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Bayesian estimation of single and multilevel models with latent variable interactions
Tihomir Asparouhov and Bengt Muthén

Mplus

ABSTRACT
In this article, we discuss single and multilevel SEM models with latent variable interactions. We describe
the Bayesian estimation for these models and show through simulation studies that the Bayesian
method outperforms other methods such as the maximum-likelihood method. We show that multilevel
moderation models can easily be estimated with the Bayesian method.
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Introduction

In this article, we discuss the analysis of single and multilevel
structural equation models with latent variable interactions. In
the single-level context, the maximum-likelihood (ML) esti-
mation is described in Klein and Moosbrugger (2000). The
ML computations are heavier than for models without latent
variable interactions because numerical integration is needed.
The ML estimation in the two-level context, discussed in
Muthén and Asparouhov (2009), is even more difficult to
utilize because the dimensions of numerical integration can
increase quickly beyond what is computationally feasible. For
an overview of the ML approach and various estimators
suggested in earlier work, see Marsh et al. (2004). Different
estimation methods are also discussed in Klein and Muthén
(2007), Cudeck et al. (2009), Mooijaart and Bentler (2010),
and Brandt et al. (2020), but these estimation methods are
also limited in scope. For example, the methods discussed in
Brandt et al. (2020) do not extend to multilevel analysis,
models with categorical data, incomplete data, or are compu-
tationally demanding. Bayesian estimation in the single-level
context is discussed in Arminger and Muthén (1998) and Lee
et al. (2007). In this article, we describe a new Bayesian
estimation method for the single-level latent variable interac-
tion model which appears to be very efficient. We also discuss
how the Bayesian estimation can easily be extended to multi-
level models, models with categorical dependent variables, as
well as modeling with incomplete data. Preacher et al. (2016)
and Zyphur et al. (2019) describe several two-level modera-
tion models with interactions among the predictors at the
within level, the between level, and across the two levels. For
these multilevel moderation models, the interaction terms are
necessarily interactions of latent variables because of the
within-between decomposition of the variables. In this article,
we use simulation studies to illustrate the advantages of the
Bayesian estimation of the two-level moderation models.

In the next section, we discuss several basic concepts for
models with latent variable interactions. We then discuss the
Bayesian estimation and its advantages over the maximum-

likelihood estimation. Simulation studies are presented for
single- and two-level models, including two-level moderation
models and two-level moderated mediation models. Higher-
order interaction terms are discussed as well.

The latent variable interaction model

In this section, we discuss some basic concepts of the latent
variable interaction model such as model interpretation,
model testing, model implied means, variance and covar-
iances, standardization of model parameters as well as plot-
ting of interaction terms.

Interpretation

As an example, consider the latent variable interaction model
depicted in Figure 1. The factor η3 is regressed on η1 and η2 as
well as the interaction between η1 and η2, as shown by the
structural equation

η3 ¼ β1 η1 þ β2 η2 þ β3 η1η2 þ ζ3: (1)

The interaction variable η1η2 involves only one parameter, the
slope β3. The model also contains a second structural equa-
tion where η4 is linearly regressed on η3, but there is no direct
effect on η4 from η1 and η2, or their interaction.

For ease of interpretation, the regression Equation (1) can
be re-written in the equivalent form

η3 ¼ ðβ1 þ β3 η2Þ η1 þ β2 η2 þ ζ3; (2)

where ðβ1 þ β3 η2Þ is a moderator function (Klein &
Moosbrugger, 2000) so that the β1 strength of influence of
η1 on η3 is moderated by β3 η2. The choice of moderator
when translating (1) to (2) is arbitrary from an algebraic
point of view and is purely a choice based on ease of sub-
stantive interpretation. As an example, Cudeck et al. (2009)
consider school achievement (η3) influenced by general rea-
soning (η1), quantitative ability (η2), and their interaction. In
line with (2), the interaction is expressed as quantitative
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ability moderating the influence of general reasoning on
school achievement.

Model testing

As pointed out in Mooijaart and Satorra (2009), for some
SEM models, the likelihood-ratio χ2 obtained by ML for
models without latent variable interactions is not sensitive to
incorrectly leaving out latent variable interactions. For exam-
ple, the model of Figure 1 without the interaction term
β3 η1η2 fits data generated as in (1) perfectly. This is due to
general maximum-likelihood results on robustness to non-
normality (Satorra, 1990, 2002). Misfit for that model can be
detected only by considering higher-order moments than
the second-order variances and covariances of the outcomes.
For other SEM models (models where interaction terms have
a direct effect on the observed variables) omitted interaction
terms can be detected by the chi-square test of fit, see further
below. In such cases, traditional model modification guidance
based on the chi-square test of fit would be incorrect and
would lead to linear models that fit the first- and second-
order moments approximately but would fail to discover the
need for interaction terms. All this suggests that the standard
chi-square test of fit has fairly limited capabilities when deal-
ing with interaction modeling.

Without involving higher-order moments, a reasonable
modeling strategy is to first fit a model without interactions
and then add an interaction term. The significance of the
interaction can be tested by either a z-test or a likelihood-
ratio χ2 difference test. Likelihood-ratio or Wald tests can be
used to test the joint significance of several interaction terms.

Mean, variance, and R2

To compute a dependent variable mean, variance, and R2 for
models with latent variable interactions, the following results
are needed. The covariance between two variables Xj and Xk is
defined as

CovðXj;XkÞ ¼ EðXj XkÞ � EðXjÞ EðXkÞ; (3)

so that the variance is obtained as

CovðXj;XjÞ ¼ VðXjÞ ¼ EðX2
j Þ � ½EðXjÞ�2: (4)

With EðXjÞ ¼ 0 or EðXkÞ ¼ 0, (3) gives the mean of a product

EðXj XkÞ ¼ CovðXj;XkÞ: (5)

Assuming multivariate normality for four random variables
Xi, Xj, Xk, Xl any third-order moment about the mean (μ) is
zero (see, e.g., Anderson, 1984),

EððXi � μiÞðXj � μjÞðXk � μkÞÞ ¼ 0; (6)

while the fourth-order moment about the mean is a function
of covariances,

EððXi � μiÞðXj � μjÞðXk � μkÞðXl � μlÞÞ
¼ σij σkl þ σik σjl þ σil σjk; (7)

where, for example, σjk ¼ CovðXj;XkÞ and σkk ¼ VarðXkÞ.
This gives

EðXj Xk Xj XkÞ ¼ VðXjÞ VðXkÞ þ 2 ½CovðXj;XkÞ�2; (8)

so that the variance of a product is obtained as

VðXj XkÞ ¼ EðXj Xk Xj XkÞ � ½EðXj XkÞ�2 (9)

¼ VðXjÞ VðXkÞ þ 2 ½CovðXj;XkÞ�2
� ½CovðXj;XkÞ�2

(10)

¼ VðXjÞ VðXkÞ þ ½CovðXj;XkÞ�2: (11)

Consider the application of these results in the mean and
variance of the factor η3 in (1) of Figure 1. Because of zero
factor means, using (5) the mean of η3 in (1) is obtained as

Eðη3Þ ¼ β1 0þ β2 0þ β3 Eðη1 η2Þ þ 0 (12)

¼ β3 Covðη1; η2Þ: (13)

Using (4), the variance of η3 is

Figure 1. Structural equation model with interaction between latent variables.
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Vðη3Þ ¼ Eðη3 η3Þ � ½Eðη3Þ�2; (14)

where the second term has already been determined. As for
the first term, multiplying the right-hand side of (1) by itself
results in products of two, three, and four factors.
Expectations for three- and four-factor terms are simplified
by the following two results, assuming bivariate normality and
zero means for η1 and η2. All third-order moments Eðηi ηj ηkÞ
are zero by (6). The formula (8) is used to obtain the result

Eðη1 η2 η1 η2Þ ¼ Vðη1Þ Vðη2Þ þ 2 ½Covðη1; η2Þ�2: (15)

Collecting terms, it follows that the variance of η3 is
obtained as

Vðη3Þ ¼ β21 Vðη1Þ þ β22 Vðη2Þ þ 2 β1 β2 Covðη1; η2Þ
þ β23 Vðη1 η2Þ þ Vðζ3Þ; (16)

whereby (9–11)

Vðη1 η2Þ ¼ Vðη1Þ Vðη2Þ þ ½Covðη1; η2Þ�2: (17)

R-square for η3 can be expressed as usual as

½Vðη3Þ � Vðζ3Þ�=Vðη3Þ: (18)

Using (16), the proportion of Vðη3Þ contributed by the inter-
action term can be quantified as (cf. Mooijaart & Satorra,
2009, p. 445)

β23 ½Vðη1Þ Vðη2Þ þ ½Covðη1; η2Þ�2�=Vðη3Þ: (19)

Consider as a hypothetical example the latent variable inter-
action model of Figure 2. Here, the latent variable interaction
is between an exogenous and an endogenous latent variable.
This example is useful to study the details of how to portray
the model. The structural equations are

η1 ¼ β η2 þ ζ1; (20)

η3 ¼ β1 η1 þ β2 η2 þ β3 η1η2 þ ζ3: (21)

Let β ¼ 1, β1 ¼ 0:5, β2 ¼ 0:7, β3 ¼ 0:4, Vðη2Þ ¼ 1, Vðζ1Þ ¼ 1,
and Vðζ3Þ ¼ 1. This implies that Vðη1Þ ¼ β2 Vðη2Þ þ
Vðζ1Þ ¼ 12 � 1þ 1 ¼ 2 and Covðη1; η2Þ ¼ β Vðη2Þ ¼ 1� 1
¼ 1. Using (16), Vðη3Þ ¼ 3:17. The η3 R-square is 0:68 and
the variance percentage due to the interaction is 15%.

The general computation of the model implied means and
variances is given in the Appendix.

Standardization

Because latent variables have arbitrary metrics, it is useful to
also present interaction effects in terms of standardized latent
variables. Noting that (21) is identical to (1), the model inter-
pretation is aided by considering the moderator function ðβ1 þ
β3 η2Þ η1 of (2), so that η2 moderates the η1 influence on η3.

As usual, standardization is obtained by dividing by the
standard deviation of the dependent variable and multiplying
by the standard deviation of the independent variable. The
standardized β1 and β3 coefficients in the term ðβ1 þ β3 η2Þ η1
are obtained by dividing both by

ffiffiffiffiffiffiffiffiffiffiffiffi
Vðη3Þ

p ¼ ffiffiffiffiffiffiffiffiffi
3:17

p
,

multiplying β1 by
ffiffiffiffiffiffiffiffiffiffiffiffi
Vðη1Þ

p ¼ ffiffiffi
2

p
, and multiplying β3 byffiffiffiffiffiffiffiffiffiffiffiffi

Vðη1Þ
p ffiffiffiffiffiffiffiffiffiffiffiffi

Vðη2Þ
p ¼ ffiffiffi

2
p

. This gives a standardized β1 ¼
0:397 and a standardized β3 ¼ 0:318. The standardization of
β3 is in line with Equation (10) in Wen et al. (2010). These
authors discuss why standardization of β3 usingffiffiffiffiffiffiffiffiffiffiffiffi
Vðη1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffi
Vðη2Þ

p
is preferred over using

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðη1 � η2Þ

p
.

The standard deviation change in η3 as a function of a one
standard deviation change in η1 can now be evaluated at
different values of η2 using the moderator function. At the
zero mean of η2, a standard deviation increase in η1 leads to a
0:397 standard deviation increase in η3. At one standard
deviation above the mean of η2, a standard deviation increase
in η1 leads to a 0:397þ 0:318� 1 ¼ 0:715 standard deviation
increase in η3. At one standard deviation below the mean of
η2, a standard deviation increase in η1 leads to a 0:397�
0:318� 1 ¼ 0:079 standard deviation increase in η3. In
other words, the biggest effect of η1 on η3 occurs for subjects
with high values on η2.

A more general treatment of standardization in matrix
terms is given in the Appendix.

Plotting of interactions

The interaction can be plotted as in Figure 3. Using asterisks
to denote standardization, consider the rearranged (20),

η�3 ¼ ðβ�1 þ β�3 η
�
2Þ η�1 þ β�2 η

�
2 þ ζ�3: (22)

Using (22), the three lines in the figure are expressed as
follows in terms of the conditional expectation function for
η�3 at the three levels of η�2,

Eðη�3jη�1; η�2 ¼ 0Þ ¼ β�1 η
�
1; (23)

Eðη�3jη�1; η�2 ¼ 1Þ ¼ ðβ�1 þ β�3Þ η�1 þ β�2; (24)
Figure 2. Structural equation model with interaction between an exogenous
and an endogenous latent variable.
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Eðη�3jη�1; η�2 ¼ �1Þ ¼ ðβ�1 � β�3Þ η�1 � β�2: (25)

(26)
Here, the standardized value β�2 ¼ β2 �

ffiffiffiffiffiffiffiffiffiffiffiffi
Vðη2Þ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffi
Vðη3Þ

p
¼ 0:7� 1=

ffiffiffiffiffiffiffiffiffi
3:17

p ¼ 0:393.

Bayesian estimation

The interactions between a latent variable and an observed
variable can be estimated with the maximum-likelihood
estimator using a closed-form expression for the likelihood,
see Muthén and Asparouhov (2003). Because numerical
integration is not used in that case, the estimation is efficient
and can accommodate any number of interaction terms.
Interactions between two latent variables, however, do not
lead to closed form expressions for the likelihood and can-
not be estimated with the maximum-likelihood method
without numerical integration, see Klein and Moosbrugger
(2000). In Mplus, the dimension of numerical integration
corresponds to the number of latent variables used in the
interaction terms. Numerical integration with more than
three dimensions of integration, i.e., with more than three
latent variables involved in interactions, is generally com-
putationally intractable. It is possible to estimate models
with a larger number of dimensions of integration using
Monte Carlo integration in Mplus or using quadrature inte-
gration with very few integration points per dimension;
however, such estimation often lacks precision and results
in non-convergence.

By using the Bayesian estimation, however, we can
resolve these limitations of the ML estimator, and estimate
models with any number of latent variables and interaction
terms. Consider the following single-level SEM model with
interactions. Let Yp denote the observed dependent vari-
ables, p ¼ 1; :::; P, ηm denote the latent variables in the
model, m ¼ 1; :::;M and Xq denote the covariates,

q ¼ 1; :::Q. The general interaction model can be described
as follows:

Yp ¼ νp þ
XM
i¼1

λpiηi þ
XM
i¼1

XM
j¼i

γpijηiηj þ εp (27)

ηm ¼ αm þ
XM
i¼1

βmiηj þ
XM
i¼1

XM
j¼i

δmijηiηj þ
XQ
q¼1

κmqXq þ �m

(28)

where νp, λpi, γpij, αm, βmi, δmij, κmq are model parameters and
�m and εp are normally distributed residuals.

To estimate this model with the Bayesian method, we
follow the MCMC estimation framework described in
Asparouhov and Muthén (2010a) for the estimation of the
general SEM model. All aspects of that estimation method
remain the same with the exception of one – the Gibbs
sampler step for generating the latent variables ηm. In the
standard SEM model, the posterior distribution for the
latent variables used in the Gibbs sampler is a multivariate
normal distribution. Due to the interaction terms, however,
the posterior distribution will not be normal for the above
model. To resolve this issue, we split the Gibbs sampler for
the latent variables so that each latent variable is generated
conditional on all other latent variables, i.e., we replace the
Gibbs sampler that generates η1; η2; :::; ηM simultaneously
with a Gibbs sampler with m steps that generates one latent
variable at a time using the posterior distributions:

½η1jη2; η3; :::; ηM; �� (29)

½η2jη1; η3; :::; ηM; �� (30)

….

½ηMjη1; η2; :::; ηM�1; �� (31)

−3 −2 −1 0 1 2 3
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Figure 3. Interaction plot for structural equation model with interaction between an exogenous and an endogenous latent variable.
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The advantage of this approach is that the above univariate
distributions are easier to solve. There are two separate cases.
Consider the posterior distribution ½η1jη2; η3; :::; ηM; ��. The
first and the simpler case is the situation when γp11 ¼ δm11 ¼
0 for each p and m. In that case, the quadratic term η21 is not
included in the model. The variable η1 can be included in
interaction terms such as η1η2, η1η3, but because the variables
η2, η3, … are conditioned on, the model remains linear in
terms of η1. Therefore,, in this case, the posterior
½η1jη2; η3; :::; ηM; �� is the normal distribution with closed-
form expression that can be computed as in Asparouhov
and Muthén (2010a).

The second case is the situation when η21 is included in the
model, i.e., some of the parameters γp11 or δm11 are not zero. In

that case, the posterior distribution of η1 is not explicit and does
not have a closed-form expression. We utilize the Metropolis–
Hastings algorithm. The effectiveness of this algorithm is based
on a being able to formulate a good approximation to the
needed posterior distribution. The approximate posterior distri-
bution is referred to in the literature as the jumping distribution.
Fortunately, in this framework, we are able to provide a very
good approximation. We specify the jumping distribution J as
follows. If the current value for η1 is η�1 we consider the model
where the interaction terms η21 are replaced by η1η

�
1. The poster-

ior distribution of η1 from that new model is a normal distribu-
tion and has a closed-form expression which we choose as the
jumping distribution J for drawing a proposal value for η1, i.e.,
we draw a new value η��1 from this distribution. The new value is
accepted with probability minð1;AÞ where A is

A ¼ pðy; η�1; η
��
1 jxÞJðη�1jη��1 Þ

pðy; η�1; η
�
1jxÞJðη��1 jη�1Þ

(32)

where p is the normal densities for that conditional distribution
which can be derived from themodel for εp and �m in a sequential
way under general regularity conditions (ex. η1 is not regressed on
η21 or more generally – no reciprocal interactions). The vector η�1
denotes all η variables except the first. As formulated, the jumping
distribution is a good approximation because if the interaction
term has a small effect (or zero), the acceptance probability will be
near 1 (or exactly 1), which facilitates fast mixing and fast popu-
lating of the desired posterior distributions. Note again that this
model estimation complexity is needed only when a latent variable
multiplies itself. The majority of the latent variable interaction
models do not actually include such terms and are primarily
focused on interaction terms between different variables, where
fast explicit posterior distributions, described in case one above,
will guarantee superior MCMC quality.

The above estimation method easily extends to two-level
models, models with categorical dependent variables, and mod-
els with incomplete data as it is done in Asparouhov andMuthén
(2010a). In the two-level model, the dependent variables are split
as within and between and each of the two parts follows the SEM
model with interactions (27–28), i.e., the within portion of
a variable can be predicted by interactions of within-level latent
variables, while the between portion of the variable can be
predicted by interactions of between-level latent variables.
Cross-interactions of within-level latent variables and between-

level latent variables are easily accommodated as well since such
terms are essentially random slope coefficients for within-level
latent variables. The Bayesian estimation of two-level models
with interactions is simply the combination of the Gibbs sampler
for two-level models without interactions with the Gibbs sam-
pler for the latent variables described above for the single level.
Conditional on the latent variables, the two-level model with
interactions is just a standard two-level model. Conditional on
the within-between split of the observed variables, the latent
variable interaction model is essentially a two-group model.
Similar logic allows us to extend the estimation to models with
categorical dependent variables and missing data.

The interaction model can also be extended to incorporate
interactions between latent variables and observed variables.
In Mplus this can be done directly by specifying the interac-
tion effect using the XWITH option between a latent variable
and an observed variable. It can also be done by introducing
a latent variable ”behind” the observed variable (i.e., the
observed variable is a perfect indicator for the latent variable)
and then using the XWITH option for the two latent vari-
ables. The second approach is less efficient as it generally
yields MCMC chains with worse mixing quality; however, if
the observed variable has missing values it would be the only
available approach in Mplus. Another condition that requires
the second approach is the situation where the observed
variables are in a two-level model and are latent-centered.

The Bayesian estimation described here is fairly close to the
one described in Arminger and Muthén (1998). There are two
main differences. The first one is that the latent variables are
updated one at a time which allows us to use conjugate posterior
distributions inmost cases instead of the less efficientMetropolis–
Hastings algorithm. The second difference is in the proposal
distribution used in the Metropolis–Hastings algorithm. The
proposal distribution used in Arminger and Muthén (1998) is
the same across individuals and is based on the model estimated
prior distribution for the latent variables. The proposal distribu-
tion used in this algorithm incorporates the entire model, includ-
ing the quadratic terms where the latent variables are involved, as
well as the observed variables. This makes the proposal distribu-
tion subject specific and very close to the desired posterior dis-
tribution, which leads to a well mixing MCMC estimation. The
Bayesian estimation described in Lee et al. (2007) and implemen-
ted in WINBUGS is also very similar to the estimation described
here. In the absence of square terms η21, the model updating in
WINBUGS will match precisely the MCMC estimation described
here. When square terms are present, the detailed jumping dis-
tribution we formulated above is likely to outperform the more
generic symmetric normal jumping distribution used in
WINBUGS. Neither Arminger and Muthén (1998) nor Lee
et al. (2007) expand the methodology to multilevel models,
which is the most substantial contribution of this work.

In the next sections, we illustrate the methodology with
several examples.

Factor analysis with interactions

In this section we consider a factor analysis model where 5
factors are measured by 3 indicator variables each, i.e., we
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have a total of 15 observed variables. All loadings are set to 1,
intercepts are set to 0, residual and factor variances are set to
1, factor correlations are set to 0.3. We add the following three
interaction terms in the model η1η2, η1η5 and η3η4. The
effects of these interaction terms on the observed variables
are all zero except for the following three effects η1η2 on Y1 is
set to γ112 ¼ �0:25, the effect of η1η5 on Y1 is set to
γ115 ¼ 0:25, and the effect of η3η4 on Y7 is set to
γ734 ¼ 0:25. The model is described by the following
equations:

Y1 ¼ ν1 þ λ11η1 þ γ112η1η2 þ γ115η1η5 þ ε1 (33)

Yp ¼ νp þ λp1η1 þ εp; p ¼ 2; 3 (34)

Yp ¼ νp þ λp2η2 þ εp; p ¼ 4; 5; 6 (35)

Y7 ¼ ν7 þ λ73η3 þ γ734η3η4 þ ε7 (36)

Yp ¼ νp þ λp3η3 þ εp; p ¼ 8; 9 (37)

Yp ¼ νp þ λp4η4 þ εp; p ¼ 10; 11; 12 (38)

Yp ¼ νp þ λp5η5 þ εp; p ¼ 13; 14; 15: (38)

We compare the Bayesian estimation method and the ML –
Monte Carlo integration method where the number of inte-
gration points is set to 500 and 1000. In this article, our
choices for the sample size in the simulation studies are
driven by the following. We generally choose the smallest
sample size that can clearly illustrate our findings, i.e., in all
the simulation studies presented here, choosing larger sample
sizes will yield similar conclusions. Choosing smaller sample
sizes may not. Smaller sample size situations, particularly
when the models are complex, may yield more nuanced con-
clusions that are less connected to the asymptotic theory. The
online materials provided with the article can be used to study
further the small sample size behavior, which generally tends
to be less predictable and more dependent on the rest of the
details in the model. In this simulation study, we use 100 data
sets of size 1000 and we estimate the correct interaction model
with the two estimators. In all simulation studies presented
here, we used the Mplus default convergence criteria as well as
the Mplus default non-informative priors, see Muthén and
Muthén (1998–2017). The non-informative priors are gener-
ally adequate for the models discuss here as long as the sample
size is not small. If the sample size is small, fine-tuning of the
priors along the lines of Smid et al. (2020) can be beneficial.

The simulation study results for the interaction effects are
presented in Table 1. All three estimation methods yield
acceptable results; however, the ML method with 500 integra-
tion points shows significantly larger MSE for the estimates.
The reduced precision in the log-likelihood computation

yields reduced precision in the ML estimates. The conver-
gence rates for the Bayesian method and the ML(1000) are
100% while the convergence for the ML(500) is 98%, i.e.,
a slight drop in the convergence rates. The computational
time for Bayesian method and ML(500) is approximately the
same while the computational time for ML(1000) is about
twice that. Usually, the computational time with Monte
Carlo integration is proportional to the number of integration
points. Overall the conclusion from this simulation is that the
Bayesian estimator appears to be the best in terms of compu-
tational time and precision of the estimates; however, the
differences with the ML estimator are not large. Increasing
the number of integration points increases the precision of the
estimates, although, it is not a priori clear on how to deter-
mine the optimal number of integration points. In the above
simulation, increasing the number of integration points to
5000 did not improve the precision of the estimates in terms
of MSE but increased substantially the computation time per
replication. This is a clear advantage of the Bayesian estima-
tion as it removes the uncertainty of the number of integra-
tion points. Essentially, it automatically determines the
amount of computation that has to be done to obtain precise
estimates. Note that the precision here means how close the
estimates are as compared to the estimates that can be
obtained with infinite MCMC iterations. It does not refer to
precision in terms of how far the estimates are from the true
parameter values. In fact, because the ML and the Bayesian
estimator are asymptotically equivalent, we can expect that the
MSE of the estimates as compared to the true parameter
values will be asymptotically identical if the Bayesian estima-
tor uses an infinite number of iterations and if the ML
estimator uses an infinite number of integration points.

We also consider estimating the modified model where all
indicator variables are regressed on the three interaction
terms. In a typical application that would be the most likely
scenario. The effect of estimating this model with many more
parameters on the convergence rate is that the convergence
rate for ML(500) dropped to 95% while for the Bayesian
estimator it remained at 100%. This is a slightly bigger drop
on the convergence rate and most likely bigger convergence
problems should be expected for models that have flatter
likelihoods where estimation precision is more important.
Nevertheless, we can see here that the convergence rates
remain high. This is primarily due to the fact that there are
only five dimensions of integration. For two-level models,
however, the situation is completely different. The Monte
Carlo integration method appears to completely fall apart
and the Bayesian estimation appears to be the only alternative.

As an example, consider the following two-level factor
analysis model with interactions. The within-level model
would be identical to the model we considered above, while
the between-level model simply consists of random intercepts
with variance 1. We generate and analyze 100 data sets which
consist of 100 clusters of size 20. The ML method as imple-
mented in Mplus uses 20 dimensions of integration, 5 on the
within level and 15 on the between level for each of the 15
random intercept variables, one for each observed variable.
Using the ML method with 5000 integration points the con-
vergence rate we obtained is 0%. On the other hand, the

Table 1. Factor Analysis with Interactions: Absolute Bias/Coverage/MSE

Parameter True Value Bayes ML(500) ML(1000)

γ112 −.25 .01/.99/.002 .01/.95/.006 .00/.99/.002
γ115 .25 .01/.95/.002 .01/.96/.004 .00/.96/.002
γ734 .25 .00/.98/.002 .02/.96/.003 .00/.99/.002
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Bayesian method has 100% convergence. The results for the
interaction parameters are presented in Table 2. The Bayesian
estimation is clearly the only alternative for this model and
the method performs well. The estimation time for this model
using 4 processors is approximately 15 seconds per iteration.
The ML Monte Carlo method with 5000 integration points
took approximately 20 minutes per iteration (while no con-
vergence was actually achieved).

One important aspect of interaction modeling is the ques-
tion regarding which interaction effects should be considered
for model inclusion in the absence of any substantive gui-
dance. In our example, there are a total of 225 possible
interaction parameters γpij. These parameters would naturally
be in addition to any cross-loading parameters. The total
number of parameters can easily become quite large. In such
a case, one can include all these parameters within the BSEM
framework, see Muthén and Asparouhov (2012), where these
additional possible parameters will be included with tiny
priors centered at zero. In that exploratory framework, inter-
action effects that must be included in the main model will
”escape” the tiny priors to exhibit significance while at the
same time allowing the main factor model to be adjusted
accordingly for the effect of the included interaction terms.

Another approach that can be utilized for exploratory
purposes is to generate plausible values, see Asparouhov and
Muthén (2010b), for the factor analysis model without the
interactions. A second step then computes the residuals εp and
all interaction terms ηiηj using these plausible values. As

a third step one can compute the sample correlation matrix
(using Mplus TYPE = IMPUTATION option) for all of these
variables and select for model inclusion the interactions that
have substantial correlations with the residual variables εp.

The effect of ignoring interaction terms

In this section, we address the important question regarding
why we need to incorporate interaction effects in the SEM
models. Perhaps ignoring the interaction effects would lead to
no essential problems. In principle, SEM models are estimated
by fitting the first and the second-order sample statistics.
Interaction terms tend to be needed to fit higher-order
moments. It is conceivable from that point of view that
ignoring interaction terms might have no effect on the SEM
model. This, however, is not the case and we will illustrate this
point with several CFA and EFA simulation studies.

We generate data using a model similar to the model
(33–39) used in the previous section with some small mod-
ifications. In this section, we use the same interaction terms as
in (33–39) but we include two additional non-zero interaction
effects, i.e., a total of five non-zero interaction effects:
γ112 ¼ �:5, γ115 ¼ :5, γ212 ¼ :5, γ412 ¼ :5, γ734 ¼ :5. We

generate 100 data sets of size 1000 and we analyze the data
using the CFA model without the interaction terms. We
utilize the ML and the MLR estimators in Mplus. The MLR
estimator is generally expected to perform better given that
the interaction terms would be incorporated in the residuals
of the CFA model, i.e., are expected to have non-normal
distributions, which is where the advantage of the MLR esti-
mator is.

The results of the simulation study show that there is little
difference between ML and MLR chi-square statistics and
both reject the model 95% of the time. On the other hand,
all approximate fit indices accept the model: the average value
for the RMSEA is 0.02, the average value for the SRMR is 0.02,
the average value for the CFI is 0.99, and the average value for
the TLI is 0.98. One can conclude from this example that
approximately fitting models, rejected by the exact chi-square
test of fit, may indeed be models that have omitted interaction
terms (among other types of minor misspecifications). Table 3
contains the results for the second- and third-factor loadings
(the first-factor loading is fixed to 1) for the ML and MLR
estimators with omitted interaction terms and the Bayesian
estimator with the interaction terms included. First, we note
that the Bayesian estimator yields low coverage for the first
loading even though the bias is negligible. Usually, such
situations can be resolved by running a longer MCMC
sequence, instead of relying on the default convergence set-
tings. The ML run shows bias for both loadings but particu-
larly large bias for the third loading and substantial drop in
coverage. Using the MLR estimator improves the coverage but
not sufficiently. We conclude here that omitted interaction
terms can change the factor structure and bias the factor
loadings. This occurs even when the factors are uncorrelated.
The model estimation with the omitted interaction terms will
attempt to incorporate the interaction terms implied covar-
iance within one of the existing factors which in turn will
distort the measurement model for that factor.

Mooijaart and Satorra (2009) point out that for some SEM
models the likelihood-ratio test cannot detect omitted inter-
action terms. As the above example shows, however, this does
not apply to all models. If interaction terms do not affect
directly the observed variables but only other latent variables,
we can expect that the chi-square test will not reject the model
even when the interaction terms are ignored.

Now we turn our attention to the effect of omitted inter-
action terms in EFA. We analyze the same data as above with
a five-factor EFA model and a six-factor EFA model. Using
the chi-square test of fit, we reject the five-factor model 93%
of the time and reject the six-factor model 9% of the time, i.e.,
84% of the time we conclude that the number of factors is 6.
Thus, omitted interactions can lead to an incorrect number of
factors in EFA. In addition, Table 4 shows the results for
several factor loading estimates for the five-factor EFA
model. Here the factor loadings are biased as well. This fact

Table 2. Two-level Factor Analysis with Interactions: Absolute Bias/Coverage/
MSE

Parameter True Value Bayes

γ112 −.25 .010/.95/.002
γ115 .25 .00/.90/.002
γ734 .25 .00/.95/.001

Table 3. Factor Analysis with Omitted Interactions: Absolute Bias (Coverage)

Parameter True Value Bayes ML MLR

λ21 1 .02(.81) .04(.88) .04(.93)
λ31 1 .01(.92) .15(.60) .15(.67)
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has some implications regarding the question of how to
include the interactions within the EFA estimation. One pos-
sible approach is to use the ESEM-within-CFA approach
described in Marsh et al. (2013). Because of the biases
shown in Table 4, however, such an approach may still result
in biased loading structure even after including the interaction
terms. Further adjustments might be necessary for such situa-
tions. The results in Table 4, see λ22, also show that small
cross-loadings can appear in the model due to the omitted
interaction terms. It is also worth noting here that the six-
factor EFA model, picked by the chi-square test of fit, has an
additional (sixth) factor of somewhat uninterpretable quality.
This factor has multiple medium-range loadings with large
standard errors that appear to be statistically insignificant.
This kind of phenomenon also appears quite often in real
data EFA, i.e., it could potentially be due to omitted interac-
tion terms.

This simulation study suggests the following estimation
sequence for practical applications. First, estimate the stan-
dard EFA model with a different number of factors. Select the
model with the largest number of factors that are interpretable
and have a clear and statistically significant measurement
structure. Suppose that the chi-square test of fit points out
that additional factors are needed, but no such factors have
a clear and interpretable measurement structure. At that
point, the structural model can be augmented with interaction
terms. The second step is to estimate the factor model as
a CFA model according to the clear measurement structure
suggested by the EFA model. Next, the CFA model can be
augmented with latent variable interactions using the BSEM
strategy discussed in the previous section. Note that the EFA
model can still inform the choice of where interaction terms
are needed. In the above example, the sixth uninterpretable
factor has large loadings for variables Y1, Y2 and Y4. This
suggests that those are the variables where interaction terms
are needed most and where the linear CFA is not sufficient.

One issue that may appear as a stumbling block for the
Bayesian interaction modeling is the lack of fit statistics.
Neither DIC nor PPP are available in Mplus at this time. It
is possible however to make informed model modifications in
the interaction framework by evaluating the significance of
the interaction coefficients, i.e., if an interaction term has
a significant effect as established by the credibility interval it
should be included in the model and if the effect is insignif-
icant the interaction terms are not needed and can be
removed from the model.

Two-level moderation analysis

Preacher et al. (2016) describe several two-level moderation
models with interactions among predictors at the within
level, the between level, and across the two levels. The authors

used Mplus to estimate the models via maximum-likelihood
with numerical integration. With the release of Mplus 8.3,
these models can now be estimated with the Bayesian
method. In this section, we compare the accuracy, speed,
and robustness between the different estimation methods
using simulation studies. The scripts we use for the simula-
tion studies are taken directly from the supplemental materi-
als of Preacher et al. (2016), although in certain cases we have
simplified the inputs. Such simplifications, however, do not
alter the models. We also preserve the notation used in that
article for quick reference. For example, model A1 in
Preacher et al. (2016) refers to the interaction model
[Within part of L1 moderator] x [Within part of L1 predic-
tor]. In the next eight sections, we present simulation studies
on the first 8 examples in the supplemental materials in
Preacher et al. (2016) and we preserve the order of these
examples.

The simulation results illustrate that the Bayesian method
allows us to more fully pursue these moderation models. The
Bayesian estimation is faster, simpler, and more robust (more
likely to converge) than the maximum-likelihood estimation.

Model A1: [Within part of L1 moderator] x [Within part of
L1 predictor]
Suppose that Yij, Xij and Zij are the observed variables for
individual i in cluster j. The model can be described by the
following equations. First, we decompose the variables Xij and
Zij as within-between

Xij ¼ Xi þ X:j (40)

Zij ¼ Zi þ Z:j (41)

where X:j and Z:j are the between-level parts of the variables
(i.e., their cluster-specific means), which are assumed to be
normally distributed latent variables. The moderation model
is then given as follows:

Yij ¼ β0j þ β1Xi þ β2Zi þ β3XiZi þ εij (42)

where

β0j ¼ γ00 þ γ01X:j þ γ02Z:j þ u0j (43)

and εij and u0j are normally distributed zero-mean residuals.
To generate the data we use the model parameters in Preacher
et al. (2016) supplemental materials. We generate 100 data
sets with 100 clusters of size 10. The Bayesian estimator
converged in all 100 replications and the computation takes
only a few seconds for each replication. The maximum-
likelihood estimation, based on quadrature integration as in
Preacher et al. (2016), did not converge in all of the replica-
tions. This simulation is different from the one used in
Preacher et al. (2016) because it is based on a smaller number
of clusters and smaller cluster sizes. In Preacher et al. (2016),
the number of clusters is 500 and the size of the clusters is 20.
For larger samples, convergence can be achieved easier
because the likelihood is smoother and more prominent and
therefore easier to optimize with less precise computations.
Using Monte Carlo integration (MLMC) for this estimation

Table 4. EFA with Omitted Interactions: Absolute Bias (Coverage)

Parameter True Value MLR

λ11 1 .11(.64)
λ21 1 .12(.59)
λ31 1 .11(.64)
λ22 0 .12(.63)
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did not yield any convergence as well. The results presented in
Table 5 show that the Bayesian estimation performs very well.

It is important to point out here why the ML and MLMC
estimations have convergence problems. The interaction term
XiZi in Equation (42) is not an observed quantity. It is essen-
tially ðXij � X:jÞðZij � Z:jÞ where Xij and Zij are observed but
X:j and Z:j are not observed. X:j and Z:j represent the true
means of these variables in cluster j (or equivalently the
random intercept effect) which are different from the sample
means, i.e., the averages of the observations in the cluster.
Because the likelihood of this model involves the product of
two latent variables, it has no closed-form expression and is
computed through numerical integration. For the above
model, the Mplus implementation requires five-dimensional
integration which is very computationally demanding. To
make the computation feasible, the number of quadrature
points per dimension is reduced to 4 with the ML estimation.
That, in turn, leads to poor precision in the computation of
the log-likelihood which eventually leads to non-convergence.
Similarly, the precision of the MLMC estimation is compro-
mised as well.

The observed cluster averages X:j and Z:j are measurements
for the true cluster means X:j, and Z:j, which have measure-
ment error. The smaller the cluster size the bigger the mea-
surement error. If that measurement error is not accounted
for, the regression coefficients can be biased. That bias is
generally referred to as Lüdtke’s bias, see Lüdtke et al.
(2008) and Asparouhov and Muthén (2019). The bias occurs
when there is a contextual effect in the model and the cluster
sizes are relatively small, i.e., less than 50. If there is no
contextual effect or the contextual effect is small or if the
cluster sizes are large, the bias does not occur and in such
situations it is safe to use the sample cluster average in place
of the true mean in the moderation model. If we replace X:j

with the cluster average X:j and Z:j with the cluster average Z:j,
all the covariates in the model Xi, Zi, XiZi, X:j, and Z:j become
observed and the above model is essentially a simple univari-
ate two-level regression which is very easy to estimate. Let us
call this estimation method the MLO (maximum likelihood
with observed centering).

In the above example, the contextual effect for Xij and Zij is
small because β1 is close to γ01 and β2 is close to γ02.
Therefore, we can expect that the MLO method performs
well for this example. The results for the MLO method are
also included in Table 5 and we can see that indeed the
method works well. It yields fast convergence in all cases
and the parameter estimates and standard errors are
satisfactory.

We illustrate Lüdtke’s bias in the above model with one
additional simulation study. We use parameters that are different

from those specified in Preacher et al. (2016) Monte Carlo setups
so that the variables have a contextual effect. For this simulation
study, we generate 100 data sets with 500 clusters of size 10 using
the following parameters β1 ¼ :1, β2 ¼ �:6, β3 ¼ :6, γ00 ¼ :1,
γ01 ¼ :7, γ02 ¼ :9, Varðu0jÞ ¼ VarðεijÞ ¼ :7. The means of X:j

and Z:j are set to 0, the variances to .7 and the covariance to .1.
The means of Xi and Zi are set to 0, the variances to 2.7 and the
covariance to 1.5. The results of the simulation study are pre-
sented in Table 6. For this simulation, we also include the MLRO
estimation, which is the same as MLO point estimation plus
robust Huber-White sandwich standard errors.

The results show that the Bayesian estimator performs
well while both MLO and MLRO perform poorly due to
Lüdtke’s bias for all between-level parameters, which also
results in poor coverage. On the within level, the results
are unbiased for MLO but the standard errors are under-
estimated which results in poor coverage. In that respect,
MLRO is better as it resolves this issue but only for the
within-level parameters. Underestimation of the standard
errors appears to be a problem unique to the moderation
models. This problem does not occur with standard path
analysis models, see Table 3 in Asparouhov and Muthén
(2019). It is also important to note here that if random
regression slopes are included in the model, the within-
level parameters βi may also be biased, see Table 4 in
Asparouhov and Muthén (2019). This within-level bias will
carry over to the moderation models as well.

Despite the fact that the MLO/MLRO estimators could be
biased, we recommend that these estimators be used as a part
of any moderation analysis. MLO/MLRO can be used as a first
preliminary step, which can be followed by the Bayesian
estimation. The simplicity of the MLO/MLRO estimation is
a very desirable attribute that no other estimation can match.
This is why the approach should not be dismissed when it is
available, i.e., when there are no missing data for the predictor
and the mediator. In addition, if the cluster sizes are 100 or
more, see Asparouhov and Muthén (2019), these estimators
can be used as the main method of estimation because they
offer more options for model testing such as AIC/BIC
and LRT.

Model A2: [Between part of L1 moderator] x [Within part of
L1 predictor] (cross-level interaction)
The model is given by the following equations:

Xij ¼ Xi þ X:j (44)

Zij ¼ Zi þ Z:j (45)

Yij ¼ β0j þ β1Xi þ β2Zi þ β3XiZ:j þ εij (46)

Table 5. Model A1: Absolute Bias (Coverage)

Parameter True Value Bayes MLO

β1 .1 .00(.95) .00(.97)
β2 .3 .00(.94) .01(.96)
β3 .2 .01(.93) .01(.94)
γ00 .1 .00(.94) .00(.94)
γ01 .2 .01(.98) .02(.98)
γ02 .2 .00(.93) .01(.91)

Table 6. Lüdtke’s Bias in Model A1: Absolute Bias (Coverage)

Parameter True Value Bayes MLO MLRO

β1 .1 .00(.84) .00(.82) .00(.96)
β2 −.6 .00(.90) .00(.72) .00(.99)
β3 .6 .01(.93) .00(.72) .00(.88)
γ00 .1 .00(.88) .09(.59) .09(.60)
γ01 .7 .01(.95) .29(.00) .29(.00)
γ02 .9 .01(.93) .43(.00) .43(.00)
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β0j ¼ γ00 þ γ01X:j þ γ02Z:j þ u0j: (47)

We generate 100 data sets with 100 clusters of size 10. We
analyze the data with the Bayesian estimator, the ML estimator
with numerical integration and 4 integration points per dimen-
sion and the ML estimator with Monte Carlo (MLMC) integra-
tion with 500 integration points. The ML and MLMC did not
converge. The results for the Bayesian estimator are presented in
Table 7. The Bayesian estimator performs very well. It is impor-
tant to note here that the Bayesian estimator needs an additional
option for this model: VARIANCE = 0.01. The role of this
option is to prevent slow/poor mixing due to residual variances
fixed to 0. The option refers to the minimal variance allowed in
the model, which by default is 0.0001, and in some cases that
default is too small. The option is generally needed when the
input file utilizes fixing the residual variance of a variable to 0
with the Mplus language Y@0; . In such a situation, if the
VARIANCE option is set to 0.01, Mplus estimates the model
as if it is specified as Y@0:01; , i.e., the variance will be fixed to
the option value instead of 0. If the VARIANCE option is too
small, the mixing will be of poor quality and it will be very slow
in terms of the number of MCMC iteration needed for conver-
gence. The option can be increased to a larger value to facilitate
better mixing but it should not be increased beyond what would
be considered a reasonable approximation of zero.

Model A3: [Between part of L1 moderator] x [Between part
of L1 predictor]
The model is given by the following equations:

Xij ¼ Xi þ X:j (48)

Zij ¼ Zi þ Z:j (49)

Yij ¼ β0j þ β1Xi þ β2Zi þ εij (50)

β0j ¼ γ00 þ γ01X:j þ γ02Z:j þ γ03X:jZ:j þ u0j: (51)

We generate 100 data sets each containing 100 clusters of size
10. We analyze the data with the Bayesian estimator, the ML
estimator with numerical integration and 4 integration points
per dimension and the ML estimator with Monte Carlo
(MLMC) integration with 1000 integration points. The results
are presented in Table 8. All three estimators performed well
in this situation. The Bayesian estimator is 10 times faster
than the ML estimator and 30 times faster than the MLMC
estimator and takes less than a second for each replication.

Model A1 and A2 combination
The model is given by the following equations:

Xij ¼ Xi þ X:j (52)

Zij ¼ Zi þ Z:j (53)

Yij ¼ β0j þ β1Xi þ β2Zi þ β3XiZi þ β4XiZ:j þ εij (54)

β0j ¼ γ00 þ γ01X:j þ γ02Z:j þ u0j: (55)

We generate 100 data sets with 100 clusters of size 10. We
analyze the data with the Bayesian, ML, and MLMC estima-
tors. The ML and MLMC estimators did not converge. The
results for the Bayesian estimator are presented in Table 9.
The Bayesian estimator performs well for this model as well.

Model B1: [L2 moderator] x [Within part of L1 predictor]
(cross-level interaction)
In this model, the moderator Zij is assumed to be a between-
level variable, i.e., Zij ¼ Zj. The model is given by the follow-
ing equations:

Xij ¼ Xi þ X:j (56)

Yij ¼ β0j þ β1jXi þ β3XiZj þ εij (57)

β0j ¼ γ00 þ γ01X:j þ γ02Zj þ u0j: (58)

Note that unlike in the previous models, here we have a random
slope β1j. The model can be estimated with a nonrandom slope
β1 but we are following the fifth example from Preacher et al.
(2016) where the model is with a random slope.

The presence of the random slope, however, complicates
the identification of the model. In the earlier draft of Preacher
et al. (2016), the model was specified as an unidentified model
but in the current version of the supplemental materials the
issue is resolved by a model modification. We illustrate these
complications by considering first the simple situation where
the random slope β1j is regressed on Zj. That is, we augment
the above model with the equation

β1j ¼ γ10 þ γ12Zj þ u1j: (59)

If Equation (59) is substituted in Equation (57) we can clearly
see that the coefficients γ12 and β3 play the same role, i.e., these
are the regression coefficient for the interaction term XiZj. Thus,

Table 7. Model A2: Absolute Bias (Coverage)

Parameter True Value Bayes

β1 .1 .00(.97)
β2 .3 .00(.97)
β3 .2 .01(.91)
γ00 .1 .01(.94)
γ01 .2 .00(.99)
γ02 .2 .01(.96)

Table 8. Model A3: Absolute Bias (Coverage)

Parameter True Value Bayes ML MLMC

β1 .1 .00(.95) .00(.97) .00(.96)
β2 .3 .00(.94) .01(.93) .00(.95)
γ00 .1 .00(.94) .01(.94) .01(.89)
γ01 .2 .01(.98) .02(.93) .02(.95)
γ02 .2 .00(.93) .00(.98) .00(.98)
γ03 .2 .00(.93) .02(.91) .00(.90)

Table 9. Model A1 Plus A2 Combination: Absolute Bias (Coverage)

Parameter True Value Bayes

β1 .1 .00(.97)
β2 .3 .00(.94)
β3 .2 .00(.94)
β4 .2 .01(.94)
γ00 .1 .01(.91)
γ01 .2 .00(.95)
γ02 .2 .02(.95)
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both of these coefficients cannot be identified at the same time.
Only one of the two coefficients can be present in the model.

An alternative way that this unidentification can appear in
the model is as follows. Instead of estimating the regression
Equation (59) it is possible to estimate the variance–covar-
iance structure for the random effect β1j and Zj, which
includes the covariance parameter. Such a model, however,
is a reparameterization of (59). Thus, we conclude that model
B1 of Preacher et al. (2016) must have the covariance para-
meter between β1j and Zj fixed to 0. If the covariance para-

meter is not fixed to 0 the model would be unidentified
because it would include the two essentially equivalent para-
meters: the covariance between β1j and Zj as well as β3. One of

these two parameters must be fixed to zero.
In the following simulation, we estimate the above model,

assuming that the covariance between β1j and Zj as well as the
covariance between β1j and X:j are not estimated, i.e., these

covariance parameters are fixed to zero. Equivalently, we can
assume that γ12 in Equation (59) is fixed to 0. The covariance
between Zj and X:j is estimated. We generate 100 data sets
with 100 clusters of size 10. The ML and the MLMC estima-
tion methods did not converge for this model and thus we
report the results in Table 10 only for the Bayesian estimator.
The Bayesian estimator performs well also for this example.

Model B2: [L2 moderator] x [Between part of L1 predictor]
In this model, the moderator is again assumed to be
a between-level variable Zj. The model is given by the follow-
ing equations:

Xij ¼ Xi þ X:j (60)

Yij ¼ β0j þ β1Xi þ εij (61)

β0j ¼ γ00 þ γ01X:j þ γ02Zj þ γ03X:jZj þ u0j: (62)

We generate 100 data sets with 100 clusters of size 10. The
data are analyzed by the three estimators Bayesian, ML,
MLMC and the results are reported in Table 11. All three
estimators performed well for this model.

Model A1 with random slope for the interaction term
The model can be described by the following equations:

Xij ¼ Xi þ X:j (63)

Zij ¼ Zi þ Z:j (64)

Yij ¼ β0j þ β1Xi þ β2Zi þ β3jXiZi þ εij (65)

β0j ¼ γ00 þ γ01X:j þ γ02Z:j þ u0j (66)

β3j ¼ γ30 þ u3j: (67)

We conduct a simulation study again using 100 samples with
100 clusters of size 10. Only the Bayesian estimator converged
in this case. The results are presented in Table 12. The
Bayesian estimator performs well for this model as well.

Model C: [L2 moderator] x [L2 predictor]
In this model, the moderator and the predictor are the
between-level variables Zj and Xj respectively. The model is
given by the following equations:

Yij ¼ β0j þ εij (68)

β0j ¼ γ00 þ γ01Xj þ γ02Zj þ γ03XjZj þ u0j: (69)

If the variables Xj and Zj have no missing values, the model
can be estimated as a regular two-level model (without the
Mplus moderation command XWITH). The interaction term
XjZj can be computed with the Mplus DEFINE command and
be treated just like any other covariate. If there are missing
data for these variables, however, the Mplus DEFINE com-
mand can not be used to simply multiply the two variables,
and instead, the moderation model estimation has to be
utilized.

In this simulation, we generate 100 data sets with 100
clusters of size 10. Missing data for the variable Xj are gener-
ated as follows:

ProbðXj is missingÞ ¼ 1
1þ ExpðZjÞ : (70)

This method of generating missing data is MAR (and not
MCAR). Likelihood-based estimators such as Bayes, ML,
and MLMC are guaranteed to produced unbiased estimates
for such missing data mechanisms.

The results of this simulation are reported in Table 13. All
three estimators performed well for this model.

Multilevel moderated mediation

The multilevel moderated mediation model, discussed in
Zyphur et al. (2019), is described as follows. Suppose that
Yij, Mij, Xij and Zij are the observed variables for an individual

Table 10. Model B1: Absolute Bias (Coverage)

Parameter True Value Bayes

β3 .2 .00(.92)
γ00 .1 .01(.92)
γ01 .2 .01(.94)
γ02 .2 .00(.98)
γ10 .1 .01(.96)

Table 11. Model B2: Absolute Bias (Coverage)

Parameter True Value Bayes ML MLMC

β1 .2 .01(.93) .00(.94) .00(.95)
γ00 .1 .01(.99) .01(.95) .01(.93)
γ01 .2 .01(.95) .01(.93) .01(.91)
γ02 .2 .02(.92) .00(.93) .00(.89)
γ03 .2 .01(.99) .01(.97) .02(.87)

Table 12. Model A1 with Random Slope: Absolute Bias (Coverage)

Parameter True Value Bayes

β1 .1 .00(.94)
β2 .3 .00(.97)
γ00 .1 .01(.96)
γ01 .2 .02(.96)
γ02 .2 .00(.97)
γ30 .2 .02(.96)
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i in cluster j. The variables are decomposed as within and
between portions as follows:

Yij ¼ Yi þ Y:j (70)

Mij ¼ Mi þM:j (72)

Xij ¼ Xi þ X:j (73)

Zij ¼ Zi þ Z:j: (74)

On the within level, the moderated mediation model is given
by the following equations:

Mi ¼ β1Xi þ β2Zi þ β3XiZi þ ε1;ij (75)

Yi ¼ β4Xi þ β5Zi þ β6Mi þ β7XiZi þ β8MiZi þ ε2;ij: (76)

Similarly, on the between level the moderated mediation
model is

M:j ¼ α1 þ γ1X:j þ γ2Z:j þ γ3X:jZ:j þ ε3;j (77)

Y:j ¼ α2 þ γ4X:j þ γ5Z:j þ γ6M:j þ γ7X:jZ:j þ γ8M:jZ:j þ ε4;j:

(78)

This model can be estimated directly in Mplus 8.3 with the
Bayesian estimator. Here we compare that estimation method
with the MLO estimation method where all variables involved in
interaction terms, i.e.,M,X, and Z, are decomposed as within and
between portion using observed centering. The interaction terms
are formed by multiplying the observed quantities and the model
is then estimated with theML estimator. Numerical integration is
not needed with this estimation method. We also consider the
two-stage estimation method proposed in Zyphur et al. (2019).
This method attempts to take into account the uncertainty in the
centering by estimating plausible values for the between portions
of the variables. The plausible values are generated using an
unrestricted variance–covariance two-level model, i.e., by ignor-
ing the interaction terms. The authors used 20 plausible value
data sets, see Asparouhov and Muthén (2010b), which are sub-
sequently analyzed using the standard imputation methodology.
Just as in the MLO estimation, the interaction terms are formed
bymultiplying the plausible values, which allows us to convert the
above two-level moderated mediationmodel into a standard two-
level regression model that can be estimated with the ML esti-
mator without numerical integration.

We evaluate the performance of the three estimation meth-
ods using the following simulation study. We generate 100 data
sets with 200 clusters of size 10. The data are generated using
the above model and the following parameter values. The values
of αi, βi and γi are given in Table 14. The residual variances are
set to 2 on the within level and to 0.7 on the between level. The

covariance between Xi and Zi is set to .1. The covariance
between X:j and Z:j is set to .1. The means of X:j and Z:j are
set to 0. Table 14 contains the results of the three estimation
methods. The direct Bayesian estimation outperforms both the
two-stage (plausible values) estimation and the MLO estima-
tion. The bias for the Bayesian estimation is minimal and the
coverage is near the nominal level. Both, the two-stage and the
MLO estimators show fairly large bias and poor coverage for
most of the model parameters. The two-stage estimation does
not appear to be better than the MLO estimation. The plausible
values generated with this approach ignore the interaction terms
in the model and thus are of poor quality and are unable to
improve the estimation as compared to the simpler MLO esti-
mator. Further simulation studies, that are not reported here
but can be reproduced using the online materials accompanying
this article, reveal that the biases in the two-stage and the MLO
estimators are affected primarily by the following factors: the
cluster sample sizes, the ICC of the variables, and the size of the
contextual effects. If the cluster sample sizes are 100 or more we
can expect the biases to disappear. If the ICC of the variables is
larger we can expect the biases to be smaller. If the contextual
effects are smaller, i.e., the coefficients βi are closer to the
corresponding coefficients γi, we can expect the biases to be
smaller. These findings are in line with the findings in Lüdtke
et al. (2008) and Asparouhov and Muthén (2019) regarding
latent variable centering for predictors in multilevel modeling.

Three-way interactions

The Bayesian model estimation described so far is specific for
two-way interactions, i.e., the product of two variables. It is
possible, however, using the same methodology to form three-
way and higher-order interactions. Suppose that we want to
include a term η1η2η3 as a predictor of a variable Z. We can
accomplish that by using a new latent variable η12 and 2 two-
way interactions as follows:

η12 ¼ η1η2 þ ε12 (79)

Z ¼ β2η12η3 þ ε: (80)

Table 13. Model C: Absolute Bias (Coverage)

Parameter True Value Bayes ML MLMC

γ00 .1 .01(.90) .01(.92) .00(.94)
γ01 .1 .00(.87) .00(.93) .00(.93)
γ02 .2 .00(.98) .00(.96) .01(.95)
γ03 .1 .01(.94) .00(.94) .01(.96)

Table 14. Multilevel Moderated Mediation Model: Absolute Bias (Coverage)

Parameter True Value Bayes Two-stage MLO

α1 .2 .00(.87) .00(.94) .02(.94)
α2 .6 .00(.96) .02(.96) .04(.95)
β1 −.6 .00(.90) .02(.92) .00(.83)
β2 .3 .00(.96) .00(.92) .00(.90)
β3 −.5 .00(.94) .10(.00) .06(.06)
β4 −.4 .00(.98) .05(.82) .03(.90)
β5 .2 .00(.90) .07(.58) .06(.45)
β6 .4 .00(.92) .10(.14) .10(.06)
β7 .3 .00(.94) .09(.03) .06(.38)
β8 −.5 .00(.96) .05(.10) .02(.76)
γ1 .7 .01(.96) .02(.95) .29(.06)
γ2 .6 .02(.95) .06(.95) .07(.87)
γ3 .6 .01(.91) .29(.26) .28(.12)
γ4 .4 .03(.88) .21(.83) .09(.84)
γ5 .5 .01(.95) .17(.86) .10(.79)
γ6 .8 .02(.90) .28(.48) .05(.83)
γ7 .7 .03(.94) .32(.61) .21(.37)
γ8 .4 .00(.94) .11(.89) .10(.59)
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If we fix the variance of ε12 to zero then η12η3 ¼ η1η2η3 and
we have the desired three-way interaction. With the Bayesian
estimation in Mplus, however, fixing the variance to 0 is not
an option (see earlier discussion on the VARIANCE option),
and thus we have to fix it to a small positive value, which
makes the above model an approximation of the three-way
interaction model. The smaller the value is, the more precise
the approximation but also the slower the mixing. In our
experience, choosing a value that represents around 1% of
the variance of Z works well. Alternatively, if the variances of
η1, η2 and η3 are set to 1 fixing the variance of ε12 to 0.01
would work well too.

We illustrate the three-way interaction with the following
single-level simulation study. Consider the following model
with nine observed variables and three latent variables:

Yi ¼ νi þ λiη1 þ εi; i ¼ 1; 2; 3 (81)

Yi ¼ νi þ λiη2 þ εi; i ¼ 4; 5; 6 (82)

Yi ¼ νi þ λiη3 þ εi; i ¼ 7; 8; 9: (83)

The structural part of the model is given by the following equa-
tion which includes the three-way interaction (cubic term) η21η2

η3 ¼ β1η1 þ β2η2 þ β3η
2
1η2 þ �: (84)

We generate 100 data sets of size 1000 using the following
model parameters: αi ¼ 0, λ1 ¼ λ2 ¼ λ3 ¼ λ4 ¼ λ7 ¼ 1,
λ5 ¼ λ6 ¼ :8, λ8 ¼ λ9 ¼ :9, β1 ¼ :5, β2 ¼ :7, β3 ¼ :4,
Varðη1Þ ¼ Varðη2Þ ¼ VarðεiÞ ¼ 1, and Varðη3Þ ¼ :5. We
analyze the data with the above model and the Bayesian
estimator and present the results for a subset of the para-
meters in Table 15. The results indicate that the Bayesian
estimation performs well.

Discussion

In this article, we show that the Bayesian estimation of latent
variable interaction models outperforms the maximum-
likelihood estimation. This is particularly the case for two-level
models, where the larger dimensions ofML numerical integration
lead to imprecision. Multilevel moderation models can now be
reliably estimated with the Bayesian estimator in various situa-
tions within a general and flexible framework. The algorithms
discussed here are implemented in Mplus 8.3 and all scripts for
the simulation studies presented in this article are available
online.1

The models that we discussed here can easily accommodate
categorical variables with one exception. In the multilevel
moderation models, only the dependent variable can be cate-
gorical, while the predictors and the moderator variables are
assumed to be normally distributed. The algorithms discussed
here will not extend to categorical predictors and mediators in
the context of moderation analysis. Such multilevel modera-
tion situations might be addressed through alternative meth-
odologies such as the MLO estimator based on observed
centering or through multiple group multilevel analysis, see
Asparouhov and Muthén (2012) and Kim and Cao (2015). If
the moderators and the predictors have many categories they
can be treated as continuous and the Bayesian estimation can
be applied. If the variables are binary, however, such an
approach is not recommended. In addition to the limitations
of the estimation methods, there is an uncertainty regarding
the scale on which the interaction term will be formed. The
two options are: the latent scale using the underlying latent
variables or the observed scale where the interaction term is
formed by multiplying the observed categorical values. This
issue arises in single-level models as well but is further com-
plicated in multilevel models where we attempt to model
separately individual-level effects and cluster-level effects.
Further methodological development is needed to address
these limitations.

The estimation method discusses in this article relies on
distributional assumptions and is generally not expected to be
robust to gross model or distributional misspecifications. The
method is asymptotically equivalent to the LMS method
discussed in Klein and Moosbrugger (2000). The mixture-
based method of Kelava et al. (2014) models the non-
normality of the factors and can be estimated in Mplus with
the ML and the Bayes estimators. The Bayesian approach
would allow the estimation of larger models with multiple
interaction terms; however, the complexity of embedding the
latent variable interaction methodology within the mixture
framework makes it less practical than its ML counterpart.

Model fit evaluation remains a challenge for latent variable
interaction models. The challenge lies in constructing an
unstructured/unrestricted model that is general enough that
a structural model can be compared to it, but is also well
identifiable and easy to estimate. The more general an inter-
action model is, the more difficult it is to estimate it and the
more poorly identifiable it is. The proposed Bayesian
approach makes progress on this front due to the fact that
many interaction terms can be included in the unrestricted
model. On its own however such a model will be difficult to
estimate. The model must be combined with the BSEM meth-
odology discussed in Muthén and Asparouhov (2012) where
tiny priors are included for most interaction terms to secure
model identifiability. This approach can be further combined
with the Bayesian version of the Wald test discussed in
Asparouhov and Muthén (2020) to be able to test multiple
interaction effects for significance. Undoubtedly, this topic
requires further methodological development.

Table 15. Three-way Interactions: Absolute Bias (Coverage)

Parameter True Value Bayes

β1 .5 .00(.94)
β2 .7 .00(.92)
β3 .4 .02(.89)

1http://statmodel.com/download/WebNote23.zip.
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Appendix: Model estimated means and variances
and standardization in latent variable interaction
models

This section describes the computation of the model estimated means
and variances as well as the standardization of the general model in
Mplus when latent variable interactions are present. Suppose that Y is the
vector of all dependent variables, X is the vector of all covariates, and η is
the vector of all latent variables. All residual variables are assumed to be
normally distributed.

Suppose that the variables (Y,η,X) are split into two disjoint sets of
variables V1 and V2, where V1 represent all dependent variables that are
not a part of an interaction term and V2 represent all variables that are
a part of an interaction term. Suppose that V1 is a vector of size p1 and
V2 is a vector of size p2. The SEM model is described by the following
equations:

V1 ¼ α1 þ B1V1 þ C1V2 þ
Xk
i¼1

DiðV2;f ðiÞV2;gðiÞÞ þ ε1

V2 ¼ α2 þ B2V2 þ ε2;

where α1;B1;C1;Di; α2;B2 are model parameters. The vectors α1, Di

are of length p1 while the vector α2 is of length p2. The matrices B1,
C1 and B2 are of size p1 � p1, p1 � p2 and p2 � p2 respectively.

The residual variable ε1 has zero mean and variance–covariance Θ
and ε2 has zero mean and variance–covariance Ψ. The covariance
between ε1 and ε2is denoted by F. The functions f ðiÞ and gðiÞ
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simply define the interaction terms, i.e., f ðiÞ and gðiÞ are integers
between 1 and p2 and k is the number of interaction terms in the model.

We can assume that all covariates X are in the V2 vector and the
V1 vector consists only of η and Y variables that are regressed on
interaction terms, while the remaining η and Y variables are in
vector V2. We can compute the model implied mean and
variance for these variables as follows. For the variables V2 we get

EðV2Þ ¼ μ2 ¼ ð1� B2Þ�1α2

VarðV2Þ ¼ Σ2 ¼ ð1� B2Þ�1Ψðð1� B2Þ�1ÞT :
For V1 we get

EðV1Þ ¼ ð1� B1Þ�1α1 þ ð1� B1Þ�1C1μ2

þ ð1� B1Þ�1
Xk
i¼1

Diðμ2;f ðiÞμ2;gðiÞ þ Σ2;f ðiÞ;gðiÞÞ:

Denote by

V20 ¼ V2 � μ2

μ10 ¼ ð1� B1Þ�1α1 þ ð1� B1Þ�1C1μ2

þ ð1� B1Þ�1
Xk
i¼1

Diðμ2;f ðiÞμ2;gðiÞÞ

V10 ¼ ð1� B1Þ�1C1V20 þ ð1� B1Þ�1ε1

þ ð1� B1Þ�1
Xk
i¼1

Diðμ2;f ðiÞV20;gðiÞÞ

þ ð1� B1Þ�1
Xk
i¼1

DiðV20;f ðiÞμ2;gðiÞÞ:

Then

V1 ¼ μ10 þ V10 þ ð1� B1Þ�1
Xk
i¼1

DiðV20;f ðiÞV20;gðiÞÞ:

Another representation for V10 is

V10 ¼ QV20 þ ð1� B1Þ�1ε1;

where the matrix Q combines all the coefficients from the terms invol-
ving V20. The above equation is essentially the definition of Q. Note now
that

Covðε1;V20Þ ¼ Fðð1� B2Þ�1ÞT

and thus

VarðV10Þ ¼ QΣ2Q
T þ ð1� B1Þ�1Θðð1� B1Þ�1ÞT

þ Qð1� B2Þ�1FTðð1� B1Þ�1ÞT

þ ð1� B1Þ�1Fðð1� B2Þ�1ÞTQT :

Using the fact that the covariance between V20;f ðiÞV20;gðiÞ and V20 and
the covariance between V20;f ðiÞV20;gðiÞ and ε1 are zero we get that

VarðV1Þ ¼ VarðV10Þ þ
X
i;j

DiCovðV20;f ðiÞV20;gðiÞ;V20;f ðjÞV20;gðjÞÞDT
j

¼ VarðV10Þ þ
X
i;j

DiD
T
j ðΣ2;f ðiÞ;f ðjÞΣ2;gðiÞ;gðjÞ

þ Σ2;f ðiÞ;gðjÞΣ2;gðiÞ;f ðjÞÞ:
Note also that

CovðV1;V2Þ ¼ CovðV10;V20Þ ¼ QΣ2 þ ð1� B1Þ�1Fðð1� B2Þ�1ÞT :

Once the estimated means and variances are computed, the stan-
dardization of the parameters is as in the standard SEM models
with the exception of the parameters Di which are standardized as
follows. If j denotes the index j ¼ 1; :::; p1 the standardized coeffi-
cient for Di;j is

Di;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðV2;f ðiÞÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðV2;gðiÞÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðV1;jÞ

p :
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