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Overview

Motivation

Dynamic Structural Equations Model (DSEM) framework and
estimation

New Multilevel Mixture Models: these are needed as building
block for the more advanced models

Single level models: HMM (Hidden Markov Models), MSAR
(Markov Switching Auto-Regressive), MSKF (Markov
Switching Kalman Filter)

Two-level HMM, MSAR, MSKF
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Motivation

Merge ”time series”, ”structural equation”, ”multilevel” and
”mixture” modeling concepts in a generalized modeling
framework in Mplus V8

In this context two-level means single-level. Cluster is always
the individual. Many observations are collected within subject
and analyzed in long format. Most time-series models were
developed for single level data however most social science
applications need two-level methods because we study many
individuals across time, rather than the US economy across time.

Mplus release timeline: V8 will have DSEM and probably single
level MSAR. V8.1 will have two-level MSAR.
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Motivation continued

Consider the following hypothetical example. A group of
depression patients answer daily a brief survey to evaluate their
current state. Based on current observations, past history, most
recent history, similar behavior from other patients we classify
the patient in one of 3 states:

S1: OK
S2: Stretch of poor outcomes, needs doctor visit/evaluation
S3: At risk for suicide, needs hospitalization

Future of health care? Cheaper, smarter and more effective?

The models we describe in this talk can be used to model the
data from this hypothetical example: combine mixture,
multilevel, time-series, latent variables, and structural models.
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Motivation continued

The goal of these models is to provide continuous time
monitoring for unobserved categorical and continuous latent
constructs. This is needed to study latent variable development
across time and to be able to detect problems earlier and
prevent/react.

Modeling two distinct sources of correlation: within individual
correlations can be due to subject-specific effect (two-level
modeling) or it can be due to correlation due to proximity of
observations (autocorrelation) of the observations (time series
modeling). The two types of correlations are easy to parse out
from the data in sufficiently long longitudinal data.

Various mobile devices are now utilized for collection of data:
ecological momentary assessment (EMA) data and experience
sampling methods (ESM). Increased need for time intensive
methods.
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Mplus general DSEM framework

For more DSEM information see about 200 slides from the
pre-conference workshop. Here is a quick review.
We use a simplified DSEM version that excludes TVEM (no
cross-classified modeling)
Let Yit be an observed vector of measurements for individual i at
time t.
Let ηit be a latent variable vector for individual i at time t.
Let Xit be a observed vector of covariates individual i at time t.
Similarly Yi, Xi and ηi are individual-specific variables, time
invariant
Main decomposition equation

Yit = Y1,it +Y2,i

Y2,i are the ”individual” specific contribution, normal latent
variable. Y1,it is the residual.
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DSEM framework continued

The within level model includes previous periods latent variables
ηi,t−l as predictors, modeling the correlations in consecutive
periods.
L is the lag variable: how many time period back are included in
the model.

Y1,it = ν1 +
L

∑
l=0

Λ1,lηi,t−l + εit

ηi,t = α1 +
L

∑
l=0

B1,lηi,t−l +Γ1xit +ξit.

The usual structural equations at level 2. Every within level
parameter can be random effect: part of ηi

Y2,i = ν2 +Λ2ηi + εi

ηi = α2 +B2ηi +Γ2xi +ξi

Tihomir Asparouhov, Bengt Muthén and Ellen Hamaker Muthén & Muthén 7/ 61



DSEM framework continued

Observed variables can also have lag variables and can be used
as predictors.

Ordered polytomous and binary dependent variables are included
in this framework using the underlying Y∗ approach: probit link

The model is also of interest when N=1. No second level. All
observations are correlated. Multivariate econometrics models.

The N = 1 model can be used also on the data from a single
individual to construct a psychological profile and match it to the
known profile of a psychological disorder.

We use Bayes estimation

The above model has variables with negative or zero indices. We
treat those as auxiliary parameters that have prior distribution.
Automatic option specification is implemented in Mplus.
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DSEM Mixture Model

Let Sit be a categorical latent variable for individual i at time t.
We call it ”State”. In Mplus this is a within level latent variable.
S can take values 1,2, ...,K where K is the number of
classes/states in the model.

The model on the between level is not affected by S. The model
on the within level is state specific

[Y1,it|Sit = s] = ν1,s +
L

∑
l=0

Λ1,l,sηi,t−l + εit

[ηi,t|Sit = s] = α1,s +
L

∑
l=0

B1,l,sηi,t−l +Γ1,sxit +ξit.

The residual variance Var(εit|Sit = s) and Var(ξit|Sit = s) are also
state specific
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DSEM Mixture Model Continued

In addition to the above model we have to specify the
distribution of Sit

P(Sit = s) =
Exp(αis)

∑
K
s=1 Exp(αis)

αis are normally distributed random effects, i.e., they are part of
the vector ηi. For identification the last one is zero αiK = 0
Individual level predictors can be used to predict αis, regress the
logits on covariates.
In MCMC we use Metropolis Hastings to update the random
effects. Using the proposal distribution N(αis,Σ) where Σ is the
model estimate for Σ = Var(αis) from a burnin period. The new
draw α̂is is accepted with probability

Acceptane ratio =
Prior(α̂is)Likelihood(Sit|α̂is)

Prior(αis)Likelihood(Sit|αis)
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DSEM Mixture Model Continued

Potential avenues to improve mixing if needed

Use cΣ where c is a constant regulating the acceptance rate within
a desirable range of 15% to 35%
Use cluster specific proposal distribution from a burnin period cΣi
where Σi = Var(αis|data). Unbalanced designs most likely will
need this.
Sperate αis from other random effects.

Limited simulations show good performance even without these
added steps, however, final version will include these probably.
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Bayes Multilevel Mixture Model

Bayes Multilevel Mixture Model = DSEM Mixture without the
lag variables ηi,t−l. For the next 20 slides no intensive
longitudinal data.

The model is essentially the Twolevel Mixture model
implemented in Mplus which can be estimated with ML.

Advantage of this model is that we have Bayes estimation and
thus can estimate models with any number of random effects.

With ML, αis typically can not be all estimated and we constrain
them to be proportional via a factor to reduce the number of
numerical integration from K−1 to 1. With Bayes we don’t need
to do that.

Asparouhov, T. & Muthen, B. (2008). Multilevel mixture
models. In Hancock, G. R., & Samuelsen, K. M. (Eds.),
Advances in latent variable mixture models, pp. 27-51.
Charlotte, NC: Information Age Publishing, Inc.

Tihomir Asparouhov, Bengt Muthén and Ellen Hamaker Muthén & Muthén 12/ 61



LCA with clustered data

Most common approach approach for LCA with clustering (nested
data) is to use ML single level with robust/sandwitch SE that take the
clustering into account. Three problems

Does not allow cluster specific class distribution.

Assumes full measurement invariance for the latent class
variable measurement model

If these assumptions are not met likely to yield spurious classes
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LCA with measurement non-inavriance

For indicator p individual i in cluster j

P(Upij = 1|Cij = k) = Φ(τpk + τpj)

P(Cij = k) =
Exp(αj +αjk)

∑
K
s=1 Exp(αj +αjk)

τpk is a non-random parameter (the usual threshold parameter)
τpj is a measurement non-invariance zero mean random effect
that allows certain indicators to be more or less frequent in
cluster j than the population values, beyond what the latent class
distribution explains. For example, certain measurement
instruments not universally accurate.
αj are non-random effects that fits the population level class
distribution
αjk are zero mean random effects that allow cluster specific class
distribution
ML estimation would use 10 dim integration. Bayes 40 sec rep.
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LCA with measurement non-inavriance: 3 Class simulation
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LCA with measurement non-inavriance: Simulation results
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Unrestricted Two-Level Mixture Model Simulation

Yij is a vector of observed continuous variables for individual i in
cluster j

Yij = Yb,j +Yw,ij

[Yw,ij|Cij = k]∼ N(µk,Σk)

P(Cij = k) =
Exp(αj +αjk)

∑
K
s=1 Exp(αj +αjk)

This model requires numerical integration in Mplus even if the
latent class variable is observed

With Bayes it can even accommodate categorical variables

It makes feasible the models discussed in Asparouhov, T. &
Muthen, B. (2012). Multiple group multilevel analysis. Mplus
Web Notes: No. 16.
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Unrestricted Two-Level Mixture Model Simulation
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Unrestricted Two-Level Mixture Model Simulation Results
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Multilevel Latent Transition Analysis (MLTA) with cluster
specific transition probabilities

Hypothetical example: Students are nested within schools and
are classified in 2 classes at two separate occasions. We are
interested in how the P(C2|C1) varies across schools.
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Multilevel Latent Transition Analysis (MLTA) with cluster
specific transition probabilities

The model that can be estimated in Mplus with ML

However γdcj does not really vary across clusters it is really γdc
Even if we regress α2j on α1j (equivalent to correlation) we still
have just 2 random effects for the joint distribution of two binary
latent class variables while the degrees of freedom is 3
Current Mplus ML estimation P(C2|C1) does not fully vary
across clustersTihomir Asparouhov, Bengt Muthén and Ellen Hamaker Muthén & Muthén 21/ 61



Multilevel Latent Transition Analysis (MLTA) with cluster
specific transition probabilities

New Bayes model

P(C1,ij = k1) =
Exp(αjk1)

∑
K
k1=1 Exp(αjk1)

P(C2,ij = k2|C1,ij = k1) =
Exp(αjk1k2)

∑
K
k2=1 Exp(αjk1k2)

The old model is equivalent to the assumption that αj21−αj11 is
the constant γ

αjk1K = 0 for identification

Note that the transition probabilities can also be regressed on
predictors by regressing αjk1k2 on predictors
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MLTA

A model with two binary class variables has 3 random effects (3
df in joint C1 by C2 disytribution

αj1 = log(P(C1 = 1)/P(C1 = 2))

αj11 = log(P(C2 = 1|C1 = 1)/P(C2 = 2|C1 = 1))

αj21 = log(P(C2 = 1|C1 = 2)/P(C2 = 2|C1 = 2))

In MCMC the update for αjk1k2 are no different than αjk1 , i.e, we
use MH

Simulation studies show that clusters sizes should not be small
(> 50). If cluster sizes are small joint tables will have empty
cells that lead to logits of infinity. The results of that is biased
overestimation for Var(αjk1k2).
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MLTA Simulation
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MLTA Simulation
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MLTA Simulation Results
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MLTA Simulation Results
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Single Level LTA with Probability Parameterization

In single level the logits of transition probabilities are not
random effects. They are non-random parameters.

Mplus has 3 different parameterizations for ML estimation of
LTA: logit, loglinear, probability

New Bayes estimation for LTA with probability
parameterization: it allows for Lag=1 or Lag=2, P(C2|C1) or
P(C3|C1,C2) just like ML

The model parameters are the probabilities directly P(C1) and
P(C2|C1) and P(C3|C1,C2)

Easy MCMC implementation. P(C1) and P(C2|C1) and
P(C3|C1,C2) have conjugate Dirichlet prior.
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LTA with Probability Parameterization Simulation
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LTA with Probability Parameterization Results
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Single Level Hidden Markov Models

Data is again intensive longitudinal. First we consider the single
level model, N=1. We discuss 3 models

Hidden Markov Model (HMM)
Markov Switching Autoregressive (MSAR)
Markov Switching Kalman Filter (MSKF)

DSEM allows for time series modeling for observed and latent
continuous variables. DSEM Mixture does not allow auto
correlation for the latent categorical variable

In time series data it is not realistic to assume that St and St−1 are
independent, where St is the state/class variable at time t. On the
contrary. A realistic model will allow St and St−1 be highly
correlated if the observations are taken very frequently.
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Hidden Markov Models

The model has two parts: measurement part and Markov
switching part

The measurement part is like any other Mxiture model, it is
defined by P(Yt|St) where Yt is a vector of observed variables
and St is the latent class/state variable at time t

The Markov switching (regime switching) part is given by
P(St|St−1). We use the same probability parametrization based
on Dirichlet conjugate priors that we used with two latent class
variables. The transition model Q = P(St|St−1) has K(K-1)
probability parameters. The transition matrix is K by K but the
columns add up to 1
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Hidden Markov Models

Note that p=P(St) is not a model parameter. The probability is
implicit and is the distribution of St if the sequence is observed to
infinity. It can be obtained implicitly from the stationarity
assumption that P(St) is independent of t. i.e., from the equation
Qp = p. Since the first K−1 equations added up give the last we
need to replace the last equation with Sum(p)=1 to solve it.

The MCMC step that updates the latent class variable

P(Ct = k|Ct−1,Ct+1) =
P(Ct+1|Ct = k)P(Ct = k|Ct−1)

∑
K
k=1 P(Ct+1|Ct = k)P(Ct = k|Ct−1)

P(Ct = k|Ct−1,Ct+1,Yt) =
P(Yt|Ct = k)P(Ct = k|Ct−1,Ct+1)

∑
K
k=1 P(Yt|Ct = k)P(Ct = k|Ct−1,Ct+1)
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Hidden Markov Models

Ct=0 is treated as an auxiliary parameter

Ct=0 can be given a prior

Mplus provides an automatic prior option. The prior is updated
in the first 100 MCMC iteration which are consequently
discarded and the prior is set to be the current sample distribution
Ct. This is the default.

If the length of the time series is long enough that prior does not
matter
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HMM Simulation
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HMM Results
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Combining HMM and DSEM

By combing HMM and DSEM we obtains a general model that
includes time series for the latent class variable as well as factors
and observed variables

Markov Switching Autoregressive (MSAR) is simply the
combination of Mixture-AR and HMM

Markov Switching Kalman Filter (MSKF) is simply the
combination of Mixture-Kalman Filter and HMM
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Bivariate MSAR

Let Y1t and Y2t be two observed variables at time t and St be the
latent state variable at time t taking one of two states.

Y1t = α1,St +β1,St Y1,t−1 +β2,St Y2,t−1 + ε1it

Y2t = α2,St +β3,St Y1,t−1 +β4,St Y2,t−1 + ε2it

The model has 20 parameters: 4 α , 8 β , 6 residual covariance,
and 2 parameters in the transition matrix: P(St = 1|St−1 = 1) and
P(St = 1|St−1 = 2)
The model addresses the chicken or the egg problem. Example:
wife and a husband mood in good and bad state.
Hamaker, Grasman and Kamphuis (2016) Modeling BAS
Dysregulation in Bipolar Disorder Illustrating the Potential of
Time Series Analysis, Assessment. They argue that bipolar
individuals show two state behaviour while controls don’t.
Simulation study speed of computation: it takes 1/3 of 1 second
to estimate the model on a sample with 1000 observations
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Bivariate MSAR Simulation
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Bivariate MSAR Results
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Markov Switching Kalman Filter (MSKF)

Three factor indicators Yjt measuring a factor ηt. St is a two state
categorical latent variable.
We estimate a hidden Markov model for St, i.e.,
P(St = 1|St−1 = 1) and P(St = 1|St−1 = 2) are probability
parameters independent of t.
For j=1,2,3

Yjt = νj +λjηt + εjt

ηt = αSt +β1,St ηt−1 +β2,St ηt−2 +ξt

MSAR(2) model for the factor
For identification purposes α1 = 0 and λ1 = 1 (this sets the scale
of the latent variable to be the same as the first indicator, which
is probably a better parameterization than fixing the variance of
the factor to 1?)
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MSKF Simulation
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MSKF Results
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MSKF Results
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MSKF Analysis of Results

Small bias in the means. What to do? I left this unanswered on
purpose to make the point. Possible potential causes

Model poorly identified: Not enough parameters differ across
class? Simplify model by holding parameter equal to improve
identification. Parameters that are not significantly different and
make sense can be constrained to be equal. Loadings not
significantly different from 1 fix to 1.

Not enough sample size to get to bias of zero. Increase sample
size. Simplify model. Run simulations with bigger sample. Note
that Entropy remains the same as sample increases

Not enough MCMC iterations. Run with more iterations. Look at
the traceplot of the offending parameters to evaluate convergence

Label switching in Mixtures? I have not seen this happen yet. I
think it it very rare because of the Markov regime
switching/smoothing
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MSKF Analysis of Results

Add informative priors to improve identifiability if the model.

Maybe entropy is too low?

In smaller sample size situations the number of regime switching
events could be low if the state is stable - not enough to build the
model. Recall that we use P(Ct = 1|Ct−1 = 2) and
P(Ct = 2|Ct−1 = 1) to figure out Ct distribution. If there are very
few switch events accurate stable estimates are probably
unrealistic.

Other things I don’t know about

These methods are new and are the cutting edge of methodology.
Not using simulation studies in parallel to a real data estimation
is irresponsible. Simulation studies not possible in Bugs. They
are possible in Mplus because it is much faster.
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MSKF Data

Tihomir Asparouhov, Bengt Muthén and Ellen Hamaker Muthén & Muthén 47/ 61



MSKF Analysis

Class switching are not ”clearly” visible. One needs the detailed
analysis that the MSKF model provides

Not very easy to come up with E(Yt|St) explicitly. Using the
simulated data however I can compute that E(Yt|St = 1) is
around 1 and E(Yt|St = 2) is around 4. This can also be
computed by imputing St with the factor score command and
computing the MCMC based values.

Periods 1 to 25: Mostly switching back and forth with a stable
phase in regime 1 for periods 10, 11, 12, 13.

Periods 25 to 50: St has entered a stable regime 2 with only a
single drop to regime 1 at period 32. This makes a lot more sense
once you know that the two estimated values for E(Yt|St) are 1
and 4
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Two level models

Not really two-level models. These are intensive longitudinal
models: multiple observations nested within clusters.

This methodology more suitable for social sciences than the case
of N=1

Dynamic Latent Class Analysis (DLCA)

Multilevel Markov Switching Autoregressive Models(MMSAR)

Multilevel Markov Switching Kalman Filter Models (MMSKF)
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Dynamic Latent Class Analysis

200 individuals, 4 binary class indicator, 2 class model, each
individual has 100 times of observations. The model is
traditional LTA with 100 time points

P(Upit = 1|Sit = k) = Φ(τkp + τip)

P(Sit = 1|Sit−1 = 1) =
Exp(αi1)

1+Exp(αi1)

P(Sit = 2|Sit−1 = 2) =
Exp(αi2)

1+Exp(αi2)

τip ∼ N(0,σip)

αij ∼ N(αj,σj)

Subject specific transition matrix(
αi1 1−αi2

1−αi1 αi2

)
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DLCA Simulation
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DLCA Results

Tihomir Asparouhov, Bengt Muthén and Ellen Hamaker Muthén & Muthén 52/ 61



Multilevel Markov Switching Autoregressive
Models(MMSAR) Simulation

100 individuals with 100 times of observations. One dependent
variable Yit

Sit is a two state categorical latent variable.
We estimate a hidden Markov model for Sit with subject specific
transition probabilities
We estimate a twolevel regression with random intercept and
MSAR(1) model for the within part of Yit (note the mean is on
the within level - version 8.1)

Yit = Yb,i +Yw,it

Yw,it = µSit +βSit Yw,it−1 + εit

P(Sit = j|Sit−1 = j) =
Exp(αij)

1+Exp(αij)

αij ∼ N(αj,σj),Yb,i ∼ N(0,σ)
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MMSAR Simulation
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MMSAR Results
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Multilevel Markov Switching Kalman Filter Models
(MMSKF)

100 individuals with 100 times of observations, 4 continuous
factor indicators Ypit measuring a factor ηit.
Sit is a two state categorical latent variable.
We estimate a hidden Markov model for St with subject specific
transition probabilities
MSAR(1) model for the factor
For p=1,...,4

Ypit = νpi +λpηit + εpit

ηit = µSit +βSit ηit−1 +ξit

P(Sit = j|Sit−1 = j) =
Exp(αij)

1+Exp(αij)

αij ∼ N(αj,σj)

νpi ∼ N(νp,σp)

For identification purposes µ1 = 0 and λ1 = 1
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MMSKF Simulation
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MMSKF Results, within level, class 1
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MMSKF Results, within level, class 2
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MMSKF Results, between level
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Issues

Determine the number of classes: ignore time series and use
standard methods

Starting values: maybe coming soon, not as big issue for Bayes
as it is for ML due to MCMC naturally goes through many
starting values

Comparing models: maybe coming soon DIC, model test, new
PPP methods, other new methods

Multiple solutions: We get a lot of multiple solutions with ML.
Does that happen with Bayes too? Using different starting
values? This is an issue even without time-series.

Label switching - hopefully not much of a problem due to
Markov smoothing
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