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Cross-sectional research: A single snapshot
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Panel research: A few snapshots
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Time series data: Looking at the movie
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Time series data: Looking at the movie
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What is time series analysis?

Time series analysis is a class of techniques that is used in econometrics,
seismology, meteorology, control engineering, and signal processing.

Main characteristics:
• N=1 technique
• T is large (say >50)
• concerned with trends, cycles and autocorrelation structure (i.e., serial

dependency)
• goal: forecasting (6= prediction)
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TSA in the social and medical sciences

In sociology:
• quarterly unemployment numbers
• effect of alcohol consumption per capita on criminal violence rates
• effect of suicide news on suicide rates

In medical research:
• effect of safety warnings on antidepressants use
• effects of pain control strategies
• effect of 9/11 attacks on weekly psychiatric patient admissions

In psychology:
• network of symptoms in depressive patient
• effect of feedback on academic performance
• effect of an intervention on the relationship between stress and affect
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Intensive longitudinal data

Intensive longitudinal data are gathered using:
• daily diary with end-of-day-measurements (self-report)
• experience sampling method (self-report)
• ecological momentary assessment (self-report)
• ambulatory assessment (including physiological variables)
• event contingency (self-report)
• observational measurements (expert rater)

For more info on methodology, check out:
• Tamlin Conner (e.g., her seminar with Joshua Smyth on YouTube)
• Society for Ambulatory Assessment
• Trull and Ebner-Priemer (2013)
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It’s a revolution!
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A fundamental problem in a nutshell
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Taken from Hamaker (2012).
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Three perspectives on data
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Taken from Hamaker (2012).
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Interindividual differences in intraindividual variation
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Taken from Hamaker and Grasman (2014).
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Cross-sectional correlations: A blend

Schmitz (2000):
rcs = η2rb + (1− η2)rw

where
• rcs is the cross-sectional correlation
• rb is the between-person correlation
• rw is the within-person correlation
• η2 is the proportion of between-person variance of the total variability

Consequences:
• cross-sectional and panel research may result in an “uninterpretable blend” of

within-person and between-person relationships (cf. Raudenbush and Bryk, 2002)
• in N=1 time series analysis there is only within-person variance
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Lags
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Autocorrelation function (ACF)

The ACF and the PACF can be used as diagnostic tools to determine the
nature of the underlying process.

Variance (or: auto-covariance at lag 0):

γ0 = 1
T
∑T

t=1
(
yt − ȳt

)2

Auto-covariance at lag k:
γk = 1

T−k
∑T

t=k+1
(
yt − ȳt

)(
yt−k − ȳt

)

Autocorrelation at lag k:
ρk = γk

γ0
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Partial autocorrelation function (PACF)

Partial autocorrelation at lag k is the correlation between yt and yt−k after
removing the effect of the intermediate observations (i.e., yt−1 to
yt−k+1).
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For instance: Is there a relationship between yesterday’s positive affect
and tomorrow’s positive affect above and beyond their relationship to
today’s positive affect?
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Sequence, ACF and PACF
White Noise process
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AR(1): yt = φ1yt−1 + ut

Example with φ1 = 0.7 and φ1 = −0.7:
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AR(2): yt = φ1yt−1 + φ2yt−2 + ut

Example with φ1 = 1.2 and φ2 = −0.7 and with φ1 = 0.2 and φ2 = 0.7:
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MA(1): yt = ut − θ1ut−1

Examples with θ1 = 0.7 and with θ1 = −0.7:
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MA(2): yt = ut − θ1ut−1 − θ2ut−2

Examples with θ1 = 1.2 and θ2 = −0.7, and with θ1 = 0.2 and θ2 = 0.7:
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ARMA(1,1): yt = φyt−1 + ut − θ1ut−1

Example with φ1 = .8 and θ1 = 0.8, and with φ1 = −0.8 and θ1 = −0.8:
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Pure AR, pure MA, or an ARMA(p, q)?

In general:
• an AR(p) can always be written as an MA(∞)
• an MA(q) can always be written as an AR(∞)

Other (rather unexpected) results found by Granger and Morris (1976):
• AR(1) + WN → ARMA(1,1)
• AR(1) + AR(1) → ARMA(2,1)
• MA(1) + WN → MA(1)

You may consider:
• interpretation (social sciences)
• forecasting (econometrics)
• parsimony
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Stationarity

Stationarity is an important concept in time series analysis:
• is based on using backshift operators and the unit root circle (as all introductory

texts on time series analysis do!)
• implies that all moments (i.e., means, variances, covariances, lagged covariances,

etc.) are independent of time

For instance:
• mean is constant over time
• γk depends on the lag k, not on t (i.e., the occasion itself)

Two typical examples of
nonstationary processes:

• trends over time (including cycles?)
• random walk: yt = yt + et

Stationary AR(1) process
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Stationarity of an AR(p)

For an AR(1) to be stationary, |φ| < 1.

For an AR(2) to be stationary we need:
• φ2 − φ1 < 1
• φ2 + φ1 < 1
• |φ2| < 1

which leads to the following triangle:

(Check out: http://freakonometrics.hypotheses.org/12081)

37 / 62



Outline

• Why time series analysis?
• Autocorrelation
• ARMA models
• Stationarity
• The state-space model
• Kalman filter and parameter estimation
• Diverse models in state-space format
• Miscellaneous

38 / 62



Rocket science

State space model with known
parameters:

• Kalman filter predicts the future state
(e.g., the location of your space rocket),
based on current and previous observations
(on-line procedure)

• Kalman smoother predicts the state based
on previous, current and future
observations (off-line procedure)

Often, the parameter values are NOT known.

Then, certain by-products of the Kalman filter/smoother can be used in a
likelihood function (see later).
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The basic framework
Measurement equation

yt = ct + Ztat + et with et ∼ MN (0,GGt)

• ct is the vector with intercepts in the measurement equation
• Zt is the matrix with factor loadings
• GGt is the covariance matrix of the measurement errors

Transition equation
at = dt + Ttat−1 + ut with ut ∼ MN (0,HHt)

• dt is the vector with intercepts in the transition equation
• Tt is the matrix with cross- and auto-regressive coefficients
• HHt is the covariance matrix of the dynamic errors

In a more basic version these model matrices are fixed over time.
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Measurement equation: regressing yt on at

yt = c + Zat + et
et ∼ MN (0,GG)

a2,t 

y5,t y4,t y6,t 

a1,t 

y2,t y1,t y3,t 

e2,t e1,t e3,t 

e5,t e4,t e6,t 
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Transition equation: Regressing at on at−1

at = d + Tat−1 + ut
ut ∼ MN (0,HH)

a2,t-1 a2,t a2,t+1 

a1,t-1 a1,t a1,t+1 

u1,t-1 

u2,t-1 

u1,t-1 

u2,t-1 

u1,t-1 

u2,t-1 

42 / 62



State-space model = Latent VAR(1) model

yt = c + Zat + et
et ∼ MN (0,GG)

at = d + Tat−1 + ut
ut ∼ MN (0,HH)
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State-space model versus SEM
Two ways in which SEM can be use to do TSA:

Toeplitz method, based on making lagged
variables

y1
y2 y1
y3 y2
y4 y3
. . .
yT yT−1

Advantage: easy
Disadvantage: violates assumption of
independent cases (=rows); no true ML
estimates (and wrong fit measures)
(cf. Hamaker, Dolan & Molenaar, 2002)

Raw maximum likelihood estimation,
based on N=1

y1 y2 y3 . . . yT

Advantage: gives ML estimates
Disadvantage: requires inversion of (at
least) a T × T matrix (computationally
troublesome)
(cf. Hamaker, Dolan and Molenaar, 2003)

See Chow, Ho, Hamaker and Dolan (2010) for further comparison of state-space
modeling and SEM.
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Kalman filter for parameter estimation

The Kalman filter can be used to predict future states when the
parameters are known.

In practice, the parameter values are often unknown.

In that case, by-products of the Kalman filter can be used to estimate
the parameters:

• the one-step-ahead-prediction error et|t−1 = yt − yt|t−1

• the covariance matrix of et|t−1 (i.e., Ft)

These are plugged into a likelihood function, which is then optimized
with respect to the unknown parameters.

Hence, for each set of possible parameter values, the entire Kalman
filter is run from t = 1 to t = T .
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Kalman filter for parameter estimation
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Just a latent vector AR(1) model?
At first sight the state-space model seems to be just a latent VAR(1)
model.

However, it is actually a very flexible framework for all sorts of time
series models:

• all ARIMA models
• multivariate extensions
• dynamic factor analysis

Extensions may consist of:
• predictors (e.g., time, intervention, weather conditions) in the measurement

and/or transition equation
• time-varying parameters
• regime switches (through combination with a hidden Markov process)
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AR(1) in state-space format

Measurement equation:
yt = c + at

• c is a vector containing the unknown mean
• Z is a 1 by 1 matrix containing 1
• GG is a zero matrix

Transition equation:
at = Tat−1 + ut

• d is a zero vector
• T is a 1 by 1 matrix containing the autoregressive parameter
• HH is a 1 by 1 covariance matrix containing the variance of the innovations
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AR(1) with measurement error

Measurement equation:
yt = c + at + et

• c is a vector containing the unknown mean
• Z is a 1 by 1 matrix containing 1
• GG is a 1 by 1 covariance matrix with the variance of the measurement error

Transition equation:
at = Tat−1 + ut

• d is a zero vector
• T is a 1 by 1 matrix containing the autoregressive parameter
• HH is a 1 by 1 covariance matrix containing the variance of the innovations
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AR(2) in state-space format

Measurement equation:

yt = c +
[
1 0

] [ at
at−1

]
= c + at

where GG is a zero matrix.

Transition equation:[
at

at−1

]
=
[
φ1 φ2
1 0

] [
at−1
at−2

]
+
[
ut
0

]
=
[
φ1at−1 + φ2at−2 + ut

at−1

]

• d is a zero vector
• HH is a 2 by 2 covariance matrix containing only the variance of the innovations

(element 1,1)
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Bivariate VAR(1) in state-space format

The measurement equation:[
y1,t
y2,t

]
=
[
c1
c2

]
+
[
1 0
0 1

] [
a1,t
a2,t

]

where GG is a zero matrix.

The transition equation:[
a1,t
a2,t

]
=
[
φ11 φ21
φ12 φ22

] [
a1,t−1
a2,t−1

]
+
[
u1,t
u2,t

]
=
[
φ11a1,t−1 + φ21a2,t−1 + u1,t
φ22a2,t−1 + φ12a1,t−1 + u2,t

]

• d is a zero vector
• HH is a 2 by 2 covariance matrix of u1,t and u2,t
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Graphical representations
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Applications of VAR models

VAR models are of interest, because
• they allow you to study Granger causality: Can you predict Y from X, after

controlling for previous levels of Y?
• they allow you to determine which variable is “causally dominant” when there are

reciprocal effects
• they can be interpreted as networks (alternative to latent variable approach)

Some interesting replicated VAR applications
• Schmitz and Skinner (1994): Perceived control, effort and academic performance
• Rosmalen et al. (2012): Depression and physical activity
• Snippe et al. (2014): Mindfulness, repetitive thinking and depressive symptoms
• Van Gils et al. (2014): Stress and functional somatic symptoms

In all these studies they find important differences across individuals.
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Dynamic factor model
Dynamic factor analysis is used for time series data consisting of multiple
indicators of an underlying construct.

There are two popular versions:
• at the latent level there is a VARMA model; the factor loadings only
appear at lag 0

• at the latent level there is white noise; the factor loadings appear at
different lags (e.g., EEG data)

y2,t-1 

at-1 at at+1 

y1,t-1 y3,t-1 y2,t y1,t y3,t y2,t+1 y1,t+1 y3,t+1 

e2,t-1 e1,t-1 e3,t-1 e2,t e1,t e3,t e2,t+1 e1,t+1 e3,t+1 

y2,t-1 

at-1 at at+1 

y1,t-1 y3,t-1 y2,t y1,t y3,t y2,t+1 y1,t+1 y3,t+1 

e2,t-1 e1,t-1 e3,t-1 e2,t e1,t e3,t e2,t+1 e1,t+1 e3,t+1 

56 / 62



Outline

• Why time series analysis?
• Autocorrelation
• ARMA models
• Stationarity
• The state-space model
• Kalman filter and parameter estimation
• Diverse univariate models in state-space format
• Miscellaneous

57 / 62



Covariance matrix of the series

For a univariate AR(1), we have: σ2
y = σ2

u
1−φ2 .

Similarly, for a (latent) VAR model we can express the covariance
matrix of yt in terms of

• lagged regression parameters Φ
• covariance matrix of the innovations Γ (i.e., HH in the state-space model)

Specifically (from Kim and Nelson, 1999):

Σy = mat
[(

I − Φ⊗ Φ
)−1vec(Γ)

]
where

• vec() implies you put all the matrix elements in a vector
• mat() implies you place all the vector elements in a square matrix
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Model fit

Despite the similar appearance, state-space modeling and SEM are not
the same: For a time series there is no saturated model against which
we can test other models.

We can compare our model to other models, including the white noise
model (independence model), using

• log likelihood ratio test (for nested models)
• AIC, BIC, DIC, etc. (for all models)

Fit may be less interesting to econometricians and meteorologists: Their
primary interest is forecasting.
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To conclude

• time series analysis is a large class of diverse techniques to analyze
N=1 data

• ARMA models are only a small (but basic) part of this
• time series models may be extended with cycles or trends over time
• in psychology we typically have N>1; there are different ways of
handling this
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