 0.000 0.000 0.000	0.341 0.039 0.044 0.336	0.460 0.158 0.164 0.456	

MSVAR(1) model

```
model:
     %overall%
     c on c&1;
     y1 with y2; y1-y2; [y1-y2];
      y1 y2 on y1&1 y2&1;
MODEL C:
      %C#1%
      y1 y2 on y1&1 y2&1;
      [ y1*20.76743 ] (1);
[ y2*17.65870 ] (2);
      y1*59.32514 (v1);
      v2*37.27272 (v2):
      y1 WITH y2 (v3):
      %C#2%
      v1 v2 on v1&1 v2&1;
      [ y1*33.50785 ] (6);
[ y2*10.04370 ] (7);
      v1*57.98539 (w1):
      y2*0.09211 (w2);
      V1 WITH V2*0 (W3);
model prior:
v1~IW(2,2);
v2~IW(2,2);
v3 \sim IW(0,2);
w1\sim IW(2,2);
W2\sim IW(2,2);
```

 $w3\sim IW(0,2)$;

The overall model part:

- C ON C&1; specifies hidden Markov model
- y1 y2 on y1&1 y2&1; specifies a VAR(1) model
- y1 with y2; ensures the innovations are allowed to correlate

Rest is used for starting values and priors

MSVAR(1) results

MODEL RESULTS

		Estimate	Posterior S.D.	One-Tailed P-Value	95% Lower 2.5%	C.I. Upper 2.5%	Significance
Latent Cl	ass Patter	n 1 1					
Y1 Y1&1 Y2&1	ON	0.814 0.133	0.131 0.182	0.000 0.219	0.543 -0.220	1.053 0.494	ŵ
Y2 Y1&1 Y2&1	ON	-0.096 0.370	0.126 0.184	0.224 0.026	-0.338 -0.001	0.159 0.732	
Y1 Y2	WITH	-21.215	5.869	0.000	-35.638	-12.993	*
Intercep Y1 Y2	ts	1.008 13.713	5.500 5.439	0.428 0.007	-9.502 2.799	11.979 24.266	w
Residual Y1 Y2	Variances	27.773 29.673	6.527 6.904	0.000 0.000	18.603 20.094	43.894 46.646	* *
Latent Cl	ass Patter	n 1 2					
Y1 Y1&1 Y2&1	ON	0.836 0.063	0.091 0.276	0.000 0.404	0.649 -0.477	1.009 0.611	*
Y2 Y1&1 Y2&1	ON	0.001 0.054	0.006 0.020	0.394 0.011	-0.010 0.014	0.013 0.091	*
Y1 Y2	WITH	-0.001	0.192	0.499	-0.368	0.407	
Intercep Y1 Y2	ts	5.076 9.401	5.182 0.341	0.155 0.000	-5.268 8.728	15.452 10.097	*
Residual Y1 Y2	Variances	17.086 0.063	4.395 0.024	0.000 0.000	11.082 0.038	27.990 0.130	*

MSVAR(1) results

Categorical Latent Variables

C#1 ON C&1#1 C&1#2	0.807 0.215	0.064 0.064	0.000 0.000	0.663 0.107	0.914 0.355	ŵ ŵ
Class Proportions						
Class 1 Class 2 Class 3 Class 4	0.404 0.096 0.107 0.393	0.032 0.032 0.032 0.032	0.000 0.000 0.000 0.000	0.332 0.043 0.054 0.322	0.457 0.168 0.177 0.446	

Outline

- 1. Top-down approach:
 - Univariate multilevel AR(1) model
 - Multiple indicator multilevel AR(1) model
 - Multilevel VAR(1) model
- 2. Bottom-up approach:
 - Comparison of linear models and regime-switching models
- 3. Discussion

Some other issues to consider

- data may be irregularly spaced (e.g., ESM data), which should be taken into account when estimating lagged effects
- time is treated as discrete here, but it might be more appropriate to consider it as continuous (Deboeck & Preacher, 2015; Voelkle et al., 2012)
- there may be trends and cycles present which should (or not?) be accounted for (Liu & West, 2015; Wang & Maxwell, 2015)
- random factor loadings (allowing for idiographic loadings)
- level 2 predictors for the individual differences in dynamics
- time-varying parameters
- multilevel extension of the regime-switching models
- fit measure that allows for all models to be compared...

References and suggested readings

- Bringmann, Vissers, Wichers, Geschwind, Kuppens, Peeters, Borsboom & Tuerlinckx (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8, e60188, 1-13.
- Deboeck & Preacher (2016). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling, 23, 61-75.
- Geschwind, Peeters, Drukker, van Os & Wichers (2011). Mindfulness training increases momentary positive emotions and reward experience in adults vulnerable to depression: A randomized controlled trial. *Journal of Consulting and Clinical Psychology*, 79, 618-628.
- De Haan-Rietdijk, Gottman, Bergeman & Hamaker (2014). Get over it! A multilevel threshold autoregressive model for state-dependent affect regulation. *Psychometika*. doi: 10.1007/s11336-014-9417-x
- Hamaker (2012). Why researchers should think within-person: A paradigmatic rationale.
 In Mehl & Conner (Eds.), Handbook of research methods for studying daily life. (pp. 43-61). New York, NY: The Guilford Press.
- Hamaker & Grasman (2014). To center or not to center? Investigating inertia with a multilevel autoregressive model. Frontiers in Psychology, 5, 1492. doi:10.3389/fpsyg.2014.01492
- Hamaker, Grasman & Kamphuis (2016). Modeling BAS dysregulation in Bipolar Disorder: Illustrating the potential of time series analysis. Assessment.

References and suggested readings

- Houben, Van den Noortgate & Kuppens, (2015). The relation between short-term emotion dynamics and psychological well-being: A meta-analysis. *Psychological Bulletin*, 141, 901-930.
- Jongerling, Laurenceay & Hamaker (2015). A Multilevel AR(1) Model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance. *Multivariate Behavioral Research*, 50, 334-349.
- Koval, Kuppens, Allen & Sheeber (2012). Getting stuck in depression: The roles of rumination and emotional inertia. Cognition & Emotion, 26, 1412-1427.
- Kuppens, Allen & Sheeber (2010). Emotional inertia and psychological maladjustment. Psychological Science, 21, 984-991.
- Kuppens, Sheeber, Yap, Whittle, Simmons & Allen (2012). Emotional inertia prospectively predicts the onset of depressive Multilevel AR(1) model 33 disorder in adolescence. *Emotion*, 12, 283-289.
- Liu & West (2015). Weekly cycles in daily report data: An overlooked issue. Journal of Personality. doi: 10.1111/jopy.12182
- Marriott & Pope(1954). Bias in the estimation of autocorrelations. Biometrika, 41, 390âAS402. doi:10.1093/biomet/41.3-4.390
- Rovine & Walls (2006). A multilevel autoregressive model to describe interindividual differences in the stability of a process. In Schafer & Walls (Eds.), *Models for intensive* longitudinal data (pp. 124-147). New York, NY: Oxford.

References and suggested readings

- Raudenbush S.W. & Bryk, A.S. (2002). Hierarchical linear models: Applications and data analysis methods (Second Edition). Thousand Oaks, CA: Sage Publications.
- Schuurman, Ferrer, de Boer-Sonnenschein & Hamaker (2016). How to compare cross-lagged associations in a multilevel autoregressive model. Psychological Methods.
- Schuurman, Houtveen, & Hamaker (2015). Incorporating measurement error in n=1 psychological autoregressive modeling. Frontiers in Psychology, 6. doi: 10.3389/fpsyg.2015.01038
- Suls, Green & Hillis (1998). Emotional reactivity to everyday problems, affective inertia, and neuroticism. Personality and Social Psychology Bulletin, 24, 127-136.
- Voelkle, Oud, Davidov & Schmidt (2012). An SEM approach to continuous time modeling of panel data: relating authoritarianism and anomia. *Psychological Methods*, 17, 176-192. doi: 10.1037/a0027543
- Wang, Hamaker & Bergeman (2012). Investigating inter-individual differences in short-term intra-individual variability. Psychological Methods, 17, 567-581.
- Wang & Maxwell (2015). On disaggregating between-person and within-person effects with longitudinal data using multilevel models. *Psychological Methods*, 20, 63-83. http://dx.doi.org/10.1037/met0000030
- Wichers, Barge-Schaapman, Nicolson, Peeters, de Vries, Mengelers & van Os (2009).
 Reduced stress-sensitivity or increased reward experience: The psychological mechanism of response to antidepressant medication. Neuropsychopharmacology, 34, 923-931.

Thank you

e.l.hamaker@uu.nl