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Motivation

Merge ”time series” and ”structural equation” modeling concepts
in a generalized modeling framework in Mplus V8

Until recently, most dynamic structural equation models were
focused on the case N=1, due to connection with econometrics,
ARMA models and Kalman filter estimation. Most social
science and biostatistics/epidemiological applications have
N > 1. Thus time-series SEM model must be a two-level model
where the cluster variable is the individual and we have a long
sequence of observations for that individual.

Two distinct sources of correlation: within individual
correlations can be due to subject-specific effect (two-level
modeling) or it can be due to correlation due to proximity
(autocorrelation) of the observations (time series modeling). The
two types of correlations are easy to parse out from the data in
sufficiently long longitudinal data.
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Motivation continued

The need for this modeling arises if we want to see continuum of
latent variable constructs and from the fact that we don’t know
how often to measure the latent construct. If we measure too
often we have large autocorrelation and false independence, if
we measure too infrequently we can miss important changes and
portray incomplete picture
Ignoring the autocorrelation will produce incorrect SE and hide a
substantial amount of the underlying relationship in the data.
When the autocorrelation is substantial and we don’t account for
it, we essentially ignore the best predictors - the values from the
previous time period
Current modeling approach to long longitudinal data using ML
estimation: A. Two-level modeling (ignoring proximity
correlation and assuming observations are independent
conditional on the individual growth trajectory) B. Multivariate
model (computationally intractable beyond time length of 100
observations)
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Motivation continued

ML is not a feasible estimation method for two-level time-series
model, and is fairly complex even for single level.

Bayesian estimation is feasible. Adding ”one additional
correlation” results in changing one step in the MCMC
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Mplus general DSEM framework

Let Yit be an observed vector of measurements for individual i at
time t.

Let ηit be a latent variable vector for individual i at time t.

Let Xit be a observed vector of covariates individual i at time t.

Similarly Yi, Xi and ηi are individual-specific variables

Similarly Yt, Xt and ηt are time specific variables

Main decomposition equation

Yit = Y1,it +Y2,i +Y3,t

Y2,i, Y3,t are the ”individual” and ”time” specific contribution.
These are latent variables. Y1,it is the residual.
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DSEM framework continued

The within level model includes previous periods latent variables
- modeling the correlations in consecutive periods.
Only as predictors, not as dependent variables (if we include it as
predictor we will have a repeating equation)
Prior latent variables can affect current latent variables DAFS
(direct autoregressive factor score) or current observed variables
directly WNFS (white noise factor score)
One generalized framework to include many models
L is the lag variable: how many time period back are included in
the model. L=1 mean that just the latent variables in the previous
period need to be included.

Y1,it = ν1 +
L

∑
l=0

Λ1,lη1,i,t−l + ε1,it

η1,i,t = α1 +
L

∑
l=0

B1,lη1,i,t−l +Γ1x1,it +ξ1,it.
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DSEM framework continued

The usual structural equations at level 2 and 3.

Y2,i = ν2 +Λ2η2,i + ε2,i

η2,i = α2 +B2η2,i +Γ2x2,i +ξ2,i

Y3,t = ν3 +Λ3η3,t + ε3,t

η3,t = α3 +B3η3,t +Γ3xt +ξ3,t

Random intercepts, loadings, slopes, variances: every within
level parameter s can be random. s1 non-random part of the
parameter, s2,i is individual random effect part of η2,i and s3,t is
time specific random effect part of η3,t (TVEM)

s = s1 + s2,i + s3,t
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Behind the scenes DSEM

There are 3 models in the above specification

TYPE=CROSSCLASSIFIED; CLUSTER=ID TIME. Modeling
time specific effects. Requires the time scale to be comparable
across individuals: time varying effect model. Currently time
specific effects excludes loadings and variances.

TYPE=TWOLEVEL; CLUSTER=ID. No time specific random
effects (non-random time specific effects are ok). This will be
the most common and introductory model to be used.

TYPE=GENERAL. Single level. N=1 case. No random effects.
All observations are correlated. Multivariate econometrics.
Kalman filter. ARMA. It can also be used for small N, as a wide
multivariate spread.
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DSEM extensions

The above model assumes normality

Ordered polytomous and Binary dependent variables using the
underlying Y∗ approach

Missing data: MAR likelihood based treatment via MCMC
imputation

The above model extends the Version 7 model time-intensive
cross-classified SEM model with the time-series capabilities

Missing data imputation using DSEM - much more realistic
when there is autocorrelation in the data as the missing data will
be imputed from the neighbouring observations rather than from
the average for the person

MCMC based distributions for all model parameters, latent
variables, and individual-specific or time specific random effects
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DSEM language: latent variable lag

ETA&1 refers to ETA with lag 1, ETA&2 refers to ETA with lag
2, etc ...

Lag variables ETA&i are used only as predictors - not as
dependent variables. Using ETA as dependent variable suffices
to specify the model.

ETA by Y1-Y5 (& L); specifies the lag L and that ETA&1,
ETA&2, ..., ETA&L will be in the model

DAFS model: ETA by Y1-Y5 (& 1); ETA on ETA&1;

WNFS model: ETA by Y1-Y5 (& 1); Y1-Y5 on ETA&1;
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DSEM extension: observed variable lag

For type=twolevel and type=general (single level) models
observed variable lag variables can also be included in the
model. Not available yet for type=cross-classified
Language: lagvar=Y(L); specifies that Y&1, Y&2, ..., Y&L can
be used in the model
It can be used with observed dependent variables Y and
independent variables X
For single level and without missing data this is just a
convenience. You can as well enter the data yourself. With
missing data however this is not true. Rely on Mplus full
information approach for missing data even in single level
DSEM.
For twolevel Y&j is used only on the within level and it refers to
Yw,i,t−j where Yi,t = Yi,b +Yi,t,w

Yw,i,t−j is a ”latent covariate”, it does not have an observed
quantity even if there is no missing data.

Tihomir Asparouhov, Bengt Muthén and Ellen Hamaker Muthén & Muthén 12/ 70



DSEM extension: observed variable lag

If there is no missing data one can in principle use instead of
Yw,i,t−j, the variable Yi,t−j−Yi,t, i.e., replace the latent Yi,b with
its estimating quantity Yi,t however that leads to some bias.

The bias is more complicated than the bias in standard multilevel
models, where the bias is known precisely

The bias is most likely not of practical significance if T > 200,
little difference between Yi,b and Yi,t, although SE are likely to
still be biased as the observed analogue does not accommodate
the uncertainty in the estimate which is of the same magnitude as
the SE for the model parameters.

In the presence of missing data there is no ”observed covariate
approach”. Just like in single level missing values on covariates
implies that observations are deleted which creates bigger mess
then usual for time series models.
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DSEM extension: observed variable lag

Deleting a row is highly consequential in time series models. For
example in AR(1) if the autocorrelation between Yt and Yt−1 is ρ

the correlation between Yt and Yt−2 is ρ2. Deleting a row (if Yt−1
is missing) changes the model for Yt.

Search statmodel.com for ”latent covariate” for more info on that
topic.

Summary: The best approach is the full information approach
developed with the lagvar=Y(L); command for both single and
twolevel models.

Currently available only for continuous variables, not
categorical, and not with cross-classified models
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DSEM extension: observed variable lag

The development of that ”observed lag” algorithm and command was
done AFTER the seemingly more advanced ”latent variable lag”
algorithm. Four reasons:

1. Creating a latent variable behind the observed variable
requires fixing a variance to zero in Mplus and with Bayes that
will lead to slow convergence in many cases. Using directly
observed lag variables yields fast convergence.

2. In this modeling framework DIC is conditional on all within
level latent variables which leads to unusable DIC of minus
infinity with fake latent variables.

3. Unnecessarily complicated input language using fake latent
variables.

4. Multiple papers in psychological methods that can help with
early adoption.
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DSEM example: single level ARMA(2,1)

Yt = µ +β1Yt−1 +β2Yt−2 + εt +β3εt−1
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DSEM example: single level ARMA(2,1) results
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DSEM Stationarity

The models as described assumes that the distribution of Yt|Xt

stabilizes i.e. is stationary. If the observed Yt data does not
exhibit a stationary distribution and the distribution changes with
time then covariates Xt that change over time need to be included
(for example including T as covariate will model a distribution
that has a mean changing linearly over time)
Alternative method for dealing with non-stationarity is to use
ARIMA methodology. Instead of modeling Yt, model Yt−Yt−1
or more generally (1−L)dYt as a stationary process
How to check that estimated model is stationary? MA (moving
average) has no effect - always stationary. The WNFS is always
stationary. AR (autoregressive) portion should have all root of
the lag-equation > 1, i.e., for AR(1) Yt = βYt−1 + ε , |β |< 1 for
stationarity and it is the autocorrelation. In multivariate form the
eigenvalues of |β | must be less than 1 by absolute value and
β = V−1C is not the autocorrelation coefficients and could be
bigger than 1.
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DSEM Stationarity continued

How to really check if a model is stationary: generate data in
Mplus and see if it explodes
Consider the simple DAFS model

Yit = µi +Ληit + εit

ηit = α +βηi,t−1 +ξit

This model is stationary if and only if |β |< 1. If there are more
than one factors and ηit is a vector then β is a matrix and the
process is stationary if and only if the eigenvalues of the matrix
are smaller than 1 by absolute value.
Note also that in the univariate case

Var(ηit) = Var(ξit)/(1−β
2),E(ηit) = α/(1−β )

If β → 1 then the mean and the variance will→ ∞
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DSEM Estimation

Estimating issues as an addition to the Mplus Version 7
algorithm.
1. [Between Parts | observed data] can’t really be computed as
the likelihood is messy and the observations are not independent
given the between level random effects => η has to become part
of MCMC and the between level random effects are now
[Between Parts | observed data, η]. Once this is done we can use
two-level FIML formulas. An efficiency gain in mixing quality
that is being lost.
2. [ηti|∗] used in the MCMC estimation now uses 2∗L+1
measurement equations and one regression equation and depends
on

Yt,i,Yt+1,i, ...,Yt+L,i,

Xt,i,Xt+1,i, ...,Xt+L,i,

ηt−L,i, ...,ηt+L,i
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DSEM Estimation Continued

3. Initial Conditions.
Now we have ηi,t=0, ηi,t=−1, .... in the model. In the case of the
observed lag variables we have Yi,t=0, Yi,t=−1. We treat these as
auxiliary parameters with their own prior.
If sequences are long such as T > 50 it doesn’t matter. For
smaller sequences it does.
Mplus offers 2 options
A. Use our default automatic priors, in the first 100 MCMC
iterations we update the priors from the sample statistics of η or
Yi,t, then we discard those 100 MCMC iterations.
B. Specify a normal prior for these auxiliary parameters in model
prior. Difficult to use in practice even for experts especially when
variables are not standardized. Nevertheless you have access to it.
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DSEM Estimation Continued

4. The posterior distribution of ηti changes across t. It is the
same in the middle of the sequence but changes at the end or the
beginning as there are fewer observation (the sequence is
truncated).
5. Missing data and observed variables lag: The posterior
distribution of [missing data of observed lag variables | *] now
involves multiple rows because the missing observation
participates in several different times t. If the variable has lag L
the size of the missing data imputation model becomes L+1
times bigger.
6. For observed lag variables Yit = Yb,i +Yw,it the posterior
distribution for Yb,i is now more complicated. In a simple
example such as AR(1) it works like this

Yw,it = µ +B ·Yw,it−1 + εit

Yit = µ +(I−B) ·Yb,i +B ·Yit−1 + εit

Thus the ”between part” is multiplied by (I−B) in this case.
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DSEM Estimation Continued

Note also that η and Y with negative indices become important
in simulation studies as well. By default we start at 0 then draw
and discard the first 10 draws. After that the simulation
distribution stabilizes and is independent of these initial values.

In Version 8 restriction that is likely to stay: random loadings
can vary across individual but not across time. Random slopes
however can vary across individual and time with current
implementation using type=crossclassified. Observed lag
variables not available with cross-classified models.
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DSEM Estimation Continued

Do not be surprised or alarmed if Mplus converges in 20 seconds
and WinBugs takes 24 hours.

Here are the four main reasons:

1. Mplus uses Fortran (fastest computational environment)

2. Mplus uses parallel computing so each chain is computed
separately (the number of chains will not increase the computing
time as long as you have enough CPUs on your computer (most
come with 8 - Quad Core i7 processors). Use the
PROC=number chains command

3. Mplus uses the largest updating blocks possible - complicated
to program but gives the best mixing quality

4. Mplus uses sufficient statistics
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DIC

DIC is currently the only information criterion implemented in
Mplus for comparing DSEM models.

D(θ) =−2log(p(Y|θ))

pD = D̄−D(θ̄)

DIC = D(θ̄)+2pD

Despite the clear definition with the above formulas, there is
substantial variation in what DIC actually is. The source of the
variation is the definition of θ . For example in a factor analysis
model, one way to compute DIC is using the observed Y implied
variance covariance matrix, and never really involve the factor.
You can also treat the factor as parameters. In that case
likelihood = [Y|eta]. Also different treatment of missing values:
parameters or not a part of the likelihood.
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DIC Continued

Different definitions of DIC are not comparable. You can
compare only if they are using the same likelihood definition.

Software implementations not clear about what definition they
use, even published peer reviewed articles limited to the above
definition, but no full details on what likelihood is being used

Different definitions of DIC have different power to detect
significance.

An easy way to figure out what DIC is being computed: look at
pD - estimated number of parameters

Among the different definitions of DIC: the smaller pD the better.
Fewer parameters to be integrated, faster convergence, more
accurate estimate, more power, if pD is large then it is not
unusual to have a situation when model estimation has converged
but DIC estimation has not
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DIC Continued

Looking at pD is surprisingly useful, you can detect estimation
problems with it. If pD is not close enough to what you expect it
to be most likely you need to run many more MCMC iterations.
If pD is negative you most certainly should not consider the
model as converged.
pD is the ”estimated number of parameters” it does not match the
actual number of parameters. Consider random effect with zero
variance, this is equivalent to a non-random parameter. pD has a
way of telling this and will not consider these random effects to
be different parameters but one parameter. Similarly highly
correlated random effects will count as one not two random
effects. The more correlated random effects are the more
discounted they are. For example two random effects with
correlation 0.75 could count as 1.5 parameters. If the correlation
is 0 they will count as 2 parameters, if the correlation is 0.95 they
will count as 1.2 parameters. All these numbers are approximate.

In Version 7.3 we introduced DIC for all multilevel and models,
three-level, two-level and cross-random. All random effects are
conditioned on.
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DIC for DSEM

All latent variables are conditioned on, between and within level
latent variables. Likelihood is now straightforward to compute as
the within cluster variables are independent. Large number of
parameters.

In some models this definition becomes useless. Consider a
model like ARMA

Yt = β1Yt−1 + εt +β2εt−1

The likelihood used by DIC is [Yt|Yt−1,εt,εt−1] which has zero
conditional variance and - infinity as likelihood. If your model
requires the specification Y@0; on the within level DIC will
likely be useless and you should be able to see that in the large
negative DIC value. pD still ok.
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DIC for DSEM

You can use DIC to compare complex hypothesis such as a
whole set of parameters is zero, or a set of random effects is
zero. You can use DIC to compare the need for random loadings
(fixed v.s. random loadings). You can use DIC to compare
non-nested models. If testing just one parameter instead use the
confidence/credibility interval.

General trend: DIC will loose its appeal as the answer to all
questions. We use Bayes estimation to be able to estimate
models that we can’t compute the likelihood, i.e., where DIC is
not computable in traditional sense. [Model test] will probably
be available soon for Bayes.
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Empirical example: borderline personality disorder data

The example without AR is from Asparouhov and Muthen
(2015), ”General Random Effect Latent Variable Modeling:
Random Subjects, Items, Contexts, and Parameters”, in
Advances in Multilevel Modeling for Educational Research. The
data comes from Jahng, Wood, Trull (2008)

21 items measuring mood for 84 subjects, two groups according
to DSM-IV classification.

76 to 186 observations per person all within 4 weeks: violation
of equally spaced times.

Primary interest is to determine if the group variable increases
the factor variance: β = SIGMA ON GROUP

All Version 7 features apply to DSEM: random loadings, random
indicator mean, random factor mean, random factor variance
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Input file for empirical example

Tihomir Asparouhov, Bengt Muthén and Ellen Hamaker Muthén & Muthén 31/ 70



Results from empirical example: borderline personality
disorder data

Autocorrelation model DIC pD p β

random (full DSEM) 436628 13473 113 .46[.11,.92]
non-random (DSEM) 436749 13553 111 .24[-.04,.58]

fixed to 0 (DSEM) 437276 14087 110 .29 [-.01,.67]
fixed to 0 (Twolevel) 460351 3366 110 .29[.04,.65]
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Conclusions from empirical example

Full DSEM model gets the best DIC.

Dynamic modeling affects point estimates, standard errors,
significance

The Full DSEM model separates mood variation as momentary
and global. Fast changing mood (small ar) v.s. slow changing
mood (large ar).

Sine curve amplitude effect: Sigma on Group

Sine curve frequency effect: Rho on Group

DSEM-DIC not on the same scale as Twolevel-DIC
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Alternative individual-specific variances for a variable.

Usually we use this for observed variables. For latent variables
the random loading common factor model is more natural.

Method 1

Sigma | E1 by E; E1@1; E@0
E=Sigma*E1, where E1 is standard normal
Sigma is between level random effect (regress on predictors)
Var(E | ID=i)=Sigma2

i

Method 2

Replace E@0 with E@0.5
Var(E | ID=i)=0.5+Sigma2

i
0.5 is the minimum variance, should be viewed as ”prior min”. If
you get it wrong you may truncate some variances.
Improves convergence especially with missing data
Recommendation: the constant should be 50% of the non-random
variance estimate
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Simulation Study - Twolevel AR(1) with random intercept
and autocorrelation
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Results - Twolevel AR(1) with random intercept and
autocorrelation
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Simulation Study - Twolevel AR(1) with random intercept,
autocorrelation and variance
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Results - Twolevel AR(1) with random intercept,
autocorrelation and variance
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Simulation Study - Twolevel DAFS Lag 3 model
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Results - Twolevel DAFS Lag 3 model
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Simulation Study - Twolevel WNFS Lag 5 model
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Results - Twolevel WNFS Lag 5 model
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Simulation Study - Twolevel DAFS-WNFS Combo Lag 1
model - ARMA(1,1) factor
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Results - Twolevel DAFS-WNFS Combo Lag 1 model -
ARMA(1,1) factor

Note that this is counterintuitive from SEM perspective, but not from
time series perspective. The model is essentially a factor analysis
model with ARMA(1,1) factor
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Summary of literature: my favorite (read in this order)

Time series, ARMA literature, econometrics textbooks. W.H.
Green, ”Econometric Analysis”
Comparisons of Four Methods for Estimating a Dynamic Factor
Model (2008), by Zhang Hamaker Nesselroade
Bayesian Estimation of Categorical Dynamic Factor Models
(2007), by Zhang and Nesselroade
On the Nature of SEM Estimates of ARMA Parameters (2002)
by Hamaker, Dolan, Molenaar
A Multilevel AR(1) Model: Allowing for Inter-Individual
Differences in Trait-Scores, Inertia, and Innovation Variance
(2015) by Jongerling, Laurenceau, Hamaker
Conditions for the Equivalence of the Autoregressive Latent
Trajectory Model and a Latent Growth Curve Model With
Autoregressive Disturbances (2005) by Hamaker
A comparison of Inverse-Wishart prior specifications for
covariance matrices in multilevel autoregressive models (2016)
by Schuurman, Grasman, Hamaker
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Subject-specific times of observations

The basic model assumes that observations are taken at equally
spaced time.

If times are subject-specific we slice the time grid in sufficiently
refined grid and enter missing data for the times where
observation is not taken.

For example if several observations are taken during the day, and
at different times for each individual, we slice the day in 24 hour
periods and place the corresponding observations in the hour
slots.

Data from the next simulation looks like this for day 1 for
individual 1 and 2.
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Subject-specific times of observations: subject 1 day 1
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Subject-specific times of observations: subject 2 day 1
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Subject-specific times of observations - simulation study
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Subject-specific times of observations - simulation study
results

80% missing values, 20% present, in hourly scale that means 4
or 5 observations a day
99% convergence rate, 96 minutes computation for 100
replications, 1 min per replication
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Subject-specific times of observations - summary of results

Similar results for 85% missing and 90% missing, however,
convergence is visibly slower for 90% missing values than for
80% missing values and non-convergence is more likely

It appears that optimal time discretization would be about 80% to
85% missing values inserted to represent the distance between
the observations

Very likely any information contained in the unequal distances in
the observations would be extracted well using the 80% to 85%
missing values.

It appears that this problem is solved with this simple setup and
there is no need to develop Brownian motion continuous
modeling.

Mplus now implements a utility that will setup the missing data
for you, given the precise times of observations
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Subject-specific times of observations algorithm

tvarinterval = t(0.1);

Split the time axis in bins of size 0.1. Then place each
observation in the correct bin

Repeat these steps until each bin contains no more than 1
observation

find a bin with more than 1 observations
locate the nearest empty bin (look up or down)
move one of the extra observation to fill in the the empty bin but
keep order of the observations so the extra observation bumps the
rest of the observations towards the empty bin

Fill in the remaining bins with missing values and set the time as
T=1,2, ... and T is the bin number.

Other algorithms are possible. The algorithm discretizes the time
scale and approximates the times of observations with times
from the discretized grid.
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Empirical Example: Jahng, Wood, Trull (2008)
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Empirical Example Results: autocorrelation coefficient for
the factor. Continuous time modeling

Grid size ρ implied convergence in seconds
0.05 0.788 - 1139
0.1 0.673 0.621 97
0.15 0.640 0.489 97

ignore time 0.598 - 78

Implied values are from the most refined model 0.7882 and
0.7883

Some gain in precision going from 0.1 to 0.05, big gain from
going from 0.15 to 0.05

All other parameters in the model remain unchanged

The smaller the grid size the better the precision but also the
slower the convergence
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Simulated Example Results. Continuous time modeling

Using one generated data set from the 80% missing simulation.
Consider the results for the autocorraltion parameter under
various analysis. True value=0.4. Note that AR meaning depends
on the time interval between observations. Note that the true grid
value that we know is sufficient is 1. Note that the model is
almost the same as the empirical example.

Grid size ρ implied |ρ - implied|
0.5 0.633 - -
1 0.398 0.401 0.003

1.5 0.303 0.254 0.049
2 0.229 0.161 0.068

ignore time 0.102 -

You can see in this controlled experiment that ”implied -
estimated” quantity clearly discovers the correct grid size
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Why do we need lag modeling for the latent variables?

What happens if we just model the lag of the observed sum
score? Generate large data set 2000 individuals with 50 time
points and 3 indicators: Two-level DAFS
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Two-level AR(1): Observed and Latent

Two-level Latent AR(1)

Yit = µ +Yi +Fit

Fit = ρFi,t−1 + εit

Two-level Observed AR(1)

Yit = µ +Yi +Fit

Zit = Yit−Yit

Fit = ρZi,t−1 + εit
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Two-level Latent AR(1) for the sum score
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Two-level Observed AR(1) for the sum score
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Why do we need lag modeling for the latent variables?
Results

Autocorrelation ρ true value = 0.5

Model ρ bias
Two-level DAFS 0.492 0.008

Two-level Latent AR(1) 0.391 0.109
Two-level Observed AR(1) 0.360 0.140

Two-level Latent AR(1) for the sum score bias due to not
accounting for measurement error of the factor

Two-level Observed AR(1) for the sum score yields further bias
due to not accounting for measurement error in the lag variable
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Three-level AR(1) model

Yidt is the observed value for individual i on day d at time t

Yidt = µ +Yi +Eit +Fid +Gidt

Gidt = ρ1Gid,t−1 + ε1,idt

Fid = ρ2Fi,d−1 + ε2,id

Two type of autocorrelation parameter, ρ1 is the autocorrelation
within the day, ρ2 is the autocorrelation between the days

Maybe take out Eit?

Model has 7 parameters: 4 variances, 2 autocorrelations, 1
intercept

Data consists of 100 individuals, observed for 100 days, with 10
observations per day
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Three-level AR(1) model - simulation study
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Three-level AR(1) model - simulation study results
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Three-level AR(1) model with subject-specific times of
observations

Using 50% missing data. Approximately 5 randomly spaced
times of observations per day

5 observations a bit too low to obtain good autocorrelation
parameter. Sequence is too short? Mixing estimation?

Add the commands:
missing=y1-y10;
model missing: [y1-y10*0];
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Three-level AR(1) model with subject-specific times of
observations - simulation results
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Two-level AR(1) TVEM - simulated example

General TVEM framework: multivariate, multilevel, time-series,
continuous and categorical dependent variables.

Consider the following example N=500, T=50

Yit = µt +Yi +Fit

Fit = ρFi,t−1 +βtXit + εit

µt = f1(t) = log(t)

βt = f2(t) = a+bt+ ct2 = 0.001 · t · (50− t)

f1(t) and f2(t) are arbitrary functions of t - no specific functional
form is assumed in the model
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Two-level AR(1) TVEM - input file
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Two-level AR(1) TVEM - intercept results
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Two-level AR(1) TVEM - slope results
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Dynamic Latent Class Analysis

In my talk tomorrow we will discuss the general framework
implemented for release in Mplus Version 8.0 and Version 8.1 which
simultaneously incorporates time series modeling, hidden Markov
modeling, multilevel modeling and mixture modeling. The framework
can be useful to study continuous and categorical latent variable
development across time. Specific examples and simulation studies
are discussed such as:

Multilevel Mixture Models
Multilevel Latent Transition Models with cluster specific
transition probabilities
Multilevel Mixtures of Dynamic Structural Equation Models
Dynamic Latent Class Analysis
Multilevel Hidden Markov Model
Multilevel Markov Switching Autoregressive Models
Multilevel Markov Switching Kalman Filter Models
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