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Penalized Structural Equation Models

Tihomir Asparouhov and Bengt Muth�en�

MPLUS 

ABSTRACT 
Penalized structural equation models (PSEM) is a new powerful estimation technique that can be used 
to tackle a variety of difficult structural estimation problems that can not be handled with previously 
developed methods. In this paper we describe the PSEM framework and illustrate the quality of the 
method with simulation studies. Maximum-likelihood and weighted least squares PSEM estimation is 
discussed for SEM models with continuous and categorical variables. We show that traditional EFA, 
multiple group alignment (MGA), and Bayesian SEM (BSEM) are examples of PSEM. The PSEM frame-
work also extends standard SEM models with the possibility to structurally align various model parame-
ters. Exploratory latent growth models, also referred to as Tuckerized curve models, can also be 
estimated in the PSEM framework and are illustrated here with simulation studies and an empirical 
example.

KEYWORDS 
Algnment; EFA; exploratory 
latent growth models; 
penalized maximum- 
likelihood   

1. Introduction

In this note we illustrate how the penalized maximum likeli-
hood (PML) method can be used to estimate new structural 
equation models. We call these models penalized structural 
equation models (PSEM). PML estimation is maximum like-
lihood estimation with a prior. The concept of prior is the 
same as in Bayesian estimation. The log-likelihood of the 
prior, which we also refer to as the penalty function, is 
added to the log-likelihood of the data to obtain the penal-
ized log-likelihood. The penalized log-likelihood is then 
maximized to obtain the PML model estimates.

PML has been used for SEM estimation for example in 
L€udtke et al. (2021), where the effect of the prior is used to 
stabilize the estimation in non-asymptotic settings. This is 
how PML is traditionally used in other branches of statistics, 
see Tibshirani (1996). PML has also been used for SEM in 
Jacobucci et al. (2016) and Huang, Chen and Weng (2017). 
Jacobucci et al. (2016) used the term Regularized SEM. In 
general, there is no difference between a regularized and a 
penalized model. Both terms are used interchangeably in 
statistical methodology to describe PML model estimation. 
Nevertheless, the PSEM framework that we describe here is 
quite different from regularized SEM (RegSEM). This frame-
work is much more similar to the BSEM (Bayesian struc-
tural equation modeling) framework, Muth�en and 
Asparouhov (2012), the ESEM (exploratory structural equa-
tion modeling) framework, Asparouhov and Muth�en (2009), 
and the ASEM (aligned structural equation modeling) 
framework, Asparouhov and Muth�en (2014) and 
Asparouhov and Muth�en (2023b). In fact, it can be viewed 
as the natural extension and generalization of these different 

frameworks. The main difference in this new approach is 
that we estimate unidentified models, the prior variance and 
penalty regularization parameter to a large extent is irrele-
vant, and the penalty/prior is derived from the nature of the 
model and is not related to the data. The penalty reflects a 
complex modeling concept and it is often not just the sum 
of parameters’ penalties as in lasso and ridge regressions.

The asymptotic behavior of the PML estimation has not 
generated a lot of interest in the past. When the sample size 
increases, the influence of the penalty/prior diminishes and 
the PML estimates become asymptotically equivalent to the 
ML estimates. This is typically the case in the RegSEM 
framework. In the PSEM framework, however, this is not 
the case. The ML estimates for a PSEM model are not avail-
able and are not uniquely identified. Asymptotically, the 
penalty does not disappear in the PSEM framework.

The PSEM models most often are based on the func-
tional form of the alignment loss 

ffiffiffiffiffi
jxj

p
, instead of the trad-

itionally used ridge loss functional form x2 and lasso loss 
functional form jxj. Alignment loss rewards parsimony 
much more aggressively than ridge and lasso. This is essen-
tial for PSEM’s ability to deliver novel consistent structural 
estimation. In this article, we do not pursue an extensive 
comparison of alignment/lasso/ridge. However, as it will 
become clear later on, the difference between alignment and 
lasso/ridge is very similar to the difference between the 
Geomin rotation and Quartimax rotation: Geomin is more 
aggressive in rewarding simplicity than Quartimax. It pro-
duces higher quality estimation for more complex models. 
Nevertheless, for many PSEM models, alignment and lasso 
loss functions yield nearly identical results.
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The goal of the PSEM framework is to develop new 
structural modeling concepts that are previously unavailable 
due to technical limitations. Examples of such concepts are:

� Longitudinal alignment of SEM parameters. Here the 
alignment concept arises from the belief that parameters 
should be invariant across time, rather than across 
groups. The concept of measurement invariance is one 
such longitudinal example. However, longitudinal align-
ment can be used in models without latent variable 
measurement models, such as, for example, latent growth 
curve models (LGCM). The alignment in LGCM is an 
alignment for the means along a linear or quadratic 
curve with the goal of minimizing deviations from that 
curve.

� Structural alignment of SEM parameters. The concept of 
structural alignment is similar to the alignment in the 
ASEM framework but the justification does not arise 
from the multiple group comparison but from the struc-
ture of the model. For example, consider the direct 
effects in a MIMIC model. The MIMIC model generally 
postulates that the effect of the covariates on the depend-
ent variables comes through the effect on the factors and 
any deviations from that should be minimal. We align 
the effects of the covariates on the dependent variables 
so that the number of significant direct effects is mini-
mized. This process is also similar to BSEM but with 
PML the focus remains on the actual number of signifi-
cant direct effects rather than their size.

� Structural modeling for EFA or aligned factors. Such 
structural models are available in the ESEM/AESEM 
frameworks but these are limited in scope due to the 
technical implementation. The PSEM framework pro-
vides unlimited structural modeling for EFA or aligned 
factors. For example, auto-regressive and growth model-
ing for such factors.

� Non-orthogonal and non-oblique rotations, such as those 
that appear in second order EFA and bi-factor EFA with 
more than one general factor.

� Scalar invariant multiple group EFA with orthogonal fac-
tors in all groups.

� Approximate invariance and approximately zero concepts 
developed with BSEM are now available with ML in the 
PSEM framework

This is not an exhaustive list. In this article we provide 
penalty functions to illustrate the above concepts. However, 
there is no limit to what penalty functions can be con-
structed and what methodological solutions can be achieved 
with the PML method.

Almost all of the examples we discuss in this article can 
be described as follows. An unidentified model M1 is 
desired. The model is identified by the addition of a sub-
stantively constructed prior/penalty function. The prior/pen-
alty function is converted into implied complex model 
parameter constraints that directly remove the unidentified 
dimensions. Typically, the prior/penalty functions are based 
on the concept of model simplicity. They are not based on 

prior knowledge of the model parameters. They are based 
on the conceptual desire to find the simplest and most well 
fitting model. The observed data log-likelihood and data fit 
of the M1 model are the same as those of a well-known 
identified but uninterpretable M0 model. This modeling pat-
tern can be illustrated well with the EFA model, where the 
prior/penalty is the rotation function, the M0 model is the 
uninterpretable unrotated factor model and the M1 model is 
the EFA model. Similarly, in multiple group alignment, the 
prior/penalty is the alignment loss function, the M0 model 
is the configural factor analysis model which is interpretable 
but can not be used for multiple group comparisons and 
the M1 model is the aligned model. The PML method 
allows us to repeat this estimation pattern for a variety of 
models.

It is interesting to note here that PML is a fairly straight-
forward and technically minor extension of the ML estima-
tion, as compared to EFA and multiple group alignment. 
Standard errors for the EFA model were developed many 
years after the point estimation was developed because of 
the technical challenges. PML accomplishes this with little 
to no effort. Simply adding the rotation function as the 
model prior/penalty accomplishes the same result. It is this 
simplicity that allows the PML method to accomplish more 
advanced modeling tasks than the previously developed esti-
mation techniques.

A key difference between BSEM and PSEM frameworks 
is the addition of alignment priors as an alternative to nor-
mal priors. Normal priors tend to minimize mean squared 
error and thus tend to spread around parameter misfit 
across the entire model. Alignment priors on the other 
hand tend to minimize the number of parameters that devi-
ate from pure model alignment. This quality of the align-
ment priors delivers unbiased estimates that normal priors 
can not. Another advantage of PSEM over BSEM is that the 
priors in PSEM do not need to be conjugate priors. For 
example, normal priors can be given for covariances without 
affecting the efficiency of the estimation.

In the BSEM framework, the strength of the small vari-
ance priors is a key feature and it is often necessary to esti-
mate the model multiple times with various prior variances, 
see Asparouhov et al. (2015). The PSEM framework is 
somewhat less dependent on that prior variance. The logic 
behind this is given below. Intuitively, the prior variance in 
PSEM should be big enough (the penalty should be small 
enough) as to not interfere with the data log-likelihood opti-
mization (the optimized log-likelihood for M1 and M0 
should be very close), but it should be small enough (pen-
alty should be big enough) as to not cause numerical prob-
lems with the maximization of the penalty. If the penalty is 
too small, the optimization algorithm will need extraordin-
ary precision and very small convergence criterion. Thus the 
size of the penalty is ideally within a certain range and 
within that range the PML estimates should be fairly inde-
pendent of the prior variance.

Successful PML application requires skillful selection of 
the penalty function / parameter priors. For the examples 
described below, however, the penalty function is well- 
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known, i.e., ingenuity is not required. To obtain the 
Geomin rotation, we use the Geomin penalty function. 
Parameters that are expected to be zero have a prior with 
mean 0. Parameters that are expected to be equal get a zero 
mean prior for the difference between the parameters. In 
that respect, the prior setup is uniquely determined by the 
model description and can be considered routine.

The weighted least squares method, traditionally used for 
SEM estimation with categorical variables, can also be used 
to estimate PSEM models. As with PML, the penalty func-
tion is added to the least squares fit function and the total 
is minimized to obtain the penalized weighted least squares 
(PWLS) estimation. For both, PWLS and PML, asymptotic 
or bootstrap standard errors can be obtained as well as a 
chi-square test of fit.

2. Theoretical Justification

As a first step, we conceptualize the EFA and MGA estima-
tion methods into a general framework. These estimation 
methods are essentially two-stage estimation methods. The 
two-stage nature is automated in software implementations 
and it may be perceived as a one-stage estimation. We expli-
cate some of these details and use it to form a general meth-
odological framework.

Let M1 be an unidentified model with parameters h1 and 
log-likelihood function Lðh1Þ: Suppose that a model repara-
meterization G separates the identified dimensions from the 
unidentified. That is, h1 ¼ Gðh2, h3Þ is a one-to-one 
reversible parameter transformation where h2 represents 
the parameters that can be identified and h3 represents the 
parameters that can not be identified. For example, in the 
EFA case, h1 is the loading matrix and the factor correla-
tions, h2 is the unrotated loading matrix (with zero entries 
above the main diagonal) and h3 is the rotation matrix. The 
transformation is simply rotating the loading matrix and 
factor correlation matrix. In the multiple group alignment 
case, h1 represents indicator intercepts and loadings as well 
as the factor means and variance covariance, h2 represents 
the configural model parameters, and h3 represents the fac-
tor mean and variances. Fixing the unidentified parameters 
h3 to appropriate values can yield an identified model which 
we call the null model M0. For EFA, h3 is fixed to the iden-
tity rotation matrix, while in the alignment case the factor 
means are fixed to 0 and the factor variances are fixed to 1. 
In the EFA case, the null model M0 is the unrotated solu-
tion, while in the alignment case the M0 model is the con-
figural model. Model M0 has some important properties. 
The log-likelihood and model fit for M0 and M1 are identi-
cal, including the defacto number of free parameters. For 
the M0 model, the h3 parameters are identified simply 
because they are fixed. For the M1 model, the h3 parameters 
are identified through a penalty/auxiliary function PðhÞ such 
as the rotation simplicity function or the alignment loss 
function. The model estimates for M1 are obtained by maxi-
mizing the log-likelihood function LðhÞ and then minimiz-
ing PðhÞ in the subspace of model parameters where LðhÞ is 
maximized. The main difference between the M1 model and 

the M0 model is that the M1 model is structurally more 
interpretable. In the rotation case, it allows for more mean-
ingful factor interpretation because of the simpler loading 
structure. In the alignment case, it allows latent factor com-
parison across groups.

The estimation of M1 is fairly challenging because of the 
two-stage optimization. As a first step, the log-likelihood 
LðhÞ is maximized. Because the model is unidentified, the 
maximization amounts to determining the entire parameter 
subspace for which the log-likelihood is at its maximum. 
That parameter subspace can be somewhat challenging to 
describe or work with. For example, in the EFA case, the 
subspace consists of all orthogonally or oblique rotated load-
ing matrices of the unrotated solution. Because that param-
eter subspace is obscure, the second stage of the 
optimization becomes challenging. As a result of these com-
plexities, standard errors for the parameter estimates can be 
challenging as well. Here we introduce the PML estimation 
as a simpler alternative to the two-stage optimization 
method. Because the PML estimation is simpler, we are able 
to expand on both: the M1 model and the penalty PðhÞ: In 
fact, both of these can be arbitrary but the combination of 
M1 model and penalty function is always strategically 
chosen.

First let’s consider the equations that determine the two- 
stage optimization parameter estimates. For this purpose it 
is easy to work with the (h2, h3) parameterization. Since the 
log-likelihood is independent of h3, the parameters that 
maximize the likelihood need to satisfy the following equa-
tion

@Lðh2, h3Þ

@h2
¼ 0: (1) 

This equation determines the solution for h2 uniquely 
and we denote this solution by ĥ2: Minimizing the penalty 
then amounts to solving 

@Pðĥ2, h3Þ

@h3
¼ 0 (2) 

for h3: This equation determines the solution for h3 uniquely, 
provided that the penalty function is properly set (so that P 
has a unique minimum). We denote the solution by ĥ3: We 
also denote by ĥ1 the two-stage estimates obtained in the ori-
ginal M1 parameterization which are simply computed as 
Gðĥ2, ĥ3Þ: Note that the two stage optimization can be viewed 
also as a one stage constrained optimization, where Equation 
(2) is the parameter constraint.

Now we formally introduce the PML estimation method. 
Instead of maximizing the log-likelihood and then condi-
tionally minimize the penalty in two separate steps, PML 
maximizes the weighted penalized log-likelihood

Lwðh1Þ ¼ ð1 − wÞLðh1Þ − wPðh1Þ: (3) 

Here w represents the weight of the penalty function and 
is often referred to as the regularization parameter. We are 
generally interested in weight values w that are small posi-
tive numbers, such as 0.1 and 0.01. If we denote by ĥ1, w the 
parameter vector that maximizes Lwðh1Þ, we will show that
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lim
w!0

ĥ1, w ¼ ĥ1: (4) 

The above equation is the fundamental justification of 
the PML method and the PSEM framework. It simply states 
that we can obtain an increasingly good approximation of 
the two-stage estimation by choosing smaller and smaller 
penalty function weights w. Intuitively, if w is a very small 
number, numerically equivalent to 0, the maximization pro-
cess will emphasize the maximization of L as the penalty 
function will be weighted down numerically to 0. 
Nevertheless, for a complete optimization, the penalty will 
also be minimized right in the vicinity where L is maxi-
mized because w is not zero.

The proof of Equation (4) is easiest to accomplish in the 
(h2, h3) parameterization. If ĥ2, w and ĥ3, w maximize Lw, the 
following equations must be satisfied

0 ¼
@Lwðh2, h3Þ

@h2
¼ ð1 − wÞ

@Lðh2, h3Þ

@h2
− w

@Pðh2, h3Þ

@h2
(5) 

0 ¼
@Lwðh2, h3Þ

@h3
¼ −w

@Pðh2, h3Þ

@h3
(6) 

Clearly (6) is the same as (2), while (5) becomes equiva-
lent to (1) as w goes to 0. Therefore, as w goes to 0, ĥ2, w 

and ĥ3, w will converge to ĥ2 and ĥ3 and Equation (4)
follows.

It should be noted here that there is a gap between a the-
oretical Equation (4) and actual numerical estimation. A 
maximization routine typically iterates through the param-
eter space until all parameter derivatives are numerically 
close enough to 0, i.e., are smaller than a particular number 
such as 0.000001. This number is often referred to as the 
convergence criterion. If we set w ¼ 10−16 for example, the 
weight of the penalty will be so low that numerically it will 
be eliminated. The convergence criterion will not be suffi-
ciently small for penalty optimization to occur. The opti-
mization will be numerically equivalent to simply 
optimizing the likelihood alone which will not be sufficient 
to identify all parameters. Ideally, the weight should be 
small enough so that the log-likelihoods for M1 and M0 are 
less than 1 apart, but not too small as to cause incomplete 
convergence, unidentified model, or saddle points in the 
standard error estimation, which is also a sign that the opti-
mization is incomplete. Mplus reports the penalty ratio 
(prior proportion) wPðĥ1Þ=ðwPðĥ1Þ þ ð1 − wÞv2), where v2 

is the test of fit for the model. This ratio should ideally be 
between 0.01 and 0.10 to achieve numerically optimal 
results, where the PML estimation is a sufficiently good 
approximation for the two-stage estimation. Note, however, 
that in some situations v2 is 0 and the penalty ratio becomes 
1 automatically. In such situations a different method is 
needed to determine an optimal range for w.

The standard errors for the PML estimator are computed 
by treating equations (5-6) as estimating equations. 
Therefore, the sandwich estimator is used, which corre-
sponds to the MLR estimator in Mplus. The sandwich esti-
mator is used for the PML standard error estimation even 
when the estimation option is set to ML. For PML, the 

difference between the ML and MLR estimators is only in 
the test of fit. MLR uses a chi-square correction factor as 
usual, while ML does not.

The theoretical justification for PSEM extends to the 
weighted least squares estimator with categorical variables. 
The PWLS estimator minimizes the penalized least squares 
fit function

ðrðhÞ − r̂ÞW−1ðrðhÞ − r̂Þ
T
þ wPðhÞ: (7) 

As in the WLS estimator, r̂ are the parameter estimates 
of the unrestricted multivariate probit model, rðhÞ are the 
corresponding quantities implied by the structural model, 
and W is the weight matrix for the least squares fit function. 
The penalty function is added with a positive sign because 
the fit function is minimized. Asymptotic standard errors 
and test of fit for PWLS are obtained as in Muth�en and 
Satorra (1995).

3. Penalty Functions

The penalty functions in Mplus are implemented with the 
MODEL PRIORS statement. The penalty function associated 
with a corresponding prior is always computed as

Penalty ¼ � logðPriorÞ: (8) 

A model parameter can be given three different priors: 
normal, denoted by N, alignment loss function prior 
denoted by ALF, and the LASSO loss function prior denoted 
by LASSO.

If a parameter h is given a normal prior Nðl, vÞ, the 
penalty function, excluding irrelevant constant terms inde-
pendent of the parameters, is given by

PðhÞ ¼
ðh − lÞ

2

2v
: (9) 

This penalty function is also referred to as the ridge pen-
alty function as in ridge regression, see Hoerl and Kennard 
(1970).

If h is given an alignment prior ALFðl, vÞ, the penalty 
function is

PðhÞ ¼
f ðh − lÞ

v
: (10) 

where

f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ e

4
p

�
ffiffiffiffiffi
jxj

p
(11) 

is the alignment function and e is a small positive number 
that is used to ensure a smooth function f, i.e., continuous 
f 0: This number is controlled by the TOLERANCE option 
in the ANALYSIS command in Mplus and is defaulted to 
0.001. Smaller values of e are associated with smaller point 
estimate bias and larger e values with smaller standard error 
bias. Generally, in most cases, only the values of 0.01, 0.001 
and 0.0001 are considered. If e is not included, the penalty 
is no longer a smooth function and the penalized likelihood 
optimization can become quite complex, see Geminiani 
et al. (2021).
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If h is given the prior LASSOðl, vÞ, the penalty function 
is

PðhÞ ¼
f ðh − lÞ

v
: (12) 

where

f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ e

2
p

� jxj: (13) 

The role of e here is the same as in the ALF prior: to ensure 
a smooth penalty function. If the TOLERANCE option is 
set to 0, the penalty function becomes identical to the trad-
itional LASSO penalty function described in Tibshirani 
(1996).

Note that if the parameter h is defined as a necessarily 
positive model parameter, such as the variance parameter, 
the ALF and the LASSO priors can be used without the 
TOLERANCE parameter, i.e., TOLERANCE ¼ 0. The pen-
alty function in that case will remain smooth in the admis-
sible parameter space.

If multiple parameters are given priors, the total model 
penalty is the sum of all penalties associated with those pri-
ors. The role of the scale parameter v in the penalty 
function is to control the size of the penalty relative to the 
chi-square or log-likelihood function, i.e., it controls the 
weight w in (3). Smaller values of v increase the size of 
the penalty. Bigger values of v decrease the size of the pen-
alty. The variance v can also be interpreted the way it is 
interpreted in BSEM modeling. The smaller the variance, 
the less likely a particular parameter will be to escape its tar-
get value.

The fundamental difference between normal, ALF, and 
LASSO priors is in the final model preference. Normal pri-
ors produce parameters with small deviations from their 
mean targets, while alignment priors produce models that 
are more parsimonious, i.e., as few as possible parameters 
that are off their mean targets, but the size of the deviation 
is bigger than what normal priors produce. If a model is 
desired that has only a few significant parameters not asso-
ciated with the main structural model, then ALF priors 
should be used. If a model is desired that has all parameters 
not associated with the main structure be small in size, then 
normal priors should be used. The LASSO prior falls some-
where in between, although it is generally more similar to 
the ALF prior.

Consider as an illustration the following hypothetical 
example. Suppose that a model has 4 parameters: b1, b2, b3 
and b4: Suppose that the log-likelihood of the model is 
identical for these 3 sets of parameter values: M1ðb1 ¼

b2 ¼ b3 ¼ b4 ¼ 0:25Þ, M2ðb1 ¼ b2 ¼ 0:5, b3 ¼ b4 ¼ 0Þ, 
M3ðb1 ¼ 1, b2 ¼ b3 ¼ b4 ¼ 0Þ: This can happen for 
example in linear regression where all 4 predictors are per-
fectly correlated. Suppose that we want to add a penalty 
(priors for the 4 parameters) to the model so that we can 
determine the most optimal/interpretable model. Table 1
shows the penalty values for the 3 sets of parameters using 
the three different types of penalty functions. Each method 
chooses the model with the smallest penalty. The Ridge pen-
alty prefers M1, where all the parameters are closer to 0. 

The ALF prior prefers M3 where only one parameter is not 
zero and the model can be interpreted as the simplest 
model. The LASSO prior in this case has equal penalty for 
all three models and can not be used for model identifica-
tion. In this example, all 3 priors exhibit completely differ-
ent patterns of preference.

Another important class of prior specification is based on 
the DIFF option. The DIFF option is used in Mplus with 
the Bayes estimator and is discussed in User’s Guide 
example 5.33, Muth�en and Muth�en (2017). Prior specifica-
tion DIFFðh1 − hkÞ � Nð0, vÞ produces a penalty function

P ¼
Xk

i¼1

Xi−1

j¼1

ðhi − hjÞ
2

2v
: (14) 

We specify such priors when we want the hi parameters 
to be approximately equal. The DIFF option can also be 
used with ALF and LASSO priors. If prior specification 
DIFFðh1 − hkÞ � ALFð0, vÞ or DIFFðh1 − hkÞ � LASSOð0, vÞ
is given, the penalty function is computed as follows

P ¼
Xk

i¼1

Xi−1

j¼1

f ðhi − hjÞ

v
, (15) 

where f is either (11) or (13).
Another multivariate prior used in the PSEM framework 

is the Geomin prior specified for a loading matrix K: This 
prior gives a penalty function that is identical to the 
Geomin rotation criterion in EFA. Specifying such prior/-
penalty will enable us to include EFA/ESEM models in the 
PSEM framework. The Geomin prior for the loading matrix 
k11 − kmp � Geominðm, v, �Þ yields a penalty function

P ¼ ð1=vÞ
Xp

i¼1

Y

j
k2

ij þ e
� � !ð1=mÞ

: (16) 

Here the loading matrix is dimensioned p by m, the par-
ameter v plays the role of variance and 1=v is the penalty 
weight, and e is a small positive number defaulted to 0.01 
which controls the smoothness of the penalty.

It is also possible to use an arbitrary penalty in Mplus. 
Suppose that PðhÞ is the desired penalty. A new model par-
ameter q ¼ PðhÞ is created using the command MODEL 
CONSTRAINT: NEW(q); q ¼ PðhÞ;. Specifying a 
LASSOð0, 1Þ prior for q then yields the desired penalty, 
assuming that PðhÞ is positive and e is set to 0. A general 
penalty approach is needed for example to specify rotation 
criteria that are different from Geomin.

4. Structural Alignment Examples

Most of the examples described in this section follow the 
logic of the BSEM analysis. Prior is specified for 

Table 1. Penalty function values.

Model Ridge/Normal LASSO ALF

M1ð:25, :25, :25, :25Þ .25 1 2
M2ð0:5, 0:5, 0, 0Þ .5 1 1.41
M3ð1, 0, 0, 0Þ 1 1 1
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unidentified parameters that are presumed to be zero but 
are allowed to break out of this assumption if the data fit 
requires it. PML structural alignment has several advantages 
over BSEM modeling. PML estimates based on ALF priors 
are less biased than BSEM estimates based on normal priors 
and are less dependent on the prior variance specification. 
The coverage for the model parameters is generally better 
with PML structural alignment. In addition, PML has the 
advantages of the ML framework which is more complete in 
terms of model fit evaluation. Another advantage of the 
PML structural alignment is that it can utilize simple uni-
variate priors for all parameters. BSEM variance covariance 
modeling typically uses the multivariate Inverse-Wishart priors, 
which can be intricate to specify correctly, see Asparouhov 
et al. (2015). Another advantage is that PML can be used with 
models that are available only in the ML framework, such as 
EFA/ESEM models. Yet another advantage is that the PML 
estimation appears to be always quite fast, while the Bayes esti-
mation may become slow when the priors are less restrictive. 
In this section we provide a general definition for structural 
alignment as well as several examples.

4.1. General Definition

In this section we provide a general definition for structural 
alignment. Three models will be considered: M1, M2, and 
M3: M1 will be referred to as the structural model, M2 as the 
null model, and M3 as the PSEM model. Model M1 is nested 
within model M2: The parameters for M1 are the vectors h0 
and h1, while the parameters for M2 are h0 and h2: The par-
ameter vector h0 represents the parameters that are common 
to both models, while h1 and h2 are model specific. Denote by 
pi the size of the vector hi: Since M1 is nested within M2, the 
size p2 of h2 is larger than the size p1 of h1: The setup for 
structural alignment assumes that h1 is a structural constraint 
of h2 via any type of dimension-reducing technique. That is, 
model M1 is obtained from model M2 when h2 is subject to 
the following parameter constraints

h2 ¼ Gðh1, h0Þ, (17) 

where G is a multivariate function. In most situations, we 
consider the structured parameter vector h1 to be substan-
tively more valuable than h2 and more easily interpretable.

The structural alignment model M3 is a PSEM model 
which aims to preserve the data fit of the less restrictive 
model M2, to preserve the structural constraint (17) as 
much as possible, and to estimate the substantively desirable 
structured parameter vector h1: The model parameters for 
M3 are h0, h1, and h02: Model M3 consists of model M2 
combined with the following parameter constraint

h2 ¼ Gðh1, h0Þ þ h02, (18) 

i.e., the new parameters h02 can be viewed as residuals for 
the structural constraint (17). The size of the vector h02 is 
the same as the size of the vector h2: It is easy to see that 
M2 and M3 provide the same fit to the data, i.e., the max-
imum likelihood value will be identical for the two models. 
M3 has p1 more parameters than M2 and thus will have p1 

unidentified dimensions. To identify these dimensions, we 
use a small weight penalty function

P ¼
Xp2

i¼1
f ðh02iÞ, (19) 

where f is the ALF prior function (11) and h02i is the i−th 
entry in the vector h02: This penalty function is constructed 
by specifying ALF priors for all residual parameters h02: The 
PSEM model M3 preserves the data fit of M2 and estimates 
the structural parameters h1 by minimizing the error in the 
structural constraint (17) which defines M1:

We generally refer to model M1 as the structural model, 
M2 as the null model, and M3 as the PSEM model. The above 
general definition can be applied to any structural parameter 
constraint formulated as in (17). In most cases, we provide 
only a description of the PSEM model M3: The structural 
model M1 can be obtained from M3 by fixing all parameters 
with ALF priors (these are the parameters h02) to 0. The null 
model M2 can typically be obtained from M3 by fixing h1 to 
0. However, identifying h1 may not be as obvious in all cases. 
Typically, these are the minimal set of M1 parameters that 
must be fixed to zero to make the unidentified model M3 into 
an identified model M2: In most cases we describe below, 
Gð0, h0Þ ¼ 0, which means that when h1 is fixed to 0, h2 ¼

h02: This can be used to determine the parameters h2:

In most applications, it is desirable to determine and 
estimate all three models. For example, by comparing the 
log-likelihood values of M2 and M3, we can ensure that 
the penalty weight is sufficiently small as to not affect the 
data fit in a substantial way. The log-likelihood values of 
M2 and M1 can be used to conduct a likelihood ratio test 
to determine if the parameter constraint (17) is satisfied. 
Alternatively, (17) can be tested within the M2 estimation 
using Wald’s test, i.e., MODEL TEST in Mplus. If the 
structural constraint (17) is not rejected, then there is no 
need for model M3: If the structural constraint is rejected, 
however, model M1 is rejected. Nevertheless, we can use 
model M3 instead of model M1 for inference regarding h1 
parameters.

4.2. Latent Growth Curve Alignment of Means

Latent growth curve models (LGCM) imply a very restrict-
ive mean structure. If a variable Yt , t ¼ 1, :::, T, is modeled 
for example with a linear growth curve model, T mean 
parameters are fitted with just two parameters: the means of 
the random intercept and slope. Mean parameters typically 
have a lot of power to reject the model when they are mis-
fitted and that can cast doubt on the entire model even if 
the model is mostly accurate.

The linear LGCM is given by the following equations

Yt ¼ I þ S � t þ et (20) 
I � Nða, v11Þ, S � Nðb, v22Þ, CovðI, SÞ ¼ v12, et � Nð0, rtÞ:

(21) 

The PSEM based LGCM model replaces Equation (20) with

Yt ¼ �t þ I þ S � t þ et (22) 
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�t � ALFð0, 1Þ (23) 

while (21) remains the same. We can estimate the above 
model when we add the zero-mean alignment prior for the 
time specific intercepts �t: The PML estimation in this case 
aligns the time specific means along the estimated growth 
curve model. This alignment resembles the MGA method-
ology where now the time variable plays the role of the mul-
tiple group variable. Standard SEM methodology can not 
estimate time specific intercepts �t as well as the intercepts 
a and b for the latent growth factors. This is because the 
mean sufficient statistic has T degrees of freedom (the sam-
ple means of Yt) which can not identify the T þ 2 parame-
ters �t , a and b: In the PSEM framework, however, this is 
possible. The main advantage of the PSEM-LGCM is that it 
can estimate the growth curve model while at the same time 
it can fit the observed means perfectly due to the time-spe-
cific intercept parameters.

Next we show how this example fits in the general 
framework described in the previous section. The structural 
model M1 is given by (20-21). The structural parameters h1 
are a and b, while h0 are all other M1 parameters. The 
PSEM model M3 is given by (21-23) and �t in (22) repre-
sents h02: The null model M2 is given by (21-22) with a ¼
b ¼ 0 and �t represents the parameters h2 in that model. 
The parameter constraints (17) that we provide a structural 
alignment for in this case is given by �t ¼ aþ tb, i.e., we 
structurally align the mean parameters �t along the best 
straight line across time.

We illustrate the performance of the PSEM methodology 
with a simulation study. Figure 1 shows the input file for a 
linear LGCM model with T ¼ 8 unevenly spaced time 
points and N ¼ 500: We generate the data so that at time 
points 5 and 6 the means of the observed variables deviate 
from the linear growth projection, i.e., �5 ¼ −0:3 and �6 ¼

0:2: The results of the simulation study for a selection of 
the parameters are presented in Table 2. The bias in the 
parameter estimates is minimal and the coverage is near the 
nominal level of 95%. The PSEM methodology is able to 
recognize that the means at time point 5 and 6 do not con-
form with the linear growth model and the deviations from 

the linear growth model are estimated correctly. The latent 
variable means are estimated correctly as well despite the 
fact that all Yt intercepts are also free parameters. The aver-
age chi-square value for this PSEM model is 26 and with 25 
degrees of freedom the model is rejected 8% of the time. 
For reference, the standard LGCM for these data yields an 
average chi-square of 92 and with 31 degrees of freedom 
this yields 100% rejection. Furthermore, in the standard 
LGCM, the intercept parameters a and b are biased and 
have lower coverage. PSEM in Mplus does not identify the 
null model as that is not necessary for the PSEM estimation. 
The degrees of freedom are computed not by identifying the 
null model but are computed as in Zou et al. (2007).

Note that we did not perform an investigation on select-
ing the weight for the penalty which manifests here in the 
second parameter of the ALF prior. We refer to that param-
eter as the variance parameter in line with the normal prior 
but this is not the variance of the ALF distribution. Using 
the prior variance value of 1 is a good starting point in 
most situations. Changing the variance to 10 does not affect 
the estimation, while setting it to 0.1 resulted in some small 
increase in the bias in the parameter estimates and the aver-
age chi-square value increased by 0.5. This indicates that the 
size of the penalty is a bit too large when the variance is set 
to 0.1 and that is preventing the data log-likelihood to be 
optimized completely. The ratio of the penalty as a propor-
tion of the total optimization function (chi-square plus pen-
alty) is 0.7 when the prior variance is 0.1. That quantity is 
0.2 when the prior variance is set to 1, and it is 0.02 when 
the prior variance is set to 10. Generally, as the theoretical 
results indicate, we prefer the penalty to be as low as pos-
sible, and the prior variance to be as high as possible. 
However, it is not necessary to search for the largest vari-
ance value that will allow correct PML estimation, since the 
results are not sensitive to that parameter. In this example 
variance of 1 works well also with larger and smaller sample 
sizes and various metrics of the dependent variables. The 
most clear indicator that the variance value of 1 is suffi-
ciently small is the fact that the PSEM model produces the 
same chi-square value as the null model. In practical set-
tings, it might be helpful to estimate the null model as a 
preliminary step. We can then assert that the PSEM-LGCM 
penalty weight is OK, i.e., is sufficiently small, if the PSEM- 
LGCM and the null model yield chi-square values that are 
nearly identical.

In the above example, using normal priors instead of 
alignment priors produces larger biases in the parameter 
estimate. This emphasizes the benefit of using alignment 
priors and the advantages of PSEM over the corresponding 
BSEM Bayesian estimation.

Figure 1. Simulation study for LGCM means alignment.

Table 2. Simulation study results for LGCM means alignment.

Parameter True Value Abs. Bias Coverage

�4 0 .01 .96
�5 −.3 .00 .96
�6 .2 .02 .93
a .4 .00 .93
b .1 .01 .96
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4.3. Alignment of Covariate Effects in MIMIC Models

Let Y represent a vector of dependent variables, g represent 
a vector of latent variables measured by the dependent vari-
ables Y and X represent a vector of covariates. The MIMIC 
model, see Bollen (1989), in vector form can be expressed as 
follows

Y ¼ � þ Kgþ e (24) 
g ¼ CX þ f: (25) 

The model postulates that the effect of the covariates on 
the dependent variables can be explained entirely by the 
effect of the covariates on the factors. This assumption is 
often too restrictive and the model can be rejected due to 
the presence of direct effects from the covariates to the 
dependent variables. Typically, modification indices are used 
to discover needed direct effects, which are then added one 
at a time. When the model is complex, however, with a sub-
stantial number of variables, the process of sequentially 
adjusting the model can be time-consuming. This process 
can also become subjective because at each step multiple 
direct effects can have approximately equal modification 
indices. As a result of that and the imperfect nature of the 
modification indices, the most parsimonious model may be 
omitted. The PSEM framework offers a one-step solution 
which essentially aligns the effects of the covariates along 
the factor measurement model, i.e., the effect of the covari-
ates on the indicators are aligned to be proportional to the 
factor loadings. The PSEM model replaces Equation (24)
with

Y ¼ � þ Kgþ BX þ e (26) 
B � ALFð0, vÞ: (27) 

Without (27), the model can not be identified. This 
model can also be formulated for categorical variables where 
the underlying Y� variable takes the role of Y.

We illustrate the performance of the estimation for the 
above model with a simulation study using 10 categorical 
indicator variables with 4 categories each, 2 factors and 3 
covariates. We use the penalized WLSMV (PWLSMV) esti-
mation method in this simulation study. The Mplus input 
file for the data generation and model estimation is given in 
the online Supplemental Materials (SM) Figure S1. Two 
non-zero direct effects are included in this simulation study. 
The results of the simulation study are presented in Table 3
for all non-zero regression parameters. The bias in the par-
ameter estimates is minimal and the coverage is near the 
nominal level of 95%. The PWLSMV estimator automatic-
ally discovers the non-zero direct effects among all possible 
such effects and provides unbiased estimates for these 
effects. All other direct effects are estimated to values that 
are approximately zero. The average chi-square value is 34 
and with 34 degrees of freedom this results in a 3% rejec-
tion rate. If the direct effects are not included in the 
MIMIC model the model is rejected 100% of the time and 
biases appear in both C and K: In this estimation we used a 
prior variance of v ¼ 10: This is necessary to reduce the 
penalty proportion. With prior variance of 1 the penalty 
proportion is 0.38 and with prior variance of 10 it is 0.06, 

which is preferable. However, the difference in the results 
between these two settings is negligible.

4.4. Alignment of Cross-Loadings in Confirmatory Factor 
Analysis: Improving Target Rotation

Confirmatory factor analysis (CFA) estimates a prespecified 
loading structure. The PSEM methodology can extend the 
CFA model by including all loadings, i.e., by including all 
possible cross-loadings. The additional loadings are aligned 
with a zero-mean alignment prior. This modeling approach 
is essentially an alternative to the EFA target rotation. 
Specifying targets in the target rotation becomes equivalent 
to specifying priors for these loadings in PSEM. In fact, if 
we use normal prior instead of alignment prior, the penalty 
function for PSEM becomes identical to the target rotation 
criterion. Therefore, subject to (4), the PSEM model with 
normal prior is expected to produce approximately the same 
results as the target EFA rotation. There are two advantages 
of the PSEM approach. First, we can vary the strength of 
the targets in PSEM. Certain targets can be assigned 
medium strength while other targets can be assigned full 
strength. This can be accomplished by using two different 
variance parameters. Full strength targets can be given pri-
ors with smaller variance, while medium strength targets 
can be given priors with larger variance. Such an approach 
can be helpful when there is ambiguity in the measurement 
model. Certain indicators may be hypothesized to be poten-
tially related to a factor even if they are not intended to be 
a part of the measurement model for that factor. The 
second advantage of the PSEM model lies in the use of the 
alignment prior. The target rotation and the PSEM model 
with normal prior are likely to distribute error in the pre-
sumed model while the alignment based PSEM will concen-
trate the errors in as few zero-target cross-loadings as 
possible.

We illustrate the performance of the PSEM methodology 
with a simulation study. Data is generated with a 6 indicator 
2 factor analysis model where each factor has 3 main indica-
tors and there is just one small but non-zero cross-loading. 
We analyze the data using 5 methods: PSEM-ALF with 
alignment prior, PSEM-N with normal priors, PSEM-LASSO 
with LASSO priors, BSEM with normal prior, ESEM with 
target rotation. The targets and priors are assigned to all 
cross-loadings. All of these methods are designed to esti-
mate both the main and the cross loadings. Mplus input file 
for this simulation study using the PSEM-ALF estimation 
method is given in SM Figure 2. To estimate PSEM-N and 
PSEM-LASSO we simply replace the ALF prior specification 

Table 3. Alignment results of direct effects in MIMIC models.

Parameter True Value Abs. Bias Coverage

c11 0.5 .01 .95
c12 0.6 .00 1.0
c13 0.7 .02 .97
c21 0.7 .00 .95
c22 0.6 .00 .91
c23 0.5 .00 .95
b13 0.3 .03 .97
b21 0.4 .01 .93
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with N and LASSO. To estimate the BSEM model we 
change the estimator to Bayes and use Normal priors. The 
input for ESEM-target estimation is given in SM Figure 3.

Table 4 show the results of this simulation study for the 
5 estimation methods for a selection of the parameters. 
PSEM-ALF estimation shows no bias and coverage near the 
nominal level. PSEM-LASSO results are quite similar to 
PSEM-ALF. The differences between the two methods 
become more noticeable with larger sample sizes. For 
example, for N ¼ 10000, the factor covariance estimate for 
PSEM-LASSO is biased and estimated at 0.29, while the 
PSEM-ALF estimate is unbiased at 0.25. The biases in 
PSEM-LASSO at that sample size also lead to drop in cover-
age down to 70% while the coverage for PSEM-ALF remains 
near the nominal levels.

The other 3 estimation alternatives show biased results 
and poor coverage, not just for the cross-loadings but also 
for the factor covariance. Most importantly, the PSEM-ALF 
method appears to be vastly superior to the EFA target rota-
tion in terms of properly estimating the cross-loadings with 
targets. It should be noted that for this estimation problem, 
the ESEM-target rotation has previously been considered to 
be the best estimation method. Clearly the PSEM framework 
now offers a better alternative. The results also show that 
ESEM-target and PSEM-N yield almost identical results. 
This is an important confirmation of the theoretical result 
given in Equation (4). Ultimately, this also shows that EFA 
estimation is simply a standard ML estimation, where the 
rotation criterion is a penalty function or the prior for the 
model parameters. Later on, we will take advantage of that 
fact to estimate certain EFA models that are not available 
within the standard ESEM framework.

The BSEM method in this example performed the worst. 
This is in part due to the fact that we did not vary the prior 
variance for that estimation and that is an essential part of 
the proper BSEM application. With a very careful BSEM 
analysis, the BSEM results are expected to be as good as 
PSEM-N and ESEM-target, i.e., not nearly as good as 
PSEM-ALF.

The target rotation can also be estimated without specify-
ing the small non-zero cross-loading as a target. In that case 
the target rotation performs well and yields results similar 
to PSEM-ALF. We conclude that the target rotation EFA is 
biased only when the targets are specified incorrectly. 
PSEM-ALF has the advantage that it gives unbiased esti-
mates even when the targets are specified incorrectly. Using 
target EFA, instead of PSEM-ALF, thus carries an additional 
risk of specifying the targets incorrectly. It also means that, 
for best results, EFA target rotation should be adjusted and 
possibly re-estimated until all targets are not significant. If a 
target rotation EFA is estimated and some of the targets 
have statistically significant estimates, the model should be 
re-estimated with different targets to avoid the biases illus-
trated in this simulation study.

In principle, for this example, the model can be estimated 
with just 2 targets, one for each factor. This applies to both 
the ESEM-target and the PSEM-ALF estimations. In general, 
ESEM-target and PSEM-ALF can be estimated with as few 

as m − 1 targets per factor where m is the number of factors 
in the model. Having more targets than the minimum num-
ber, however, is useful in reducing the mean squared error 
(MSE) of the estimates. This conclusion applies again to 
both the ESEM-target and the PSEM-ALF estimations. In 
fact, if targets are given for all zero cross-loadings, the MSE 
for ESEM-target and PSEM-ALF is nearly as good for this 
example as the corresponding CFA model. Furthermore, 
PSEM-ALF achieves such a level of MSE, even if alignment 
priors are given for all cross-loadings (even those that are 
not zero). This advantage does not apply to ESEM-target.

In conclusion, PSEM-ALF can be used to estimate all 
main loadings as well as all cross-loadings similarly to the 
EFA-target method. Generally, PSEM-ALF is a one-step esti-
mation and there are no implications when a zero target 
turns out to be a non-zero significant cross-loading. On the 
other hand, for optimal performance, ESEM-target may 
require multiple estimations. First, ESEM-target should be 
estimated with the minimum number of targets. 
Subsequently, targets can be added for all insignificant 
cross-loadings. If a targeted loading becomes significant or 
if it is estimated to a larger non-zero value, the target for 
that loading should be removed. If necessary, to maintain 
the minimum number of targets, a target that is removed 
should be replaced with a different target. With every multi- 
stage estimation procedure, there is a risk of omitting the 
most parsimonious model. Since PSEM-ALF automates this 
process, we conclude that PSEM-ALF should be preferred 
over the EFA target rotation.

4.5. Alignment of Residual Correlations in EFA

Next we turn our attention to the residual correlations in 
EFA models. The ESEM framework can estimate such corre-
lations but it requires preliminary analysis to determine 
which residual correlations should be included in the model, 
see Ferrando et al. (2022). It is not possible in the ESEM 
framework to estimate all residual correlations as the model 
becomes unidentified. BSEM can be used to estimate all 
residual correlations in CFA but not in EFA. Bayes estima-
tion for ESEM models is currently not available. Only stand-
ard EFA models without residual correlations can currently 
be estimated with the Bayes estimator, see Asparouhov and 
Muth�en (2012). The PSEM framework can offer a unique 
alternative: estimate the EFA model and all residual cova-
riances at the same time. The residual covariances are given 
zero-mean alignment priors to identify the model. To be 
clear, the PSEM framework offers two variations of such 
estimation. It is possible to estimate the model with a pen-
alty function which is the sum of the rotation criterion and 

Table 4. Alignment of cross-loadings: Absolute bias(coverage).

Parameter
True  

Value
PSEM  
ALF

PSEM  
LASSO

PSEM  
Normal

ESEM  
Target BSEM

k11 1 .00(.93) .00(.93) .01(.93) .00(.93) .02(.98)
k12 0 .00(1.0) .00(1.0) .01(.94) .01(.95) .30(.95)
k61 .3 .02(.99) .03(.92) .09(.27) .09(.27) .15(.97)
k62 1 .00(.95) .00(.95) .02(.91) .02(.91) .08(.99)
w12 .25 .00(.96) .02(.94) .06(.71) .07(.63) .35(.98)
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the zero-mean alignment priors for all residual covariances. 
This approach is discussed in the next section. Here we 
illustrate a simpler alternative. Using the ESEM framework, 
we estimate the EFA model with a penalty function which is 
the sum of the zero-mean alignment prior for all residual 
covariances. The penalty function contains only the priors 
of the residual covariances, while the rotation criterion is 
optimized after the penalized log-likelihood maximization as 
in the traditional EFA estimation. This approach is simpler 
to specify in Mplus because the rotation criterion is not 
included in the penalty specification and is automated by 
the EFA estimation.

We illustrate this approach for an EFA model with 10 
indicators and 2 factors. Each factor has 5 main measure-
ments. One of the factors has a mid-size cross loading as 
well. Additionally, we generate the data with 3 non-zero 
residual correlations: h12, h48 and h9, 10: The model estima-
tion includes all residual correlations in an attempt to dis-
cover those that are not zero. The Mplus input file for this 
simulation study is given in SM Figure 4. The PSEM model 
is specified as an ESEM model, i.e., EFA model for the two 
factors. All residual covariances are estimated as free param-
eters with ALF(0,1) priors.

The results of this simulation study for some of the 
parameters are given in Table 5. First, we see that the EFA 
model is largely unaffected by the inclusion of all residual 
covariances. The loading structure is estimated and rotated 
as if the residual covariances are not included. All loading 
parameters, including the cross-loadings, appear to have 
minimal bias and coverage near the nominal level. In add-
ition, all residual covariances, the non-zero and the zero 
covariances, are estimated well with small bias and good 
coverage. The 42 zero covariances are significant in less 
than 3% or the replications, while the 3 non-zero covarian-
ces are significant more than 95% of the time. We conclude 
that the PSEM estimation method can be used to estimate 

EFA models and all free residual covariances at the same 
time.

Note that the null model here is the unrestricted variance 
covariance model. Thus, the PSEM model, EFA with all free 
aligned residual covariances, is expected to have an average 
chi-square value near 0 and it can not be used to test the 
EFA structure. In the above simulation study, the average 
chi-square value is 0.1. The model has 0 degrees of freedom. 
The chi-square is not precisely 0, due to the approximation 
depicted in Equation (4).

4.6. Simultaneous Alignment of Residual Correlations 
and Cross-Loadings in CFA

In this section we illustrate how PSEM simultaneously aligns 
the residual correlations and the cross-loadings in a CFA 
model. We use the same simulation setup as in the previous 
section, i.e., a two-factor analysis model with 10 indicators 
where each factor has 5 main indicators. There is one cross- 
loading and 3 residual correlations in the data generation 
and we want the PSEM estimation to automatically discover 
those and provide unbiased estimates and standard errors. 
PSEM estimates, in addition to the CFA model, all cross- 
loading parameters and residual covariance parameters with 
ALF(0,1) prior.

Note that in this model, each non-zero cross-loading is 
equivalent to adding 5 non-zero residual correlations. 
Alignment optimizes in terms of the most parsimonious 
model. A loading parameter should have an advantage 
escaping its prior mean specification over the equivalent 5 
residual correlations, i.e., the penalty for having one non- 
zero loading should be smaller than the penalty for having 5 
non-zero residual covariances.

The PSEM estimation is conceptually similar to the 
BSEM methodology, which can also be used for such esti-
mation. An advantage of the PSEM method is that it 
requires only a single estimation. The prior variance does 
not need to be varied. In addition, the model converges fast 
as the PSEM model is never under-identified. The BSEM 
model is often under-identified when the prior variance is 
less restrictive. PSEM also produces smaller biases in the 
parameter estimates. BSEM tends to average out model mis- 
specifications which results in more biased estimates.

The Mplus input file for this simulation study is given in 
SM Figure 5 and Table 6 shows the results for some of the 
model parameters. The bias for all parameters is minimal 
and the coverage is near the nominal level. The joint align-
ment of cross-loadings and residual correlations appears to 
work well in the PSEM framework.

Note that this PSEM model can also be viewed as a ver-
sion of the EFA model with all residual covariances dis-
cussed in the previous section. Here we have combined the 
ALF based target rotation (alignment of cross-loadings) with 
the residual covariances alignment, i.e., the penalty function 
includes the rotation penalty as well as the residual covari-
ance penalty.

Table 5. Alignment results for residual correlations in EFA.

Parameter True Value Abs. Bias Coverage

k11 1 .01 .94
k12 0 .02 1.0
k31 1 .02 .91
k32 .5 .00 .97
w12 0.25 .00 .98
h12 0.5 .05 .87
h13 0 .01 1.0
h48 0.3 .02 .94
h9, 10 0.4 .03 .96

Table 6. Alignment results for residual correlations and cross-loadings in CFA.

Parameter True Value Abs. Bias Coverage

k11 1 .00 .97
k12 0 .01 1.0
k31 1 .01 .95
k32 .5 .01 .96
w12 0.25 .00 .98
h12 0.5 .03 .90
h13 0 .01 1.0
h48 0.3 .02 .96
h9, 10 0.4 .03 .94
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5. Multiple Group and Longitudinal Alignment 
Examples

In the previous section we showed that the target rotation is 
equivalent to the PSEM model with normal priors and that 
ALF priors provide an even better version of the target rota-
tion. In this section we similarly illustrate that the multiple 
group alignment (MGA) methodology is equivalent to the 
PSEM model with DIFF priors. This allows us to further cus-
tomize MGA to various structural models or to customize the 
actual alignment optimization. The logic behind this is the fact 
that the MGA alignment loss function is identical to the pen-
alty function given by the DIFF priors. Huang (2018), Tutz 
and Schauberger (2015), and Magis et al. (2015) also describe 
a penalized method that is akin to multiple group alignment.

As implemented in Mplus, the MGA alignment loss func-
tion weighs the loss due to difference between two parameters 
with weights inversely proportional to the square root of the 
group sizes. The purpose of this additional weighting is meant 
to minimize MSE of the estimates. If the groups are of equal 
size, the additional weighting can be ignored because all 
weights are equal. With unequal group sizes, the weighting is 
likely to provide only a marginal difference, i.e., in most prac-
tical situations this additional weighting can be ignored.

It is possible to use DIFF priors in PSEM with the MGA 
weights as well by specifying the corresponding variance 
parameter in the ALF priors. However, this becomes 
impractical for larger examples due to the large number of 
DIFF priors that will need to be specified separately. To 
simplify the PSEM specification for the MGA model, we 
will be using ALF priors for each difference with the same 
mean of 0 and the same variance, i.e., the additional MGA 
weighting will be ignored. In our illustration below, we use 
groups of equal sizes, which allows us to match precisely 
the MGA loss function and PSEM penalty derived from the 
DIFF priors with constant variance.

5.1. Multiple Group Alignment with PSEM

In this section we compare the MGA and the PSEM based 
MGA model estimations. The MGA model is given by the 
following equations

Yig ¼ �ig þ kiggg þ eig (28) 
gg � Nðag , wgÞ, eig � Nð0, higÞ: (29) 

For identification purposes a1 ¼ 0 and w1 ¼ 1, i.e., we 
use a fixed alignment with the first group as a reference 
group. We illustrate the equivalence of the two estimators 
with a simulation study using a three-group factor analysis 
model with one factor measured by 4 variables. Data is gen-
erated with one non-invariant intercept and one non-invari-
ant loading. The input file for the MGA simulation study is 
given in SM Figure 6 and for the PSEM-MGA simulation 
study in SM Figure 7. In the PSEM-MGA model, the prior 
specification is the alignment version of holding the inter-
cept and loading parameters equal across groups. We specify 
ALF DIFF priors for each intercept and loading parameter.

The results of the simulation study for some of the 
parameters are given in Table 7. Parameter estimates and 
standard errors are nearly identical for the two estimations. 
The log-likelihood and chi-square test of fit are nearly iden-
tical as well.

We conclude that MGA and PSEM-MGA methodologies 
are equivalent. This fact can be used to extend the capabil-
ities of the alignment methodology. Consider for example 
the case where there are multiple factors in the model and 
the most optimal reference group for the different factors is 
different. Such a model can easily be accommodated in the 
PSEM-MGA framework while it is not available in the 
MGA framework.

Another example which needs customized alignment is 
the alignment of a factor with only two indicators. The con-
figural model in that case is unidentified and thus the MGA 
approach is not possible. PSEM-MGA approach, however, 
can be implemented using a customized model. For 
example, both loading parameters can be fixed to 1 in all 
groups, the factor variance can be estimated as free in every 
group, the factor mean can be fixed to 0 in the reference 
group and free in all other groups, while the indicator inter-
cepts are aligned as usual using the DIFF ALF priors. In 
this case, we would align only the factor means while the 
factor loadings are held fixed and all equal to 1.

The alignment setup with PSEM can also be extended to 
any structural model. Structural modeling in the ASEM 
framework is limited to structures that can be aligned. For 
example, a factor predictor in ASEM must have a free and 
unequal regression coefficient in every group. In the PSEM- 
MGA framework there is no such restriction and a group 
invariant regression coefficient can be estimated. Restricting 
the regression coefficient to be group invariant is essential if 
the predictor is a group level variable. Another situation 
that would be available only with PSEM-MGA is the possi-
bility to use alignment only for some indicators. Indicators 
that are not aligned can have either full measurement 
invariance (intercepts and loadings can be constrained to be 
equal across groups) or full measurement non-invariance 
(intercepts and loadings are unconstrained and unequal 
across groups). The next section describes yet another 
example where the PSEM-MGA modeling can be utilized.

5.2. Metric Scale Alignment

The MGA method aligns all intercepts and loadings at the 
same time. The traditional path for establishing measurement 

Table 7. Multiple group alignment: Absolute bias(coverage).

Parameter Value Alignment PSEM Alignment

k11 1 .01(.92) .01(.93)
k41 1 .01(.95) .01(.94)
�11 0 .00(.96) .00(.95)
�41 .5 .00(.98) .00(.98)
k12 1 .01(.95) .01(.94)
k42 .5 .01(.89) .00(.88)
�12 0 .01(.96) .01(.96)
�42 0 .00(.95) .00(.95)
a2 .4 .00(.91) .00(.91)
w2 1.5 .02(.93) .03(.92)

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 439

https://doi.org/10.1080/10705511.2023.2263913
https://doi.org/10.1080/10705511.2023.2263913


invariance, however, estimates the following sequence of mod-
els: configural, metric invariance where only the loadings are 
invariant and finally scalar invariance where both the loadings 
and the intercepts are invariant. Often scalar invariance is diffi-
cult to establish while metric invariance is not. In such situa-
tions, full alignment may have too many non-invariant 
intercepts and the model interpretation may become difficult. 
Alignment of the intercepts may also affect the alignment of 
the loadings since the two processes are intertwined, which 
would prevent us from evaluating loading invariance inde-
pendently of intercept invariance. Therefore in certain situa-
tions it might be desirable to align only the loading parameters 
as a preliminary step before full alignment is attempted. If we 
only align the loadings, the factor intercepts in all groups will 
be fixed to 0 and the intercepts for all indicators will be esti-
mated as free, unequal, and unaligned parameters. This model 
essentially aims to provide an approximation to the metric 
scale multiple group measurement model and we will refer to 
it as the metric scale alignment. This model can easily be esti-
mated in the PSEM framework and it is not available with the 
traditional alignment methodology.

Using this new model it is possible to conduct a compre-
hensive measurement invariance analysis that is based on 
alignment. As a first step, metric alignment is evaluated 
using the metric scale alignment. Using these results, we can 
determine which loadings are not invariant and which are 
invariant. At that point, we can estimate a model where all 
invariant loadings are held equal to each other, all non- 
invariant loadings are estimated as free and unequal while 
all intercepts are aligned. In some situations where measure-
ment invariance is difficult, such comprehensive measure-
ment invariance alignment might be preferable over a 
simultaneous alignment method. Ultimately, this new 
approach must be systematically evaluated with empirical 
studies.

In this section we use a simulation study to illustrate the 
metric scale alignment for the scenario where scalar invari-
ance does not hold at all but metric invariance holds with 
minor exceptions. The Mplus input file for this simulation 
study is given in SM Figure 8 and Table 8 shows the results. 
We use a 3-group analysis where 1 factor is measured by 4 
variables. The intercepts of the 4 variables are different 
across groups and do not reflect a scalar invariant model. 
The factor loadings, however, are invariant with the excep-
tion of one loading parameter. The factor intercepts in the 
estimated model are all fixed to 0, while the factor variance 
is estimated as a free parameter except for the reference 
group. The indicator intercepts are free and unequal 

parameters. The intercepts are not aligned. Only the factor 
loadings are aligned with the ALF DIFF priors.

The results indicate that the model parameters are recov-
ered well. The bias for the factor variances and the loading 
parameters are minimal and the coverage is near the nom-
inal level. If we analyze the same data with the full scalar 
alignment, almost all intercept parameters become non- 
invariant. The loadings and factor variance parameters, 
however, are estimated correctly. Thus, at least for this 
example the advantage of the metric alignment is simply in 
the easier model interpretation.

5.3. Longitudinal Alignment

Longitudinal alignment is analogous to multiple group 
alignment where the grouping variable is the time. When 
latent variables are measured repeatedly across time we can 
align the measurement model across time. If the latent vari-
ables are uncorrelated across time, the model can be esti-
mated with multiple group alignment via the usual wide to 
long data and model transformations. The latent variables, 
however, are almost certainly correlated across time and 
thus the model must be estimated and aligned as a longitu-
dinal model.

In this section we describe the general longitudinal align-
ment model and provide a simulation study to illustrate 
how such a model is estimated in Mplus. This modeling 
technique uses the MGA alignment loss function, i.e., this is 
not a PSEM example. In the following section we will show 
how the PSEM methodology can be used to estimate a 
growth model for the longitudinally aligned factors, i.e., 
PSEM provides valuable structural extensions for the longi-
tudinal alignment model as well.

Suppose that Yti is an observed measurement for a latent 
factor ft at time t, where i ¼ 1, :::, P and t ¼ 1, :::, T, i.e., the 
latent factor is measured by P variables across T time peri-
ods. If measurement invariance holds across time we can 
study the changes in the factor means and variances across 
time. Measurement invariance, however, will often fail in 
practical applications and thus the alignment of the meas-
urement model is needed. The model can be described as 
follows

Yit ¼ �it þ kitft þ eit (30) 
eit � Nð0, hitÞ (31) 

f ¼ ðf1, f2, :::, fTÞ � Nða, RÞ: (32) 

The intercepts �it and loadings kit are free and unequal 
parameters that are aligned via the alignment loss function 
as in MGA. The vector a contains the factor means across 
time and the factor variance covariance matrix is an 
unstructured/unconstrained variance covariance matrix R:

We denote the factor mean at time t by at and the covari-
ance between fi and fj by rij: The fixed alignment estimation 
sets for identification purposes: a1 ¼ 0 and r11 ¼ 1, while 
the free alignment estimation sets r11 ¼ 1 while a1 is esti-
mated as a free parameter just as the factor means at the 
other time points. The longitudinal alignment extends also 
to structural models along the lines of the ASEM framework 

Table 8. Metric scale alignment.

Parameter True Value Abs. Bias Coverage

k11 1 .01 .93
k41 1 .01 .94
k12 1 .01 .94
k42 .5 .00 .88
w2 1.5 .03 .92
k13 1 .01 .92
k43 1 .01 .93
w3 1.2 .03 .96
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of Asparouhov and Muth�en (2023b). For example, the above 
model can also include predictors for the latent factors. The 
model also extends to multiple latent variables and measure-
ment models with cross-loadings.

The Mplus input for the longitudinal alignment simula-
tion study is given in SM Figure 9. A single latent variable 
is measured by P ¼ 3 indicators across T ¼ 5 time periods. 
We use the fixed alignment method to analyze the data. The 
specification is the same as for the MGA analysis: 
ALIGNMENT¼ FIXED. In addition to the standard 
MODEL statement, longitudinal alignment requires the spe-
cification of the time specific structure that is to be aligned. 
This is given in the MODEL T1, MODEL T2, etc, state-
ments. These model statements specify which factor is meas-
ured at which time point and contain only latent variable 
measurement models, i.e., only BY statements. The align-
ment procedure is then applied to aligning these measure-
ment models. We generate the data with one non-invariant 
loading and one non-invariant intercept. The results of the 
simulation for some of the parameters are given in Table 9. 
The bias is minimal for all parameters and the coverage is 
near the nominal levels.

5.4. Growth Model for Longitudinal Alignment

The longitudinal alignment model uses unrestricted mean 
and variance covariance structures. If the number of time 
points is sufficient, an additional structure can be imposed 
for the factor means and variances. This would make the 
model more parsimonious and ultimately more interpret-
able. For example, a latent growth curve model can be 

added for the factors. Such structural models, however, are 
not available directly in the alignment estimation and there-
fore we resort to the PSEM framework. We illustrate this 
process with a simulation study where the aligned factors 
follow a linear growth curve model. In section 5.1 we 
showed how PSEM can be used to set up the alignment 
model. This is now repeated also for the longitudinal align-
ment model. The growth model is added as usual. Using the 
setup from the previous section, the longitudinal alignment 
growth model is given as follows. Equations (30-31) remain 
unchanged, i.e., measurement invariance is not assumed, 
while Equation (32) is replaced by the following equations

ft ¼ I þ S � t þ ft (33) 

ft � Nð0, rtÞ (34) 

I � Nð0, 1Þ, S � Nðm, vÞ, CovðI, SÞ ¼ c: (35) 

DIFFð�i1 − �iTÞ � ALFð0, 1Þ (36) 

DIFFðki1 − kiTÞ � ALFð0, 1Þ (37) 

Note that the random intercept has a fixed standard nor-
mal distribution, i.e., the mean is fixed to 0 and the variance 
is fixed to 1. This is necessary to identify the global shift 
and scale for the model. It plays the same role as the fixed 
standard normal distribution for f1 in the longitudinal align-
ment model (30-32). This restriction can be replaced by 
other restrictions. For example, the variance of I can be esti-
mated if the residual variance of f1 is fixed to 1. The mean 
of I can be estimated if one of the indicator means is taken 
out of the alignment and is instead fixed to zero. Such alter-
native parameterizations tend to lead to overall increase in 
the MSE for all parameters and thus we recommend using 
the parameterization given by equations (30-31) and (33- 
37). Equations (36-37) are needed because we use the PSEM 
framework and not longitudinal alignment.

The Mplus input file for the longitudinal alignment linear 
growth model is given in SM Figure 10 and Table 10 shows 
the results for some of the parameters. As in the previous 
example, we generate the data with one non-invariant load-
ing and one non-invariant indicator intercept. The results 
show that the bias is minimal and the coverage is near the 
nominal level for all parameters.

The linear growth model for the factors can be replaced 
with other structural models, such as (second order) factor 
analysis model or a quadratic growth model. The model can 
also be combined with the alignment of means growth 
model discussed in Section 4.2. This would allow the esti-
mation of the factor means at in addition to the growth 
model, provided that these parameters are also included in 
the penalty function via the alignment priors.

6. EFA Examples

In this section we consider the possibility to estimate cus-
tomized EFA models using the PSEM framework.

Table 9. Longitudinal alignment.

Parameter True Value Abs. Bias Coverage

k11 1 .01 .98
k21 1 .01 .94
k12 1 .00 .99
k22 .5 .01 .92
�41 0 .02 .96
�51 0 .00 .99
�42 .5 .02 .99
�52 0 .00 .98
a2 .3 .00 .99
a3 .6 .01 .98
r22 .9 .01 .95
r33 1.4 .02 .98
r12 .5 .00 .97

Table 10. Longitudinal alignment growth model.

Parameter True Value Abs. Bias Coverage

k11 1 .01 .98
k21 1 .01 .96
k12 1 .01 .98
k22 .5 .00 .99
�11 0 .01 .95
�21 0 .00 .95
�14 0 .02 .96
�24 .5 .02 .95
m .3 .01 .95
v .3 .01 .99
c −.2 .00 .96
r1 1 .01 .99
r2 1 .02 .99
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6.1. Estimating EFA with PSEM

First, we illustrate how to set up an EFA model estimation 
within the PSEM framework. In this example, we use the 
geomin rotation criterion

gðKÞ ¼
XP

i¼1

YM

j¼1
ðk2

ij þ �Þ
1=M , (38) 

where P is the number of observed variables and M is the 
number of factors, kij are the loadings and � is a small posi-
tive number which is defaulted in Mplus to 0.01. To esti-
mate an EFA model in the PSEM framework we want to set 
the penalty to gðKÞ: To accomplish that, we simply give a 
Geomin prior for the loading matrix

k11 − kij � GeominðM, vÞ: (39) 

We illustrate this setup with a simulation study using 20 
observed variables and 4 factors. Two of the factors have 5 
non-zero loadings and two of the factors have 6 non-zero 
loading, i.e., two indicators have non-zero loadings for two 
factors. The Mplus input file is given in SM Figure 11. The 
factors are correlated in this example, i.e., we are using an 
oblique rotation. Table 11 contains the results of this simu-
lation study for some of the parameters using PSEM and 
ESEM based EFA. The results are nearly identical, bias is 
minimal and coverage is near the nominal levels. The log- 
likelihood values and chi-square are also nearly identical, 
both methods yielding a 7% rejection rate, which is also 
near the nominal level.

In this estimation we used a prior variance v ¼ 0:1 so 
that the penalty ratio is within the optimal range of 0.01 
and 0.10. For v ¼ 0:1, the penalty ratio is 0.024 and for v ¼
1 it is 0.002. Using v ¼ 1 lowers the penalty weight and 
requires a sharper convergence criterion of 0.000001 so that 
the penalty is minimized completely. Using v ¼ 0:1 works 
well with the default convergence criterion of 0.00005. This 
example illustrates the strong connection between the vari-
ance of the prior (the weight of the penalty function) and 
the convergence criterion. In general, smaller penalty ratios 
are likely to require sharper convergence criteria. In this 
example, using v ¼ 1 with the sharper converge criterion 
and v ¼ :1 or v ¼ 0:01 with the default convergence criter-
ion yield nearly identical results for the parameter estimates, 
i.e., the range of acceptable prior variance values is not 
small.

Here are some general indicators that the penalty weight 
might be too small: penalty ratio less than 0.01, saddle point 

error message reported in the standard error computation 
(which is a clear indicator that the convergence is not com-
plete and a sharper convergence criterion is needed), stand-
ard errors that are too large (when the penalty weight is too 
small, the model identification which is tied to the penalty 
minimization will be too weak and the model will appear as 
nearly unidentified), parameter estimates that are very close 
to their starting values for some of the parameters (parame-
ters that are supposed to be identified by the penalty opti-
mization will have nearly zero derivatives at the starting 
values when the penalty weight is too small), random start-
ing values yielding mostly non-convergence (this is an indi-
cation of singular information matrix which obstructs the 
optimization). Some experimentation with the prior variance 
may be necessary when the penalty function is complex (as 
is the case of the rotation criterion) to ensure that a proper 
penalty ratio is obtained. What is not a good criterion to 
detect low penalty weight is the log-likelihood value. The 
log-likelihood value will be correct even with a very low 
penalty since the problem is not in the log-likelihood opti-
mization but in the penalty optimization.

Situations when the penalty weight is too high are easier 
to detect. The log-likelihood value will be worse than that of 
the null model or models with smaller penalty weight. 
When the penalty is too strong, the optimization focuses 
more on the penalty and less on the log-likelihood which 
directly results in incorrect log-likelihood value. The model 
will provide an inferior fit to the data, and log-likelihood 
value that doesn’t match models with smaller penalty weight 
and the null model. If the model is estimated with several 
different prior variance values, log-likelihood values that are 
worse should be interpreted as penalty weight being too 
high. In the above example, prior variance of v ¼ 0:001 
results in worse log-likelihood value than models with larger 
prior variance: v ¼ 1, 0:1 and 0.01 (all of which yield the 
same log-likelihood value).

Figure 2 depicts the general penalty weight effect on the 
model. This figure applies to all PSEM models but is most 
well understood when the penalty is the ALF-target rotation 

Table 11. Comparing ESEM and PSEM for EFA: Absolute bias(coverage).

Parameter True Value ESEM PSEM

k11 .7 .01(.89) .01(.91)
k21 .3 .01(.93) .01(.94)
k31 .4 .01(.98) .01(.97)
k41 .4 .00(.95) .00(.96)
k51 .3 .00(.98) .00(.97)
k61 .0 .00(.96) .00(.96)
k42 .0 .00(.98) .00(.98)
k52 .6 .00(.97) .00(.98)
k62 .7 .01(.96) .01(.97)
w12 .4 .02(.96) .02(.94) Figure 2. Penalty weight effect on models.
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discussed earlier. When the penalty weight is infinity 
(v ¼ 0), the penalty is minimized before the data log-likeli-
hood. The penalty will then be minimized to zero, which 
essentially converts the penalty to a fixed parameter con-
straint. In the EFA-target case, the targets become fixed to 0 
and the model becomes the CFA model. For a general 
PSEM model, v ¼ 0 yields a standard SEM model, where 
the penalty is converted to a parameter constraint. As the 
variance v increases, the data log-likelihood increases. That 
region of the plot corresponds to regularized SEM models 
where prior variance still has an impact on the model. As 
the variance increases even more we reach the area of the 
plot where the log-likelihood stops increasing. This is pre-
cisely where the PSEM model lies. The data log-likelihood is 
completely optimized at that point and PML optimization 
can turn to minimizing the penalty and mimic the condi-
tional two-stage optimization as in the EFA estimation. As 
the variance increases even more, numerically the penalty 
would be too small to produce the necessary model identifi-
cation and thus we will obtain an unidentified model. The 
right part of this figure is the null model of the PSEM 
model where identification is provided by manually fixing 
the unidentified dimensions, which corresponds to the 
unrotated EFA model. Figure 2 shows how varying the pen-
alty weight provides a continuum of models that connects 
standard SEM, PSEM, and the null model. The unweighted 
penalty is also depicted in Figure 2. This quantity can also 
be of interest in certain situations as it provides a compara-
tive measure for how much the model constraint of the 
standard SEM model must be relaxed so that the data log- 
likelihood can reach the log-likelihood of the null model. 
For example, in multiple group alignment, the unweighted 
penalty reflects the amount of measurement non-invariance. 
By comparing the unweighted penalty for the PSEM and the 
null model we can determine the reduction in non-invari-
ance obtained by alignment.

Input file for PSEM-EFA estimation for non-simulation 
studies, i.e., estimation with real data, is provided in SM 
Figures 12.

6.2. Hierarchical Exploratory Factor Analysis

In EFA models, it is often the case that the factors are 
highly correlated. This prompts the question if it is possible 
to estimate a second order factor analysis model using the 

EFA factors as indicators. One possible solution has been 
proposed in Morin and Asparouhov (2018) based on the 
two stage estimation process ESEM-within-CFA. The PSEM 
methodology offers a simple one stage estimation. The 
model can be described as follows. Suppose that Y is a vec-
tor of dependent variables measuring a vector of latent vari-
ables F via an EFA model

Y ¼ � þ K1F þ e: (40) 

The exploratory factors F are then used as indicators for 
a secondary EFA model measuring a vector of second order 
factors g 

F ¼ K2gþ n: (41) 

In the above equations all parameters in K1 are free 
parameters as the EFA model specifies. The parameters in 
K2 are also free parameters (secondary EFA model) or K2 
can have a CFA like structure (secondary CFA model). For 
identification purposes n consists of standard normal ran-
dom variables, i.e., the residual variances of F are fixed to 1. 
The variances of g are also fixed to 1. To estimate this 
model with PSEM, the geomin prior is given for K1 and K2 
as in the previous section. If the secondary model is a CFA 
model, only K1 prior is used.

We should note here that the hierarchical EFA (HEFA) 
model described above is an example of a rotation that is 
neither oblique or orthogonal. The variance covariance of 
the first order EFA factors is a structured variance covari-
ance, i.e., the factors are not independent and are not com-
pletely unconstrained. Such structured rotation is not 
possible with the traditional EFA methodology and thus 
PSEM offers a unique solution.

We illustrate the performance of this method with a 
simulation study with P ¼ 20 observed variables, 4 first 
order exploratory factors, and 1 second order factor. Because 
we use only one second order factor, we can interpret the 
second order model as a CFA model and use only the rota-
tion criterion for the first order EFA. The setup for this 
simulation study is similar to the one used in the previous 
section. Most of the indicators have only one non-zero load-
ing. Only two variables load on 2 of the factors. The Mplus 
input file for this simulation study is given in SM Figure 13. 
The results for some of the parameters are given in Table 
12. The bias in the parameter estimates is minimal and the 
coverage is near the nominal levels.

In this simulation study, the prior variance of v ¼ 0:01 is 
selected to produce an acceptable penalty ratio of 0.02. In 
addition, we use 0.001 as the small positive number in the 
geomin prior. Lowering this number reduces the bias in the 
parameter estimates for more complex models.

The HEFA model used in this simulation, i.e., HEFA 
model with one second order factor, is similar to the bi-fac-
tor EFA model. To see this similarity, one can combine 
equations (40-41) into the following equation 

Y ¼ � þ K1nþ K1K2gþ e (42) 

which resembles a bi-factor model. The second order factor 
g becomes the general factor and the residuals n become the 
specific factors. The model is not precisely a bi-factor EFA 

Table 12. Hierarchical EFA.

Parameter True Value Abs. Bias Coverage

k11, 1 .7 .00 .94
k21, 1 1.3 .00 .93
k31, 1 .8 .00 .95
k41, 1 .8 .00 .96
k51, 1 .3 .00 .95
k61, 1 .0 .00 .97
k42, 1 .0 .00 .98
k52, 1 .6 .00 .96
k62, 1 .7 .00 .96
k11, 2 .4 .01 .98
k21, 2 .5 .01 .99
k31, 2 .5 .02 .95
k41, 2 .6 .02 .98

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 443

https://doi.org/10.1080/10705511.2023.2263913
https://doi.org/10.1080/10705511.2023.2263913
https://doi.org/10.1080/10705511.2023.2263913


model because the general factor loadings are structured/-
constrained. Therefore the HEFA model with one second 
order factor is nested within the bi-factor EFA model. The 
HEFA model has fewer parameters because the second order 
factor has fewer loadings as it loads only on the first order 
factors rather than all observed variables as in the bi-factor 
EFA model. Another important difference between the two 
models is in the interpretation. With the HEFA model, the 
common factor is common to the latent measurements, 
rather than all observed variables.

6.3. Bi-Factor EFA with More than One General Factor

This model was suggested by Herb Marsh in personal com-
munication. The idea is that specific factors can be used to 
model high correlations between items that are similar in 
nature, while general factors are true latent features that are 
measured by all observed data. The role of the specific fac-
tors is secondary to some extent and is only there to 
account for additional correlation caused by similarity in 
the items. From this point of view, there is no reason to 
limit the number of general factors to 1. Here we define the 
generalized bi-factor EFA model with more than one gen-
eral factor as follows

Y ¼ � þ K1Gþ K2F þ e (43) 

where G is a vector of general factors and F is a vector of 
specific factors. All parameters in K1 and K2 are free, the 
correlation matrix VarðGÞ is an unrestricted correlation 
matrix, VarðFÞ is the identity matrix and Cov(F,G)¼0. This 
is another example of a non-oblique and non-orthogonal 
rotation. The rotation is oblique for G but orthogonal for F.

Recall that the geomin rotation criterion for the standard 
bi-factor EFA with one general factor excludes the general 
factor loadings. With more than one general factor, how-
ever, it would not be possible to use such a rotation criter-
ion because the loading structure K1 must be rotated and 
identified. To estimate the above model with PSEM, we use 
the full geomin rotation function using the full loading 
matrix which includes both K1 and K2: Thus, the difference 
between the generalized bi-factor model and the standard 
EFA model is in the factor covariance structure: the general 
factors can be correlated while the specific factors must be 
independent. Note, however, that if a general factor happens 
to also be nearly independent of the remaining general fac-
tors, there is the possibility that the general factor and a 
specific factor will switch places and that may cause inter-
pretation issues.

We illustrate the above model with a simulation study 
using P ¼ 20 variables, 2 general factors that each load on 
10 different variables. We also include 2 cross-loadings for 
the general factors, i.e., two of the variables load on both 
general factors. In this model there are 3 specific factors, 2 
factors load on 6 variables, while the third factor loads on 8 
variables. There is one cross-loading for the specific factors 
as well. The Mplus input file for this simulation study is 
given in SM Figure 14 and the results for some of the model 

parameters are given in Table 13. The bias in the estimates 
is minimal and the coverage is near the nominal levels.

It should be noted here that the generalized bi-factor 
model is easier to estimate than the HEFA model described 
in the previous section. This means that the model can be 
estimated with smaller samples. This estimation is essentially 
a standard EFA estimation with the addition that some of 
the correlations between the factors are constrained to be 
zero, i.e., estimating this model is unlikely to be substan-
tially harder than estimating a standard EFA model.

In principle, it is possible in PSEM to add one rotation 
function for the general factors and a separate rotation func-
tion for the specific factors. A simulation study with this 
approach revealed that the model can not be recovered, i.e., 
the rotation of the specific and the general factors must be 
joint.

In the above model, both K1 and/or K2 can be converted 
to structured CFA loading matrices where some of the 
parameters are fixed to zero, i.e., the general factor can 
remain EFA, while the specific factors become CFA, and the 
reverse. Such a model can be estimated with both PSEM 
and ESEM.

6.4. Scalar and Metric Invariant EFA with Orthogonal 
Rotation in Multiple Group and Longitudinal Settings

In this section we describe a problem currently existing with 
orthogonal EFA estimation where loadings are held equal 
across two or more EFA model components. This situation 
arises with metric and scalar invariant EFA models in mul-
tiple group settings where EFA loadings are held equal 
across groups. It also arises in longitudinal studies when we 
have repeated measurements for a set of EFA indicators 
across time and the EFA loadings are time invariant. Here 
we illustrate how the PSEM methodology can be used to 
resolve this issue in the case of scalar invariant multiple 
group EFA, however, the proposed approach extends also to 
longitudinal settings as well as metric invariant models.

Consider a multiple group scalar EFA model. The stand-
ard setup for such a model is that the loadings and indicator 
intercepts are held equal across groups. With oblique rota-
tion, in the reference group the factor means are fixed to 
zero, the factor variances are fixed to 1, while the factor 

Table 13. Generalized bi-factor EFA.

Parameter True Value Abs. Bias Coverage

k1, 1, 1 .7 .00 .96
k2, 1, 1 .3 .00 .96
k3, 1, 1 .4 .01 .97
k10, 1, 1 1 .00 .97
k11, 1, 1 .2 .01 .97
k12, 1, 1 .3 .00 .97
k10, 2, 1 0 .00 .97
k11, 2, 1 1 .00 .91
k12, 2, 1 1 .00 .94
k3, 1, 2 0 .01 .96
k4, 1, 2 0 .00 .99
k5, 1, 2 .6 .01 .97
k3, 2, 2 1 .01 .95
k4, 2, 2 1 .00 .93
k10, 2, 2 0 .00 .97
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covariances are estimated as free parameters, i.e., in the ref-
erence group, the model is the same as the single group 
analysis. In all other groups, factor means, variance and 
covariances are estimated. This estimation is implemented 
in the Mplus ESEM framework and is performed as follows. 
An unrotated scalar model is estimated first and then the 
invariant loading matrix is rotated for all groups. For the 
unrotated scalar model, in the reference group the factor 
distribution is fixed to the standard normal distribution, 
while in all other groups it is unconstrained normal distri-
bution. When the unrotated model is rotated, in the refer-
ence group we obtain a zero mean full correlation matrix 
for the factor distribution, and in all other groups the factor 
distribution is again unconstrained.

Next we consider the multiple group scalar EFA model 
with orthogonal rotation. Traditionally, the orthogonal and 
the oblique EFA use the same unrotated model. A general 
reason for that is to ensure that the model fit is not affected 
by the type of the rotation. The only thing that changes 
between the orthogonal and the oblique rotation is the type 
of rotation we are allowed to use in the estimation. If we 
apply orthogonal rotation to the unrotated model described 
above, the resulting factor distribution in the non-reference 
groups would not be orthogonal because the unrotated fac-
tor distribution is unconstrained. The factor distribution 
will be orthogonal only in the reference group because the 
unrotated factor distribution in that group is the standard 
normal distribution. Even if we change the unrotated distri-
bution to orthogonal in the non-reference groups (which is 
not desirable because that will affect the fit of the model), 
the rotated distribution will be orthogonal only if the factor 
variances in the unrotated and rotated model are identical 
across factors (this kind of constraint appears unreasonable). 
If we constrain the factor variance/covariance to be the 
identity matrix in all groups in the unrotated model we will 
obtain rotated orthogonal model for all groups but that is 
undesirable because the factor variance covariance will be 
identical in all groups in the rotated model (it will be the 
identity matrix). We therefore conclude that the standard 
EFA methodology can not estimate multiple group scalar 
invariant EFA with orthogonal rotation where the factors 
are orthogonal in all groups. Indeed, the Mplus estimation 
of such a model will show that only the reference group has 
orthogonal factors.

The above dilemma presents itself for example when we 
want to estimate a scalar multiple group bi-factor EFA 
model. Orthogonal rotation is needed to ensure that the 
general and the specific factors are uncorrelated. It can also 
become an issue for those situations where the reference 
group is of substantial size while the non-reference groups 
are not. Not being able to constrain the factor covariances 
in the non-reference groups to zero will interfere with the 
benefit of scalar invariance where information from the big 
reference group transfers to the smaller groups.

The PSEM methodology can be used to resolve the above 
problem. We simply must specify uncorrelated factors in all 
groups, allow the factor means and variances to be esti-
mated as group-specific, and specify geomin prior for the 

invariant loadings. We illustrate this approach with a simu-
lation study based on a 2-group, 2-factor model with a total 
of 6 observed variables, where each factor is measured by 3 
different main indicators. We also introduce one cross-load-
ing. The Mplus input for this simulation study is given in 
SM Figure 15 while the results are given in Table 14. Here 
kij is the loading for variable i on the j-th factor which is 
group invariant. Factor mean and variance for the j−th fac-
tor in group g are denoted by ajg and rjg :

We used a small sample size in this example to provide a 
realistic setting when sharing information across groups is 
particularly beneficial. The results indicate that the param-
eter bias is minimal and coverage is near the nominal levels. 
The average chi-square value for this example is 21.9 and 
with 20 degrees of freedom the rejection rate is 7% which is 
near the nominal level as well.

6.5. Partial Invariance EFA

In multiple group EFA analysis, scalar invariance is most 
desirable, however, it is often unrealistic particularly when 
the sample size is large. The AESEM framework, 
Asparouhov and Muth�en (2023b) provides one solution to 
this problem where EFA loading structures are aligned 
between the groups. This means that through optimizing 
the alignment loss function and the rotation criterion, most 
parameters will be estimated to be approximately equal 
across the groups and only those that are truly non-invari-
ant will be estimated as different parameters. This frame-
work is exploratory in nature not just for the factor 
formation but also for the identification of non-invariant 
parameters. Here we discuss a slightly different approach: 
exploratory for the factor formation but confirmatory for 
the non-invariance of parameters. The AESEM method also 
has a different disadvantage. It is often the case that invari-
ant parameters are estimated as approximately invariant but 
they are not exactly the same. To some extent, that causes 
somewhat of an uncertainty whether the parameters are 
truly the same or not. The PSEM approach that we offer 
here, produces invariant parameters that are exactly the 
same. Furthermore, the AESEM approach can be used as a 
preliminary analysis for the PSEM method. Using the 
AESEM method, the non-invariant parameters can be iden-
tified. Then, the PSEM partial invariance EFA can be used 
as a confirmatory, more parsimonious version of the 
AESEM model, where parameters that are identified as 
invariant are actually held equal to each other.

Table 14. Scalar invariant orthogonal EFA.

Parameter True Value Abs. Bias Coverage

k11 1 .01 .95
k41 0 .00 .98
k12 .3 .03 .98
k42 1 .01 .96
a12 .4 .02 .95
a22 .9 .02 1.0
r12 1.3 .01 .90
r22 1.4 .04 .97
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The partial invariance PSEM-EFA model simply allows 
us to specify group specific loadings and intercepts, where 
such are needed, while still retaining the general rotation 
framework. Non-invariant loadings can be specified even for 
all indicators for a particular factor, as long as we do not 
attempt to estimate the factor variance at the same time. 
The method can be described as follows. An EFA model is 
used for the reference group. For all other groups, the load-
ings and intercepts are held equal to those in the reference 
group, except for a subset of those parameters that are 
specified as group specific non-invariant parameters. The 
geomin prior is specified for the loading matrix in the refer-
ence group.

We illustrate this method with a simulation study using a 
2-group, 2-factor EFA with 6 indicators, 3 main indicators 
per factor. We use one cross-loading in the EFA. 
Furthermore, we generate the data with one non-invariant 
loadings and one non-invariant intercept. The estimated 
model is specified with the same non-invariance structure, 
i.e., the estimated model is a scalar invariant EFA model 
with the exception of one non-invariant intercept and one 
non-invariant loading. Because scalar invariance holds for 
most of the parameters in the model, we can estimate 
group-specific factor means, variances, and covariances. In 
the reference group, for identification purposes, the factor 
means are fixed to 0 and the factor variances are fixed to 1.

The input file for this simulation study is given in SM 
Figure 16 and the results for some of the parameters are 
given in Table 15. Here kij denotes group invariant loading 
for variable i on the j-th factor, while non-invariant loadings 
are denoted by kij, g : Similarly, �i denotes a group invariant 
intercept for variable i, while �i, g denotes a non-invariant 
intercept. Factor mean and variance/covariance are denoted 
by aj, g and rij, g . The bias of the parameter estimates is 
minimal and the coverage is near the nominal levels.

We should also note here that the intercept invariance 
can be estimated within the ESEM framework, in a similar 
way. Simply estimating a particular set of intercepts as non- 
invariant. The ESEM framework can not, however, provide 
partial invariance for the loadings.

6.6. Comparison to Regularized EFA and Sparse EFA

Several penalized methods have been proposed recently for 
EFA estimation, see Hirose and Yamamoto (2014, 2015), 
Trendafilov et al. (2017) and Scharf and Nestler (2019) 
among others. These methods are fundamentally identical to 
PSEM, i.e., the penalized EFA methods described above. 
The unidentified EFA model is rotated by the penalty func-
tion. We also pointed out here that the penalty function 
and the rotation criterion are one and the same. Thus, if the 
penalty function is specified as lasso, the estimation becomes 
equivalent to the component loss function rotation dis-
cussed in Jennrich (2006), i.e., the lasso rotation is the same 
as the component loss function method when using absolute 
loading value. This understanding can be useful in choosing 
penalty/rotation. Generally, much more information is avail-
able regarding the performance of the various rotation 

criteria traditionally used with EFA, but the regularized/pen-
alized EFA is more flexible in terms of penalty function. In 
the above examples we used the Geomin rotation as the 
penalty function. The Geomin method has a long history 
and a consistent performance, see Browne (2001). Lasso 
rotation may also be suitable in many situations. However, 
a word of caution is necessary here. Penalized/Regularlized 
EFA is so flexible that it may inadvertently produce bad 
outcomes. The penalties used for rotations should be only 
those that have documented performance. As an example, 
Quartimax performs well only with orthogonal rotations 
and it has poor performance with oblique rotations. Penalty 
functions that resemble Quartimax (fourth power of load-
ings) should be used only when appropriate.

6.7. The Native Model Rotation

PSEM-ESEM modeling framework is so flexible that any 
kind of structural model can now be formulated for the 
exploratory factors, i.e., models that have never been esti-
mated before. This however leads to the rise of a new con-
cept. In some models, the structure of the exploratory 
factors is so restrictive that we no longer need a rotation 
criterion. The restrictions on the exploratory factors can 
serve as the rotation criterion, i.e., the model has sufficient 
structure that unrestricted loading matrix can be estimated 
without any rotation, penalty, PSEM or ESEM frameworks. 
None of the models we described above are such models. 
The simplest example is as follows. A two factor model is 
estimated where each factor has its own separate predictor. 
The EFA rotation in this case identifies just two parameters. 
The structure of the model implies that there are two cross 
regression parameters that are fixed to zero. These two 
restrictions are enough to replace the rotation criterion and 
the model can be estimated as a standard SEM model even 
though all loadings are free. If we estimate such a model as 
a PSEM-ESEM model, the data log-likelihood will continue 
to increase as we decrease the penalty weight down to zero 
(increase the variance to infinity) and it will not plateau as 
described in Figure 2. Another interesting example for a 
model with native rotation is as follows. Consider a 2-factor 
longitudinal EFA model where each of the two factors has 
an auto-regressive model across time (but not cross-lag 

Table 15. Partial invariance EFA.

Parameter True Value Abs. Bias Coverage

k11 1 .00 .98
k41 0 .01 1.0
k61 0 .02 .98
k12 .3 .03 .92
k42, 1 1 .01 .97
k42, 2 .5 .01 .89
k62 1 .02 .94
�6, 1 0 .00 .99
�6, 2 .5 .00 .97
r12, 1 .3 .01 .94
r11, 2 1.3 .04 .98
r12, 2 .1 .00 .95
r22, 2 1.4 .08 .94
a1, 2 .4 .01 .94
a2, 2 .9 .01 .97
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regression). The fact that the cross-lags are fixed to zero can 
act as a rotation criterion, i.e., the model can be estimated 
as an SEM model without any rotation and not as a PSEM- 
ESEM model. Models with native rotation also are problem-
atic in their construction of the null model. The unrotated 
EFA which we generally accept as the null model in that 
case will have a worse log-likelihood than the native rota-
tion SEM model.

7. Exploratory Latent Growth Models

Tucker (1958, 1966) proposed growth curve modeling that 
is exploratory in nature. Instead of using the times of obser-
vation as the loading parameters, all loadings are estimated. 
The loadings are also rotated to the most interpretable solu-
tion as in EFA. This model has subsequently been referred 
to as Tuckerized Growth Curve Analysis (TGCA).

Earlier works on this topic were based on principal compo-
nent analysis instead of factor analysis, see Arbuckle and 
Friendly (1977). Most recently, Grimm et al. (2013) used the 
factor analysis based ESEM framework of Asparouhov and 
Muth�en (2009), to estimate Exploratory Latent Growth Models 
(ELGM). It has been pointed out that standard rotation meth-
ods which attempt to rotate the estimated loading matrix to 
simple structures with minimal cross loadings is not appropri-
ate for such analysis. Using standard rotation criteria such as 
geomin for ELGM leads to rotation of the growth factors that 
doesn’t resemble a growth model like (20). Geomin would 
yield time specific processes in its attempt to minimize cross- 
loadings. Bi-factor EFA might be somewhat more appropriate 
as it would be able to extract one main trajectory that is com-
plemented by some time specific deviations but this approach 
would be appropriate only in some situations.

One of the principal aspects of TGCA is the factor rotation 
that produces the most interpretable growth curves. It has 
been proposed that the best rotations are those that produce 
smooth curves, curves with all positive loadings, and curves 
with asymptotes. A variety of rotation methods have been pro-
posed, however, it has become clear that it would be difficult 
to find a universal rotation criterion that can be suitable for all 
situations. A rotation criterion that favors linear growth is 
unlikely to be usable for situations where exponential or loga-
rithmic growth is needed. Furthermore, none of these criteria 
have been implemented in structural equation modeling soft-
ware which limits the practical impact of the methods. The 
PSEM framework allows for unlimited customization of the 
rotation criteria and thus appears to be the perfect tool for 
studying ELGM/TGCA. After a brief review of ELGM and 
issues related to it, PSEM-ELGM is presented and illustrated.

7.1. The ELGM Model and Its Corresponding Null Model

Suppose that Yt is a variable observed across a population 
of individuals at time t ¼ 1, :::, T: The ELGM model with m 
growth factors is defined as

Yt ¼
Xm

j¼1
ktjgj þ et , (44) 

where gj are individually specific latent variables. The vector 
g ¼ ðg1, :::, gmÞ is assumed to have a normal distribution 
with mean a ¼ ða1, :::, amÞ and a correlation matrix W, i.e., 
we assume that VarðgjÞ ¼ 1: The residual variables et are 
assumed to have Nð0, htÞ distribution. The loadings parame-
ters ktj are to be estimated. We denote the matrix of all 
loading parameters by K and the diagonal matrix with all 
residual variance parameters by H: In matrix form the 
above equation can be written as

Y ¼ Kgþ E (45) 
g � Nða, WÞ, E � Nð0, HÞ: (46) 

The parameters of this model are K, a, W and H: The 
model is a hybrid combination of the EFA and the standard 
growth curve models. If we remove the m parameters in a 

and replace them with T intercept parameters for the Y vec-
tor, we obtain the standard EFA model. Thus, the ELGM is 
essentially an EFA model with mean structure conflated 
with the variance covariance structure. Also, if we fix the 
loading matrix to the time scores, we obtain the standard 
latent growth models. If m ¼ 2, kt1 ¼ 1, and kt2 ¼ t, the 
model becomes the standard linear growth model.

The above model is clearly unidentified and it is thus essen-
tial to determine the null model. That is, we need to find an 
identifiable model that has the same data fit and log-likelihood 
value as (45-46). This is essential for multiple reasons. In prac-
tical applications it is important to separate the process of rota-
tion to the most interpretable model and the fit of the model. 
For example, if the null model has poor fit, pursuing various 
rotation techniques will not resolve the problem. Furthermore, 
when using PSEM, estimating the null model provides a base-
line for the penalized model. The log-likelihood values for the 
two models must be nearly identical. That ensures us that the 
penalty function is set properly, i.e., it is not weighted too 
heavily as to unintentionally damage the data fit in our 
attempt to improve model interpretation by rotation. The null 
model also provides the correct degrees of freedom needed for 
testing purposes.

For the ELGM model, the EFA theory can be used to deter-
mine the null model. We can ignore the mean structure and 
focus on the loading matrix K and the factor correlation 
matrix W: It is well known that an oblique rotation matrix H 
exists that can rotate W into the identity matrix and K into a 
loading matrix with zeros above the main diagonal. This is the 
same rotation that can rotate the EFA model into the unro-
tated EFA solution used in the EFA estimation and reported 
in TECH1 in Mplus. Thus, H satisfies the following

HHT ¼ W 

K0 ¼ KH 
k0, tj ¼ 0, for j > t:

If g ¼ Hg0, then model (45-46) becomes

Y ¼ K0g0 þ E (47) 
g � Nða0, IÞ, E � Nð0, HÞ, (48) 

where a0 ¼ H−1a: Thus we have eliminated the mðm − 1Þ
unidentified parameters from model (45-46). Model (47-48) 
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is identified because it is nested within the unrotated EFA 
model. This model also has the same log-likelihood as the 
general ELGM model (45-46). We conclude that the ELGM 
null model is model (47-48). We can also now compute the 
degrees of freedom for the ELGM model. The unrotated 
ELGM model (47-48) has Tm − mðm − 1Þ=2þmþ T 
parameters: K0, a0 and the diagonal of H: Thus the degrees 
of freedom for this model is TðT þ 1Þ=2 − Tm − mþ
mðm − 1Þ=2, which is exactly T − m more degrees of free-
dom than the EFA model.

The above observations also serve as the foundation of 
the ELGM estimation proposed in Grimm et al. (2013). The 
top part of SM Figure 17 shows the Mplus input file for 
estimating the geomin rotated ELGM via ESEM. The middle 
part of SM Figure 17 shows the unrotated ELGM null 
model estimated via CFA with zero loadings in the upper 
right-hand part of K0:

7.2. ELGM Model with Auto-Correlation

A growth curve model is essentially a time-series model. 
Therefore the model should include at least a minimal 
attempt to model auto-correlation. This is particularly the 
case for ELGM models. If auto-correlations are not included 
in ELGM, it will likely lead to needing many more factors 
than necessary to fit the data. Using the height data dis-
cussed in Grimm et al. (2013), we found that a single auto- 
correlation parameter can improve the data fit by as much 
as adding 3 additional factors. Adding auto-correlation to 
the model is not related to the rotation of the curve model. 
It only replaces the H diagonal matrix with a non-diagonal 
matrix. Thus, adding auto-correlation to the ELGM or the 
null ELGM will provide the same data fit improvement. A 
simple way to introduce auto-correlation is to use the 
Residual Structural Equation Modeling (RSEM) framework 
discussed in Asparouhov and Muth�en (2023a). In that 
framework a secondary structural model is constructed for 
the residuals of the primary structural model. To introduce 
auto-correlation in ELGM we replace the assumption of 
diagonal residual variance covariance matrix H with the fol-
lowing RSEM, for t > 1 

et ¼ ret−1 þ e0t (49) 

E0 ¼ ðe1, e02, ::::, e0TÞ � Nð0, HÞ: (50) 

In this model, H is also diagonal but the variance covari-
ance for E is not and it follows an autoregressive pattern. 
The auto-regressive coefficient r in (49) can also be time- 
specific. In our examples, however, we use a time-invariant 
auto-regressive coefficient. Thus, a single model parameter 
is added to incorporate an autoregressive error structure.

In the Mplus language, the residual for a variable Y is 
referred to as Ŷ. The third input file in SM Figure 17 illus-
trates the auto-regressive ELGM null model using the hats 
notation. The auto-regressive ELGM model can also be esti-
mated by adding the autoregressive model to the first input 
file in SM Figure 17.

7.3. Restrictive Mean Structure

The ELGM model, just like the standard growth model, imposes 
a very restrictive constraint on the means of the observed varia-
bles. Small deviations from that constraint may lead to a model 
rejection because mean parameter estimates typically have 
smaller standard errors than parameters related to variance 
covariance modeling. The ELGM model is nested within the 
EFA model with the same number of factors and the likelihood 
ratio test for the two models specifically tests the mean con-
straint imposed by ELGM. This test is independent of the rota-
tion in ELGM and can be conducted prior to curve rotation. 
The test can be performed with rotated or unrotated models. If 
the mean structure is rejected, the PSEM modeling framework 
offers a solution outlined in Section 4.2 for the standard growth 
model. For the ELGM case, Equation (45) is replaced by

Y ¼ � þ Kgþ E (51) 
� � ALFð0, 1Þ: (52) 

The parameter vector � offers time specific deviations 
from the mean structure imposed by ELGM. Since the fac-
tor means a are also included in this model, we use 
ALF(0,1) penalty for every parameter in �: This prior will 
keep the mean structure deviations to a minimum.

7.4. Best Rotations for ELGM

It has been proposed previously that the most appropriate 
rotations for ELGM should be rotations that produce 
smooth curves. That is, kjðtÞ ¼ ktj is a smooth function of t. 
For example, Arbuckle and Friendly (1977) define as a 
measure of smoothness

S ¼
X

t
ðkjðtÞ − kjðt − 1ÞÞ2:

The best rotation for the ELGM is then selected as the 
one that minimizes S. This kind of estimation can easily be 
accommodated in the PSEM framework. The ELGM model 
(45-46) is estimated with Nð0, 1Þ priors given for all kjðtÞ − 
kjðt − 1Þ parameters.

Other suggestions that have been mentioned in the litera-
ture are rotations to all positive loadings and to curves that 
have an asymptote. Having all positive loadings can also be 
modeled with PSEM but it is somewhat difficult to justify. 
First, it often performs poorly in simulation studies. Second, 
even if YðtÞ is monotonic and the distribution of gj is posi-
tive, monotonicity of 

Pm
j¼1 kjðtÞgj does not imply monoton-

icity or positivity for individual curves kjðtÞ:
Next, we illustrate how to construct rotation criteria in 

PSEM for four different curves: zero, constant, linear, and 
quadratic curves. If we want kjðtÞ to be approximately 0, we 
use ALF(0,1) prior for kjðtÞ: If we want kjðtÞ to be approxi-
mately constant we setup ALF(0,1) prior for DIFF(kjðtÞ), i.e, 
for every pair of loadings in the set, we minimize the dis-
tance. This yields a penalty function

P ¼
X

t1<t2

f ðkjðt1Þ − kjðt2ÞÞ

where f is the alignment loss function given in (11).
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If we want kjðtÞ to be approximately a linear function, 
we use the following observation: kjðtÞ − kjðt − 1Þ is con-
stant, which can be viewed as an approximation to the first 
derivative of kjðtÞ: Thus, we can use an ALF(0,1) prior for 
DIFF(kjðtÞ − kjðt − 1Þ). The penalty function in that case is

P ¼
X

t1<t2

f ðkjðt1Þ þ kjðt2 − 1Þ − kjðt2Þ − kjðt1 − 1ÞÞ:

If we want kjðtÞ to be approximately a quadratic func-
tion, where the second order derivative kjðt þ 1Þ þ kjðt − 
1Þ − 2kjðtÞ is constant, we use an ALF(0,1) prior for 
DIFF(kjðt þ 1Þ þ kjðt − 1Þ − 2kjðtÞ). The penalty function in 
that case is

P ¼
X

t1<t2

f ðkjðt1 þ 1Þ þ kjðt1 − 1Þ − 2kjðt1Þ − kjðt2 þ 1Þ

− kjðt2 − 1Þ þ 2kjðt2ÞÞ:

Other penalties can be constructed similarly. Most 
importantly, the above constructions can be used in piece-
wise fashion. For example, kjðtÞ can be linear from time 1 
to time T0, and it can be another linear or quadratic func-
tion from time T0 to time T. That requires constructing a 
penalty function for kjð1Þ, :::, kjðT0Þ and then constructing a 
separate penalty function for kjðT0Þ, :::, kjðTÞ:

Note here that the ELGM model contains m smooth 
curves kjðtÞ: A penalty function should be constructed for 
each of these curves separately by adding priors for each 
column of the loading matrix. The total penalty function is 
the sum of these m penalty functions.

There are several conditions that must be satisfied by a 
rotation criterion to be useful in practical applications. First, 
the PSEM model estimation should converge. Second, the 
results obtained from the rotated estimation must be close 
to what the criterion is designed for. Any large deviation 
should be considered as a poor choice of rotation. Third, 
the standard errors should remain within the range of the 
standard errors of the null model. If the standard errors 
become too big, the rotation/penalty function is not suffi-
cient to identify the model well. Fourth, the rotation should 
perform well in simulation studies.

7.5. ELGM Model Identifiability Limitations

Consider the ELGM model with m ¼ 2 factors, where both 
k1ðtÞ and k2ðtÞ are linear. The model can be described as 
follows

Yt ¼ k1ðtÞg1 þ k2ðtÞg1 þ et: (53) 

Consider now a rotation of this model g ¼ Hg0 

g1 ¼ H11g0, 1 þH12g0, 2 

g2 ¼ H21g0, 1 þH22g0, 2:

The rotated model becomes

Yt ¼ ðH11k1ðtÞ þ H21k2ðtÞÞg0, 1 þ ðH12k1ðtÞ þ H22k2ðtÞÞg0, 2 þ et:

In this rotated model, both loading curves H11k1ðtÞ þ
H21k2ðtÞ and H12k1ðtÞ þH22k2ðtÞ are also linear curves. 

Therefore the rotated model is not distinguishable from the 
original model (53). If we simply impose a rotation criterion 
corresponding to two linear curves for the above model, we 
will not be able to identify the model properly. Furthermore, 
neither one of the two models can be claimed to be more 
interpretable than the other model. Identification in such a 
situation will require removing parameters from the model or 
altering the rotation criterion.

The same thing applies if one curve is constant and the 
second curve is linear. That is because adding a constant 
curve to a linear curve still produces a linear curve. In a 
standard linear growth model, where we do have a constant 
loading function for the random intercept and a linear func-
tion for the random slope, the identification is resolved by 
fixing the first loading for the slope to 0. Similarly, if one 
curve is linear and the second is quadratic, the model is still 
not identifiable. An example of curves that are identifiable is 
this: a linear curve and a curve that is piecewise constant 
and quadratic.

In practical examples, a two-linear function ELGM model 
may actually appear identified. That is because the functions 
are likely not perfectly linear. Such imperfections may force 
the penalty function minimization to produce a proper min-
imum over all possible rotations. In such cases, however, 
replicability is most likely questionable and properly con-
ducted simulation studies will likely reveal the quality of the 
estimation.

Overall, selecting a rotation criterion for ELGM, remains 
a difficult task. Simulation studies should be conducted with 
every application to ensure that the rotation criterion works 
as expected.

7.6. ELGM Model Limitations Due to Degrees of 
Freedom

Consider the case of ELGM m ¼ 2 again. The rotation of 
the model is determined uniquely by m2 ¼ 4 parameter con-
straints among the W and K parameters. Two of the con-
straints have already been set because the diagonal values of 
W are fixed to 1. If we use a linear growth style modeling, 
the first loading for the slope factor is naturally fixed to 0. 
Therefore only one parameter remains to be determined. 
Because we are identifying only a single parameter with the 
PSEM penalty, it is imperative that the ELGM rotation is 
simple and intuitive. Constructing complicated rotation cri-
teria can not be justified by the identification of a single 
parameter.

It is helpful to consider how the SEM framework is used 
to model generalized curves, see Sterba (2014). Linear 
growth models in the SEM framework can be made more 
flexible and similar to ELGM by estimating most of the 
loadings instead of fixing them to the time score, i.e., 
imposing as few restrictions as possible. To identify a SEM 
generalized linear growth model, the most intuitive way is 
to fix the variance of the factors to 1, fix the first loading of 
the slope to 0, and the fourth restriction would come from 
holding equal the first and the last loading of the random 
intercept. Recall that in the standard linear growth model, 
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all loadings of the random intercept are held equal when 
the random intercept variance is fixed to 1. Using this as a 
guide, the rotation for the ELGM linear growth model 
should consist of an ALF(0,1) prior for the first slope load-
ing and a DIFF prior for the random intercept loadings. 
The assumptions of this ELGM rotation are minimal and 
we can let the data drive the shape of the curves. 
Furthermore, the PSEM model will produce better estimates 
than the corresponding SEM model due to possible misspe-
cifications in the SEM model. For example, if the first and 
the last loadings are held equal but they are not, the SEM 
parameters will be biased. Note that holding the first and 
the last random intercept loadings equal in SEM is optimal 
in the sense that it provides a measurement model for the 
random intercept with the most orthogonal measurements. 
At the same time, the more distant the observations are, the 
more likely it is that a change in those loadings had 
occurred.

7.7. Sequential Estimation of the ELGM Model

We argue here that it is important to estimate a sequence of 
ELGM models. First begin with m ¼ 1, then gradually 
increase m to the needed dimensions. The first curve in the 
model fitting corresponds to the main principal component. 
It is the most important predictor for the Yt trajectory. The 
second curve in the ELGM model should be viewed as mod-
eling the residual trend, a trend that was not explained by 
the first curve, etc. Using such a sequential approach can 
help us identify the shape of the curves and set proper rota-
tion criteria.

7.8. The Simplest ELGM Pattern

Here we discuss an issue that mostly arises in simulation 
studies and not in practical applications. The issue is that in 
some PSEM simulation studies, a perfectly good rotation 
criterion does not recover the generating values, i.e., the 
estimates appear to be biased. Here we outline a procedure 
to check if the estimates are truly biased or a simpler pat-
tern with the same data fit has been found by the PSEM 
optimization. In a typical PSEM simulation study, we want 
to see to what extent the method can tolerate deviations 
from expectations. As an example, consider the case of m ¼
2 where the first/main curve is set to be a random intercept, 
i.e., a curve with constant loadings. If we generate data 
using a model where the loadings are not exactly constant, 
we expect PSEM to produce unbiased estimates nevertheless. 
There is a limit to the amount of deviations from constant 
that will be recoverable, however. If the loadings vary dra-
matically, the optimization routine will likely find a rotation 
of the curves with smaller variations in the random inter-
cept loadings. It will then select that as the final estimates. 
Those estimates will differ from the generating values. This 
however is not a bias. Simply put, PSEM has found a better 
rotation for the generated data than the generating rotation. 
This same phenomenon exists also in EFA and Alignment. 

Only the simplest structures are recovered by EFA and 
Alignment simulations.

There is a simple way to identify if such an issue has 
occurred in a particular simulation study. If the PSEM esti-
mates are different from the generating values, we can check 
that this reflects a simpler structure if we perform a second 
simulation using the PSEM estimates as the generating val-
ues. If in the second simulation, PSEM performs well, we 
conclude that the estimation is not biased (due to insuffi-
cient penalty or rotation) but simply that PSEM has found a 
model that conforms better with the desired rotation.

7.9. PSEM-ELGM Linear Growth Model

The PSEM-ELGM linear growth model can be described as 
follows

Yt ¼ aðtÞ þ bðtÞI þ cðtÞSþ et (54) 
et ¼ ret−1 þ e0t (55) 
e0t � Nð0, htÞ (56) 

I
S

� �

� N lI
lS

� �

, 1 q

q 1

� �� �

(57) 

aðtÞ � ALFð0, 1Þ (58) 
DIFFðbðtÞÞ � ALFð0, 1Þ (59) 

cð1Þ � ALFð0, 1Þ: (60) 

The parameters aðtÞ, bðtÞ and cðtÞ can be viewed as 
non-parametric functions or time specific parameters. The 
aðtÞ priors ensure that aðtÞ is as close to zero as possible 
and that the means of the factors can fit as much of the 
means of Yt as possible, see Section 7.3. The Diff priors for 
bðtÞ ensure that bðtÞ is as close to constant as possible, 
which allows us to interpret the latent variable I as a ran-
dom intercept, see Section 7.4. Finally, the prior for cð1Þ
ensures that cð1Þ is as close to zero as possible. This allows 
us to interpret S as a growth slope factor, see Section 7.6. 
The last two prior specifications are responsible for curve 
rotation, while the first prior specification is concerned only 
with the mean structure.

We illustrate this model with a simulation study using 
T ¼ 8 and N ¼ 1000 observations. The Mplus input file for 
this study is given in SM Figure 18. We generate the data 
using the following setup. Two of the aðtÞ parameters are 
not zero, i.e., for two of the time points, the ELGM curves 
do not fit the mean of the observed variable. The parameter 
bðtÞ is not a constant function but the deviations from a 
constant are not large. The parameter cðtÞ does not repre-
sent a linear function but the deviation is not large. The 
results of the simulation study are given in Table 16. The 
bias of the parameter estimates is minimal and the coverage 
is near the nominal level. The average chi-square test of fit 
for this study is 12.7 and with 12 degrees of freedom this 
yields a 7% rejection rate which is also near the nominal 
level. In this simulation study we used a stronger conver-
gence criterion and a larger number for the maximum num-
ber of iterations. This is needed because the optimization is 
more complex than the typical SEM estimation.
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In this simulation study we noticed that there are some 
discrepancies between the standard errors and the standard 
deviation of the parameters across the replications for some 
parameters. Asymptotically, the ratio between these two 
quantities should be near 1 and deviations from that are 
generally associated with bias in the standard error estima-
tion. In this simulation study, if the same size is increased 
to N ¼ 2000, the discrepancy disappears. Thus, this issue is 
a finite sample size phenomenon. Furthermore, we notice 
that the discrepancy between the standard error and the 
standard deviation did not result in problems with the con-
fidence interval coverage. This means that only individual 
replications in the simulation study had experienced prob-
lems and this is not a systematic underestimation of the 
standard errors. One way to resolve such problems is to 
increase the TOLERANCE option to 0.01 from the default 
value of 0.001. Increasing this option makes the computa-
tion more robust and less likely to experience issues with 
individual replications. Larger values of the TOLERANCE 
option tend to reduce the bias in the standard error esti-
mates but also tend to increase the bias in the point esti-
mates. Another resolution to this issue is to use bootstrap 
standard errors instead of the asymptotic based sandwich 
type standard errors, which are more susceptible to finite 
sample size anomalies. Yet a different resolution comes 
from the observation that in this simulation study, the aver-
age prior proportion is 0.61 which is too high. The propor-
tion can be improved by increasing the prior variance using 
ALF(0,10) priors. This improves the prior proportion as 
well as the ratio between the standard errors and the stand-
ard deviations. It should be noted here that the DIFF prior 
tends to have more weight than non-DIFF direct priors. 
This is because there are many more terms involved in the 
DIFF prior. A DIFF prior with T parameters has TðT − 
1Þ=2 priors, see Equation (15), instead of T priors. 
Increasing only the DIFF prior variance will be optimal in 
many situations as this will compensate for the outsized 
influence of that prior specification.

7.10. Empirical example

In this section we illustrate the PSEM-ELGM methodology 
with an empirical example. We use the Berkeley height data 
discussed in Grimm et al. (2013). For N ¼ 127 subjects, 
height is recorded in centimeters annually from age 3 to age 

17, except for age 14, for a total of T ¼ 14 observations. 
These data are monotonically increasing which is likely to 
provide a modeling challenge that is different from the typ-
ical behavioral data where the main predictor curve is a ran-
dom intercept. We begin the analysis by estimating the 
ELGM null model with auto-correlation for m ¼ 1, 2, 3, as 
illustrated in the middle part of Figure 17. At m ¼ 1, we 
observe that the main predictor line is not a random inter-
cept but is closer to an increasing straight line. That is, 
k1ðtÞ resembles a linear function. This is not surprising, 
given the monotonicity of the data. Such a model can also 
be interpreted as a linear growth model where the random 
intercept and the random slope are perfectly correlated. For 
m ¼ 2, CFI ¼ 0.97, i.e., a two curve model appears to 
extract most of the information from these data. For m ¼ 3, 
negative residual variances are found and we conclude that 
at the sample size of N ¼ 127, it will not be possible to 
extract a third curve reliably. Thus we focus on rotating the 
two curve model, i.e., we estimate the following model

Yt ¼ aðtÞ þ k1ðtÞf1 þ k2ðtÞf2 þ et (61) 
et ¼ ret−1 þ e0t: (62) 
e0t � Nð0, htÞ (63) 

f1
f2

� �

� N l1
l2

� �

, 1 q

q 1
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(64) 

aðtÞ � ALFð0, 1Þ (65) 
DIFFðk1ðtÞ − k1ðt − 1ÞÞ � ALFð0, 1Þ (66) 

k2ð1Þ � ALFð0, 1Þ: (67) 

The only difference between this model and the linear 
growth PSEM-ELGM is that the main predictor line k1ðtÞ is 
not a constant line but an increasing straight line. The DIFF 
prior for this curve loadings is not on the loading them-
selves but on the differences between consecutive loadings 
(first derivatives) as discussed in Section 7.4. The input file 
for this estimation is given in SM Figure 19. We use 
MODEL CONSTRAINT to form the differences between 
consecutive loadings needed for the DIFF priors. The results 
of this analysis are given in Figure 3 and Table 17. Figure 3
shows k1ðtÞ and k2ðtÞ curve estimates. The main predictor 
line in this model remains a straight line. The second curve 
appears to be related to teenage years growth spurs or 
puberty onset/delays and it has an usual shape. The esti-
mated curve for each individual is simply a weighted sum of 
these two curves where the weights are the factors f1 and f2:

The distribution of f1 and f2 is given in Table 17. What is 
important to note here is that the weight of the first curve, 
i.e., the straight line, is about 20 times the weight of the 
second curve. This conclusion is derived from the estimated 
range for f1 and f2: The weight of the second factor is 
equally likely to be positive or negative. Only two of the 
time specific intercepts parameters aðtÞ are significant and 
are given in Table 17. These parameters must also be added 
to the estimated individual curves, as in Equation (61).

Next we illustrate the performance of the PSEM method-
ology with a simulation study that resembles the height 
data. That is, the main predictor curve is a straight line 
while the second curve is a piecewise zero and parabolic. 

Table 16. PSEM-ELGM linear growth.

Parameter True Value Abs. Bias Coverage

að1Þ 0 .01 .99
að2Þ .2 .01 .97
að6Þ .4 .02 .94
bð1Þ 1 .02 .94
bð5Þ .94 .02 .94
bð8Þ 1.06 .03 .88
cð1Þ 0 .02 .99
cð5Þ .48 .04 .91
cð8Þ .86 .04 .93
r .3 .00 .89
q .3 .00 .95
lI 1 .01 .92
lS .5 .00 .99
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We use T ¼ 10 and N ¼ 1000 for this simulation study. 
The Mplus input file is given in SM Figure 20. One time- 
specific intercept is included in this model at time point 10. 
We use the same rotation technique as in the empirical 
example. The results of the simulation study for some of the 
parameters are given in Table 18. The bias in the parameter 
estimates is minimal and the coverage is near the nominal 
levels. The average chi-square test of fit in this simulation 
study is 25.6. With 25 degrees of freedom, this yields an 8% 
rejection rate which is near the nominal level.

In this model, we do not have a random intercept. 
Therefore, using the first loading of the second curve to be 
aimed at 0 does not have the same slope meaning as in the 
linear growth example from the previous section. 
Nevertheless, we can interpret the second curve as a sort of 
a deviation curve from the main line, which develops over 
time, i.e., it can be interpreted similar to the random slope 
in the linear growth model. It is of interest to know what 
happens if we generate data with non-zero values for k2ð1Þ:
For a large range of values, the solution becomes rotated to 
where k2ð1Þ is zero. The rotation still prefers such outcomes 
as the simplest solutions that minimize the penalty function. 

The meaning of the simplest solution is as discussed in 
Section 7.8. However, not all solutions are rotated to 
k2ð1Þ ¼ 0: If we generate data with k2ð1Þ further away from 
0, the simplest solution can have a non-zero k2ð1Þ:

8. Practical Aspects of PSEM

PSEM models are less parsimonious than their SEM model 
counterparts. In some situations, it may be desirable and 
possible to convert a PSEM model to a standard SEM model 
and regain some parsimony. Suppose that a set of parame-
ters in a PSEM model has ALF(0,1) priors. As an example 
consider the PSEM-LGCM model. The PSEM estimation 
determines which of these parameters are significant. We 
can then convert the model to a standard SEM model by 
removing the priors, fixing the non-significant parameters 
to 0 and estimating the significant parameters as free and 
unconstrained. We call this model the PSEM followup 
model. In most situations, the PSEM followup model will be 
identified, will likely yield data fit comparable to the PSEM 
model, and will be more parsimonious than the PSEM 
model. If the PSEM model is complex, however, the data fit 
of the PSEM followup model may not hold up very well as 
removing many insignificant parameters may still be detri-
mental to the data fit. If a PSEM followup model is difficult 
to construct, it would be necessary and acceptable to retain 
the PSEM model as the final model.

The main goal of the PSEM modeling framework is to 
extract more information from the data. It is not meant to 
replace approximate fit measures with exact fit measures. 
PSEM can be used with both. A PSEM model sometimes 
adds many new parameters to a standard SEM model. The 
goal of these new parameters is not just to reflect the data 
better but also to ensure that the SEM model parameters 
are estimated more precisely. We are obtaining a better fit-
ting model by adding more parameters and one naturally 
wonders if some sort of overfitting occurs. It is easy to 
understand this by keeping in mind that EFA and MGA are 
PSEM models. To the extent that EFA is overfitting the data 
by freeing all loadings so is PSEM. This parallel between 
EFA/MGA and PSEM should be kept in mind when trying 
to understand PSEM. Perhaps, PSEM should be viewed as 
an exploratory tool. However, we prefer the interpretation 
that comes from MGA, where we can obtain better group 
model comparisons by freeing ourselves from the stringent 
assumptions of scalar invariance.

The PSEM optimization is more complex than the stand-
ard SEM optimization and convergence problems may arise. 
Usually such problems can be resolved with the various 
Mplus options designed for such issues: increasing the max-
imum number of iterations to 10000 or more, decreasing or 
increasing the convergence criterion, using random starting 
values, using as starting values the estimates of a simpler 
model. In addition, decreasing or increasing the penalty 
weight and the small e used in the ALF, LASSO and 
Geomin priors can also be helpful in resolving convergence 
problems.

Figure 3. The two predictor curves for the height model.

Table 17. Height empirical example.

Parameter Estimate Stand. Error

r .82 .03
q −.01 .08
l1 24.70 1.77
l2 −.19 .10
að12Þ 3.50 .23
að14Þ −4.35 .50

Table 18. PSEM-ELGM: Mimicking the height data.

Parameter True Value Abs. Bias Coverage

k1ð1Þ 1 .00 .97
k1ð5Þ 1.4 .00 .96
k1ð10Þ 1.9 .00 .98
k2ð5Þ 0 .00 .96
k2ð6Þ .4 .00 .9
k2ð7Þ .8 .00 .95
k2ð8Þ 1.2 .02 .96
k2ð9Þ .8 .02 .95
k2ð10Þ .4 .01 .96
r .5 .00 .96
q .3 .01 .97
l1 1 .01 .95
l2 .5 .00 .99
að10Þ −.2 .01 .98
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9. Conclusion

In this paper we showed how the PML estimator and the 
PSEM framework can be used to estimate new models that 
can not be estimated with existing estimation techniques. 
Adding parameter priors to the maximum likelihood or 
weighted least squares is not a new idea. It is a popular data 
mining technique and is often used to emulate Bayesian 
estimation. The PSEM methodology, however, is quite dif-
ferent. It is founded on the principles of EFA and multiple 
group alignment. The structure of PSEM is based on an 
unidentifiable model and a corresponding null model. The 
connection between the two models is defined by the pen-
alty function. The priors of the parameters do not reflect 
prior knowledge but are determined by the nature of the 
model that we want to estimate.

We also illustrated the advantages of the ALF prior as 
compared to the normal prior. While the ALF penalty func-
tion is native to the MGA method, we showed that the ALF 
prior has advantages everywhere as it more clearly separates 
zero and non-zero parameters.

PSEM simplifies the technical details of the estimation 
because of the simple observation that when the weight of 
the penalty converges to zero, the estimates converge to the 
solution of the two stage conditional optimization where the 
first stage optimizes the likelihood and the second stage 
optimizes the objective/rotation/alignment function. This 
allows us to estimate new models without having to develop 
methodology that is specific to each problem. A clear 
example of that is EFA with rotation that is neither oblique 
or orthogonal.

PSEM is not intended to replace EFA, MGA, ESEM, 
AESEM, and BSEM methodologies. These methods, as 
implemented in Mplus, provide many additional benefits 
that are not available and implemented with PSEM. They 
are also more straightforward to use. The null model is well 
established, estimation is customized to guarantee success, 
and no monitoring of the penalty optimization is needed 
because with these established methods the weight can be 
considered infinitely close to 0. Furthermore, Mplus input 
files are simpler with the established methodologies because 
the prior is automatically constructed behind the scenes 
with minimal specifications. Inevitably, however, modeling 
efforts often reach the limits of the established methods and 
the frameworks can no longer accommodate specific model-
ing needs. The PSEM framework provides a solution for 
these situations.

The PSEM framework can also be infinitely customized 
because an arbitrary penalty function can be added to a 
model. Discovering new penalty functions that correspond 
to particular modeling needs or concepts may become the 
most prized discoveries. In this article, we did not provide 
new penalty functions. All priors and penalties we used are 
well known already. Clearly, there are plenty of new models 
that can now be estimated simply by using existing penalty 
designs. Perhaps a new penalty design may never be found 
or be needed. The regularized modeling literature is abun-
dant with variations on the LASSO univariate priors that 
incrementally improve the methodology. We are less 

intrigued by the functional form of the penalty 
(ridge/lasso/ALF) but by the possibility that a new multi-
variate prior can be connected to a practical modeling con-
cept, similar to how the loading matrix can be rotated by a 
Geomin penalty or to how the DIFF prior can be used to 
model invariance as well as linear and quadratic shapes in 
the parameters.

The PSEM method is implemented in Mplus currently 
for the most basic SEM model with continuous and categor-
ical variables. The list of new models that can now be 
accessed with just this implementation is bound to grow. 
For example, growth modeling for EFA factors in longitu-
dinal studies was not illustrated here but can now also be 
tackled with this method. PSEM extensions to various other 
modeling frameworks such as mixture models and multi-
level models will open new modeling possibilities. Two such 
examples are mixtures of ESEM models and HLM models 
for EFA factors with random intercepts and slopes. The 
PSEM approach offers clear and straightforward access to 
such models, while traditional methodologies do not.

We want to conclude this article with another avenue for 
potential further development which arises in PSEM empirical 
applications. As is described here, PSEM uncompromisingly 
favors the data fit. In some empirical examples, however, we 
have noticed that a small sacrifice in the data fit can be con-
verted to big gains in the penalty. For example, a small drop 
in EFA data fit can be converted to huge gains in EFA simpli-
city. Similarly, a small drop in data fit for multiple group 
alignment can be converted to a much more invariant solu-
tion. If the data fit drop is small enough as to not be a reason 
to reject the model then we clearly have missed out on an 
opportunity to discover a great model. In the PSEM frame-
work, the trade off between the data fit and the penalty fit is 
controlled by the penalty weight / prior variance. The models 
that we are describing here lie just to the left of the PSEM 
bubble in Figure 2. These models can be explored in the 
PSEM framework by lowering the prior variance below its 
PSEM range, to the point where the model moves into the 
regularized SEM bubble and the prior variance is somewhat 
subjectively specified. Of course, these PSEM-RegSEM models 
can be justified only if a substantial model simplification 
(measured by an unweighted penalty reduction) is gained by 
the data fit sacrifice. At its extreme, we can ask the PSEM 
framework to return the simplest EFA structure not rejected 
by the data. Similarly, we can ask the PSEM framework to 
return the most invariant alignment model not rejected by the 
data. Naturally, these models are guaranteed to have a p-value 
of 0.05, which challenges fundamental statistical frequentist 
principles. Nevertheless, these PSEM-RegSEM models should 
not be ignored as they can provide a true value in practical 
settings: well fitting models that are also much simpler to 
interpret. They are simply not the maximum-likelihood 
models.
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