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Mplus Workshop: Overview of the Day

8:30 - 12:00: Highlights from the new book (Mplus Version 7.4)
First morning block (Bengt, 1 1/2 hours1): Regression analysis
Second morning block (Bengt, 1 1/2 hours): Mediation analysis

Lunch: 12 - 1:30
1:30 - 6:30 (or longer): Time-series analysis (forthcoming Mplus
Version 8)

First afternoon block (Ellen, 1 1/2 hours): Introductory
time-series analysis
Second afternoon block (Ellen, 1 1/2 hours): Examples
Third afternoon block (Tihomir, 1 1/2 hours): Time-series
implementation in Mplus Version 8

110-15 minutes of questions and answers at the end of each block (hold your
questions).
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The Mplus User’s Guide has Gotten a Companion
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Chapters of Regression And Mediation Analysis Using Mplus

1. Linear regression analysis

2. Mediation analysis

3. Special topics in mediation
analysis

4. Causal inference for
mediation

5. Categorical dependent
variable

6. Count dependent variable

7. Censored variable

8. Mediation with non-cont’s
variables

9. Bayesian analysis

10. Missing data

Table of Contents will be shown at www.statmodel.com. 500 pages.
Lots of inputs and outputs. Paperback. All inputs and outputs will be
posted. Most data sets will be posted. Perhaps assignments.

Bengt Muthén Part 1 Highlights 4/ 101



Overview of the Morning: Highlights from the Book

First morning block (1 1/2 hours). Regression Analysis:
Linear regression with an interaction
Heteroscedasticity modeling
Censored variable modeling: Tobit, censored-inflated, Heckman,
and two-part analysis
Bayes: Advantages over ML. Missing data on covariates

Second morning block (1 1/2 hours). Mediation Analysis:
Moderated mediation with continuous mediator and outcome
Monte Carlo simulation of moderated mediation
Sensitivity analysis
Mediation analysis using counterfactually-defined indirect and
direct causal effects:

Binary outcome
Count outcome
Two-part outcome

Note: The highlights skew toward the more advanced parts of the
book to match the claim ”Analyses you probably didnt know that you
could do in Mplus”.
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Example: Linear Regression with an Interaction

tx

agg1

txagg1

agg5

Randomized field experiment in
the Baltimore public schools
where a classroom-based
intervention aimed at reducing
aggressive-disruptive behavior
among elementary school
students was carried out (Kellam
et al., 2008)

tx is a binary intervention variable

agg1 is pre-intervention Grade 1 aggressive behavior score and
agg5 the score in Grade 5

txagg1 is a treatment-baseline interaction (tx × agg1)
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Example: Linear Regression with an Interaction

agg5i = β0 +β1 txi +β2 agg1i +β3 txagg1i + εi. (1)

agg5i = β0 +β1 txi +β2 agg1i +β3 txi agg1i + εi (2)

= β0 +β2 agg1i +(β1 +β3 agg1i) txi + εi. (3)

The expression β1 +β3 agg1 is referred to as the moderator function
or, when evaluated at a specific agg1 value, the simple slope. This
means that agg1 moderates the β1 effect of tx on agg5 by the term
β3 agg1.

Bengt Muthén Part 1 Highlights 7/ 101



Example: Input for Linear Regression with an Interaction

VARIABLE: USEVARIABLES = agg5 agg1 tx txagg1;
USEOBSERVATIONS = gender EQ 1 AND (desgn11s EQ 1 OR
desgn11s EQ 2 OR desgn11s EQ 3 OR desgn11s EQ 4);

DEFINE: IF (desgn11s EQ 4) THEN tx=1;
IF (desgn11s EQ 1 OR desgn11s EQ 2 OR desgn11s EQ 3) THEN
tx=0;
agg5 = sctaa15s;
agg1 = sctaa11f;
CENTER agg1(GRANDMEAN);
txagg1 = tx*agg1;

ANALYSIS: ESTIMATOR = MLR;
MODEL: agg5 ON

tx (b1)
agg1 (b2)
txagg1 (b3);

MODEL CONSTRAINT:
NEW(modlo mod0 modhi);
modlo = b1+b3*(-1.06);
mod0 = b1;
modhi = b1+b3*1.06;

OUTPUT: SAMPSTAT PATTERNS STANDARDIZED RESIDUAL TECH4;
PLOT: TYPE = PLOT3;
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Example: Linear Regression with an Interaction

Table : Results for regression with a randomized intervention using
treatment-baseline interaction (n = 250)

Two-Tailed
Estimate S.E. Est./S.E. P-Value

agg5 ON

tx -0.285 0.124 -2.307 0.021
agg1 0.500 0.076 6.543 0.000
txagg1 -0.066 0.130 -0.511 0.609

Intercepts

agg5 2.483 0.077 32.238 0.000

Residual variances

agg5 0.952 0.090 10.612 0.000

New/additional parameters

modlo -0.215 0.177 -1.211 0.226
mod0 -0.285 0.124 -2.307 0.021
modhi -0.355 0.192 -1.849 0.064
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Example: Linear Regression with an Interaction (Alt.)

MODEL: agg5 ON
tx (b1)
agg1 (b2)
txagg1 (b3);

MODEL CONSTRAINT:
LOOP(x,-1,1,0.1);
PLOT(effect);
effect = b1+b3*x;
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Heteroscedasticity Modeling:
Example: LSAY Math Data (n = 2,019)

Figure : Linear regression residuals for math10 plotted against math7
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Heteroscedasticity Modeling:
(1) Using MODEL CONSTRAINT

The linear regression model assumes homoscedastic residual
variances,

yi = β0 +β1 xi + εi, (4)

V(εi|xi) = V(εi) = V(ε). (5)

An exponential function may instead be used for the residual variance,

V(εi|xi) = ea+b xi , (6)

where a and b are parameters to be estimated. If b = 0, V(εi|xi) = ea

which means that the residual variance is not a function of x so that
homoscedasticity holds. If b > 0, the residual variance increases as a
function of x and if b < 0, the residual variance decreases as a
function of x.
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Input for Heteroscedasticity Modeling

TITLE: Regressing math10 on math7 with heteroscedasticity
DATA: FILE = dropout.dat;

FORMAT = 11f8 6f8.2 1f8 2f8.2 10f2;
VARIABLE: NAMES = id school gender mothed fathed fathsei ethnic expect pac-

push pmpush homeres math7 math8 math9 math10 math11 math12
problem esteem mathatt clocatn dlocatn elocatn flocatn glocatn hlo-
catn ilocatn jlocatn klocatn llocatn;
MISSING = mothed (8) fathed (8) fathsei (996 998)
ethnic (8) homeres (98) math7-math12 (996 998);
IDVARIABLE = id;
USEVARIABLES = math7 math10 mothed male;
CONSTRAINT = math7;

DEFINE: male = gender - 1;
ANALYSIS: STARTS = 10;

BOOTSTRAP = 1000;
MODEL: math10 ON math7 mothed male;

math10 (resvar);
MODEL CONSTRAINT:

NEW(a b);
resvar = EXP(a+b*math7);

OUTPUT: TECH8 SAMPSTAT
CINTERVAL(BOOTSTRAP);

PLOT: TYPE = PLOT3;
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LL and BIC for Heteroscedasticity Modeling

Table : Loglikelihood and BIC for heteroscedasticity modeling of LSAY
math data

#par’s logL BIC

Regular
regression 5 -6972 13982

Heteroscedasticity
regression 6 -6885 13816
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Non-Symmetric Bootstrap Confidence Intervals for
Heteroscedasticity Modeling of the LSAY Math Data

Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5%

math10 ON
math7 0.981 0.986 1.017 1.050 1.058
mothed 0.529 0.579 0.872 1.148 1.192
male 0.115 0.215 0.822 1.426 1.514

Intercepts
math10 6.664 7.061 8.759 10.444 10.804

Residual
Variances
math10 999.000 999.000 999.000 999.000 999.000

New/Additional
Parameters
a 6.020 6.086 6.379 6.704 6.761
b -0.051 -0.050 -0.043 -0.037 -0.036

Assuming homoscedasticity: Non-significant effect of male,
95% CI is [−0.167,1.336]
Allowing heteroscedasticity: Significant effect of male, 95% CI
is [0.115,1.514]
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Heteroscedasticity Modeling:
(2) Using Random Coefficients

yi = β0 +β1i xi +β2 zi + εi, (7)

β1i = β1 +β3 zi +δi. (8)

The residuals ε and δ are allowed to covary. The model can be
compared to regular regression with an interaction between the
covariates x and z by inserting (8) into (7),

yi = β0 +β1 xi +β3 xi zi +δi xi +β2 zi + εi. (9)

The random coefficient model allows for a heteroscedastic residual
variance. Whereas in regular regression the residual variance is
assumed to be the same for all individuals, V(y | x,z) = V(ε), the
residual variance for the random coefficient model varies with x. The
conditional variance of y in (9) is

V(yi | xi,zi) = V(δi) x2
i +2 Cov(δi,εi) xi +V(εi). (10)
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Heteroscedasticity Using Random Coefficients

ANALYSIS: TYPE = RANDOM;
MODEL: s |math10 ON math7;

s WITH math10 (cov);
math10 (resvary);
s (vbeta);

OUTPUT: TECH1 SAMPSTAT STDYX RESIDUAL CINTERVAL;
PLOT: TYPE = PLOT3;
MODEL CONSTRAINT:

PLOT (vygivenx);
LOOP(x,25,90,1);
vygivenx = vbeta*x*x + 2*cov*x + resvary;

Better BIC than homoscedastic model
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Censored Variable Modeling

30% floor effect:
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59% floor effect:
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Regression Analysis Options in Mplus

Censored-normal (Tobit)

Censored-inflated

Sample selection (Heckman)

Two-part
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Censored-Normal (Tobit) Regression

0

y

x cL
x

y
Tobit

OLS

Tobit

y∗i = β0 +β1 xi + εi, (11)

yi =

{
0 if y∗i ≤ 0
y∗ if y∗i > 0

Binary (probit) : P(yi > 0|xi) = 1−Φ[
0−β0−β1xi√

V(ε)
] = Φ[

β0 +β1xi√
V(ε)

],

(12)

Continuous, positive : E(yi|yi > 0,xi) = β0 +β1 xi +
√

V(ε)
φ(zi)

Φ(zi)
,

(13)
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Censored-Inflated Regression

Latent class 0: subjects for whom only y = 0 is observed

Latent class 1: subjects following a censored-normal (tobit)
model

Assume a logistic regression that describes the probability of being in
class 0,

logit(πi) = γ0 + γ1 xi. (14)

For subjects in class 1 the usual censored-normal model of (15) is
assumed with

y∗i = β0 +β1 xi + εi. (15)

Two ways y = 0 is observed (mixture at zero).

Bengt Muthén Part 1 Highlights 21/ 101



Sample Selection (Heckman) Regression

Consider the linear regression for the continuous latent response
variable y∗,

y∗i = β0 +β1 xi + εi, (16)

where the latent response variable y∗i is observed as yi = y∗i when a
binary variable ui = 1 and remains latent, that is, missing if ui = 0. A
probit regression is specified for u,

u∗i = γ1 xi +δi, (17)

where the categories of the binary observed variable ui are determined
by u∗ falling below or exceeding a threshold parameter τ ,

ui =

{
0 if u∗i ≤ τ

1 if u∗i > τ.

A key feature is that the residuals ε and δ are assumed to be
correlated and have a bivariate normal distribution with the usual
probit standardization V(δ ) = 1.
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Two-Part Regression

With censoring from below at zero and using probit regression with
the event of u = 1 referring to a positive outcome, the two-part model
is expressed as

probit(πi) = γ0 + γ1 xi, (18)

log yi|ui=1 = β0 +β1 xi + εi, (19)

where πi = P(ui = 1|xi) and εi ∼ N(0,V(ε)). Logistic regression can
be used as an alternative to the probit regression in (18).
Maximum-likelihood estimation of the two-part model gives the same
estimates as if the binary and the continuous parts were estimated
separately using maximum-likelihood. Expressing (18) in terms of a
latent response variable regression with a normal residual, the two
residuals can be correlated but the correlation does not enter into the
likelihood and is not estimated.
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Comparison of Censored-Inflated, Heckman, and Two-Part

Like the censored-inflated and Heckman models, the two-part
model has different regression equations for the two parts

Unlike the censored-inflated model, the two-part model does not
have a mixture at zero, nor does Heckman

Unlike the Heckman model, the two-part model does not
estimate a residual correlation between the two parts
Duan et al. (1983) pointed to two advantages of the two-part
model over Heckman:

Applied to medical care expenses, it is preferable to the Heckman
model because the censoring point of zero expense does not
represent missing data but rather a real, observed value
A bivariate normality assumption for the residuals is not needed
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Example: Comparing Methods on Heavy Drinking Data
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NLSY Data on
Heavy Drinking
(n = 1,152)

Dependent variable: frequency of heavy drinking measured by
the question:

“How often have you had 6 or more drinks on one occasion
during the last 30 days?”
Never (0); once (1); 2 or 3 times (2); 4 or 5 times (3); 6 or 7 times
(4); 8 or 9 times (5); and 10 or more times (6)

Covariates: gender, ethnicity, early onset of regular drinking (es),
family history of problem drinking, and high school dropout.
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Input for Censored-Normal (Tobit) and Censored-Inflated

USEVARIABLES = hd84 male black hisp es fh123 hsdrp;
CENSORED = hd84 (B);

ANALYSIS: ESTIMATOR = MLR;
MODEL: hd84 ON male black hisp es fh123 hsdrp;

USEVARIABLES = hd84 male black hisp es fh123 hsdrp;
CENSORED = hd84 (BI);

ANALYSIS: ESTIMATOR = MLR;
MODEL: hd84 ON male black hisp es fh123 hsdrp;

hd84#1 ON male black hisp es fh123 hsdrp;
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DATA TWOPART

The DATA TWOPART command is used to create a binary and a
continuous variable from a continuous variable with a floor effect. A
cutpoint of zero is used as the default. Following are the rules used to
create the two variables:

1 If the value of the original variable is missing, both the new
binary and the new continuous variable values are missing

2 If the value of the original variable is greater than the cutpoint
value, the new binary variable value is one and the new
continuous variable value is the log of the original variable as the
default

3 If the value of the original variable is less than or equal to the
cutpoint value, the new binary variable value is zero and the new
continuous variable value is missing
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Input for Heckman and Two-Part

USEVARIABLES = male black hisp es fh123 hsdrp u positive;
CATEGORICAL = u;

DATA TWOPART:
NAMES = hd84;
BINARY = u;
CONTINUOUS = positive;

ANALYSIS: ESTIMATOR = MLR;
LINK = PROBIT;
MCONVERGENCE = 0.00001;
INTEGRATION = 30;

MODEL: positive u ON male black hisp es fh123 hsdrp;
f BY u positive ; f@1;

USEVARIABLES = male black hisp es fh123 hsdrp u positive;
CATEGORICAL = u;

DATA TWOPART:
NAMES = hd84;
BINARY = u;
CONTINUOUS = positive;

ANALYSIS: ESTIMATOR = MLR;
LINK = PROBIT;

MODEL: positive u ON male black hisp es fh123 hsdrp;
OUTPUT: TECH1 TECH8;
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Loglikelihood and BIC for Four Models
for Frequency of Heavy Drinking

The Heckman and two-part models use log(y) so logL and BIC values
cannot be compared to those of tobit and censored-inflated:

Model log L # parameters BIC

Censored-normal (tobit) -1530.512 8 3117
Censored-inflated -1499.409 15 3105

Sample selection (Heckman) -1088.182 16 2289
Two-part -1088.400 15 2283
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Results for the censored-normal (tobit) regression model

Two-Tailed
Parameter Estimate S.E. Est./S.E. P-Value

hd84 ON

male 2.106 0.210 10.038 0.000
black -2.157 0.258 -8.359 0.000
hisp -1.059 0.298 -3.555 0.000
es 0.716 0.286 2.503 0.012
fh123 0.615 0.317 1.938 0.053
hsdrp 0.240 0.265 0.908 0.364

Intercepts

hd84 -1.258 0.211 -5.961 0.000

Residual variances

hd84 8.678 0.559 15.525 0.000
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Results for the censored-inflated regression model

Two-Tailed
Parameter Estimate S.E. Est./S.E. P-Value

hd84 ON

male 0.957 0.236 4.057 0.000
black -1.150 0.282 -4.073 0.000
hisp -0.405 0.320 -1.264 0.206
es 0.585 0.276 2.120 0.034
fh123 -0.031 0.329 -0.095 0.924
hsdrp 0.390 0.263 1.487 0.137

hd84#1 ON

male -1.025 0.166 -6.157 0.000
black 0.962 0.208 4.621 0.000
hisp 0.570 0.215 2.651 0.008
es -0.204 0.198 -1.032 0.302
fh123 -0.512 0.273 -1.876 0.061
hsdrp 0.040 0.188 0.213 0.831

Intercepts

hd84#1 0.412 0.145 2.848 0.004
hd84 1.567 0.189 8.290 0.000
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Comparisons of Results

Heckman versus Two-part:
Very similar logL/BIC and results (the Heckman probit
coefficients need to be divided by

√
2 due to adding the factor)

The Heckman residual correlation is significant
Censored-inflated versus Two-part:

Similar results (reverse signs for the binary part)
LogL and BIC not comparable but limited model fit comparison
can be made using MODEL CONSTRAINT:

Table : Estimated probability of zero heavy drinking and mean of heavy
drinking for a subset of males who have zero values on the covariates black,
hisp, es, fh123, and hsdrp

Probability Mean

Sample values 0.441 1.538
Censored-inflated estimates 0.402 1.547
Two-part estimates 0.403 1.671
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Heckman and Two-Part Treating the Positive Part as Ordinal

 

0
.1

5

0
.4

5

0
.7

5

1
.0

5

1
.3

5

1
.6

5

1
.9

5

2
.2

5

2
.5

5

2
.8

5

3
.1

5

3
.4

5

3
.7

5

4
.0

5

4
.3

5

4
.6

5

4
.9

5

5
.2

5

5
.5

5

5
.8

5

HD84

 0 

 500 

 1000 

 1500 

 2000 

 2500 

 3000 

 3500 

 4000 

 4500 

 5000 

 5500 

 6000 

 6500 

 7000 

 7500 

 8000 

C
o
u
n
t

Assignment: As an alternative, an ordinal approach may be good
for these data given

1 the limited number of response categories
2 the slight ceiling effect for category 6, 10 or more times so that

the assumption of a log normal distribution can be questioned:

Declare the positive part as categorical using the
CATEGORICAL option of the VARIABLE command
Use TRANSFORM = NONE in the DATA TWOPART command
to avoid the log transformation
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Bayesian Analysis: Advantages over ML

Six key advantages of Bayesian analysis over frequentist analysis
using maximum likelihood estimation:

1 More can be learned about parameter estimates and model fit
2 Small-sample performance is better and large-sample theory is

not needed
3 Parameter priors can better reflect results of previous studies
4 Analyses are in some cases less computationally demanding, for

example, when maximum-likelihood requires high-dimensional
numerical integration

5 In cases where maximum-likelihood computations are
prohibitive, Bayes with non-informative priors can be viewed as a
computing algorithm that would give essentially the same results
as maximum-likelihood if maximum-likelihood estimation were
computationally feasible

6 New types of models can be analyzed where the
maximum-likelihood approach is not practical
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Figure : Prior, likelihood, and posterior for a parameter

Prior

Posterior

Likelihood

Priors:
Non-informative priors (diffuse priors): Large variance (default in
Mplus)

A large variance reflects large uncertainty in the parameter value.
As the prior variance increases, the Bayesian estimate gets closer
to the maximum-likelihood estimate

Weakly informative priors: Used for technical assistance
Informative priors:

Informative priors reflect prior beliefs in likely parameter values
These beliefs may come from substantive theory combined with
previous studies of similar populations
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Convergence: Trace Plot for Two MCMC Chains. PSR
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Potential scale reduction
criterion (Gelman &
Rubin, 1992):

PSR =

√
W +B

W
, (20)

where W represents the within-chain variation of a parameter and B
represents the between-chain variation of a parameter. A PSR value
close to 1 means that the between-chain variation is small relative to
the within-chain variation and is considered evidence of convergence.
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Convergence of the Bayes
Markov Chain Monte Carlo (MCMC) Algorithm

Figure : Premature stoppage of Bayes MCMC iterations using the Potential
Scale Reduction (PSR) criterion
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Trace and Autocorrelation Plots Indicating Poor Mixing
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Bayes Posterior Distribution Similar to ML Bootstrap
Distribution: Credibility versus Confidence Intervals
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Bayes’ Advantage Over ML: Informative Priors

Frequentists often object to Bayes using informative priors

But they already do use such priors in many cases in unrealistic
ways (e.g. factor loadings fixed exactly at zero)

Bayes can let informative priors reflect prior studies

Bayes can let informative priors identify models that are
unidentified by ML which is useful for model modification
(BSEM)

The credibility interval for the posterior distribution is narrower
with informative priors

Bengt Muthén Part 1 Highlights 40/ 101



Speed Of Bayes In Mplus

Wang & Preacher (2014). Moderated mediation analysis using
Bayesian methods. Structural Equation Modeling.

Comparison of ML (with bootstrap) and Bayes: Similar
statistical performance

Comparison of Bayes using BUGS versus Mplus: Mplus is 15
times faster

Reason for Bayes being faster in Mplus:
Mplus uses Fortran (fastest computational environment)
Mplus uses parallel computing so each chain is computed
separately
Mplus uses the largest updating blocks possible - complicated to
program but gives the best mixing quality
Mplus uses sufficient statistics

Mplus Bayes considerably easier to use
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Bayes’ Advantage Over ML: Missing Data on Covariates

Regressing y On x: Bringing x’s Into The Model

ML estimation maximizes the log likelihood for the bivariate
distribution of y and x expressed as,

logL = ∑
i

log[yi,xi] =
n1

∑
i=1

log[yi | xi]+
n1+n2

∑
i=1

log[xi]+
n1+n2+n3

∑
i=n1+n2+1

log[yi].

Figure : Missing data patterns. White areas represent missing data
x y

n

n

n

1

2

3
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Example: Monte Carlo Simulation Study

Linear regression with 40% missing on x1 - x4; no missing on y
x3 and x4 s are binary split 86/16
MAR holds as a function of the covariate z with no missing
n = 200
Comparison of Bayes and ML

z

x1

x2

x3

x4

y
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Bayes Treating Binary X’s As Binary

DATA: FILE = MARn200replist.dat;
TYPE = MONTECARLO;

VARIABLE: NAMES = y x1-x4 z;
USEVARIABLES = y x1-z;
CATEGORICAL = x3-x4;

DEFINE: IF(z gt .25)THEN x1= MISSING;
IF(z gt .25)THEN x2= MISSING;
IF(-z gt .25)THEN x3= MISSING;
IF(-z gt .25)THEN x4= MISSING;

ANALYSIS: ESTIMATOR = BAYES;
PROCESSORS = 2;
BITERATIONS = (10000);
MEDIATOR = OBSERVED;

MODEL: y ON x1-z*.5;
y*1;
x1-z WITH x1-z;
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ML Versus Bayes Treating Binary X’s As Binary

Attempting to estimate the same model using ML leads to much
heavier computations due to the need for numerical integration
over several dimensions

Already in this simple model ML requires three dimensions of
integration, two for the x3, x4 covariates and one for a factor
capturing the association between x3 and x4.

Bayes uses a multivariate probit model that generates correlated
latent response variables underlying the binary x’s - no need for
numerical integration
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Bayes’ Advantage Over ML:
Missing Data with a Binary Outcome

Figure : Mediation model for a binary outcome of dropping out of high
school (n=2898)

female
mothed
homeres
expect
lunch
expel
arrest

droptht7
hisp
black
math7

math10

hsdrop
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Bayes With Missing Data On The Mediator

CATEGORICAL = hsdrop;
ANALYSIS: ESTIMATOR = BAYES;

PROCESSORS = 2;
BITERATIONS = (20000);

MODEL: hsdrop ON math10 female-math7;
math10 ON female-math7;

MODEL INDIRECT:
hsdrop IND math10 math7(61.01 50.88);

OUTPUT: SAMPSTAT PATTERNS TECH1 TECH8 CINTERVAL;
PLOT: TYPE = PLOT3;

Indirect and direct effects computed in probability scale using
counterfactually-based causal effects.
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Bayesian Posterior Distribution Of Indirect Effect
For High School Dropout
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Missing On The Mediator: ML Versus Bayes

ML estimates are almost identical to Bayes, but:

ML needs Monte Carlo integration with 250 points because the
mediator is a partially latent variable due to missing data

ML needs bootstrapping (1,000 draws) to capture CIs for the
non-normal indirect effect

ML takes 21 minutes

Bayes takes 21 seconds

Bayes posterior distribution for the indirect effect is based on
20,000 draws as compared to 1,000 bootstraps for ML
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Missing On The Mediator And The Covariates
Treating All Covariates As Normal: ML Versus Bayes

ML requires integration over 10 dimensions

ML needs 2,500 Monte Carlo integration points for sufficient
precision

ML takes 6 hours with 1,000 bootstraps

Bayes takes less than a minute

Bayes posterior based on 20,000 draws as compared to 1,000
bootstraps for ML
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Missing On The Mediator And The Covariates
Treating Binary Covariates As Binary: ML Versus Bayes

6 covariates are binary.

ML requires 10 + 15 = 35 dimensions of integration: intractable

Bayes takes 3 minutes for 20,000 draws
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Mediation Analysis

Figure : A basic mediation model with an exposure variable x, a control
variable c, a mediator m, and an outcome y
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Moderated Mediation Analysis: Case 1 (xz)

Figure : Case 1 moderated mediation of y on x, m on x, both moderated by z
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β

β
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γ
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Indirect : β1 (γ1 + γ3 z)(x1− x0), (21)

Direct : (β2 +β4 z)(x1− x0). (22)
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Moderated Mediation Analysis: Case 2 (mz)

Figure : Case 2 moderated mediation of y on m moderated by z

m

yx

z

mz

β
β
β

β1

4
3
2

γ1

Indirect : (β1 +β4 z)γ1(x1− x0), (23)

Direct : β2(x1− x0). (24)
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Moderated Mediation Analysis: Case 3 (mx)

Figure : Case 3 moderated mediation of y on m moderated by x

m

yx

mx

c

β
β
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β1

4
3
2

γ1

γ2

Indirect : (β1 +β3 x1)γ1(x1− x0), (25)

Direct : (β2 +β3(γ0 + γ1 x0 + γ2 c))(x1− x0). (26)
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Example: Case 2 Moderated Mediation
for Work Team Performance (Hayes, 2013; n = 60)

Figure : Case 2 (mz) moderated mediation for work team behavior. The
exposure variable is dysfunc (continuous). The interaction variable mz is the
product of the mediator variable negtone and the moderator variable negexp

negtone

performdysfunc

negexp

mz

β
β
β

β1

4
3
2

γ1
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Input for Case 2 Moderated Mediation for Work Teams

TITLE: Hayes (2013) TEAMS Case 2 moderation of M ->Y
DATA: FILE = teams.txt;
VARIABLE: NAMES = dysfunc negtone negexp perform;

USEVARIABLES = dysfunc negtone negexp perform mz;
DEFINE: mz = negtone*negexp;
ANALYSIS: ESTIMATOR = ML;

BOOTSTRAP = 10000;
MODEL: perform ON negtone dysfunc negexp mz;

negtone ON dysfunc;
MODEL INDIRECT:

perform MOD negtone negexp(-.4,.6,.1)
mz dysfunc(0.4038 0.035);

OUTPUT: SAMPSTAT CINTERVAL(BOOTSTRAP);
PLOT: TYPE = PLOT3;

The moderator variable negexp has 20th and 80th percentiles
−0.4 and 0.6, respectively
The exposure variable dysfunc has mean 0.4038 and standard
deviation 0.369 so that x1− x0 = 0.4038−0.035 = 0.369. In
other words, 0.035 is one standard deviation below the mean
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Indirect Effect Plot for Work Team Behavior Example

Figure : Indirect effect and bootstrap confidence interval for case 2 (mz)
moderated mediation for work team behavior. The moderator variable is
negexp and the indirect effect is labeled Total natural IE
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Ignore Chi-Square Test of Model Fit
When Interaction Involves the Mediator

An alternative specification used in Preacher et al. (2007) avoids the
two degrees of freedom that arise because of the two left-out arrows in
the model. This saturates the model by allowing covariances between
the moderator variable and the mediator residual and between the
moderator-exposure interaction variable and the mediator residual. To
accomplish this, the MODEL specification adds a line using WITH:

MODEL:
perform ON negtone dysfunc negexp mz;
negtone ON dysfunc;
negexp mz WITH negtone dysfunc;
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Example: Case 3 Moderated Mediation

m

yx

mx

β
β

β1

3
2

γ1

The effects of x on y are

Indirect : (β1 +β3 x1)γ1(x1− x0), (27)

Direct : (β2 +β3(γ0 + γ1 x0))(x1− x0). (28)
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Non-Significant Exposure-Mediator Interaction

Quoting VanderWeele (2015, p. 46):

“An investigator might be tempted to only include such
exposure-mediator interactions in the model if the
interaction is statistically significant. - - This approach is
problematic. It is problematic because power to detect
interaction tends to be very low unless the sample size is
very large. - - such exposure-mediator interaction may be
important in capturing the dynamics of mediation... - - A
better approach - - is perhaps to include them by default
and only exclude them if they do not seem to change the
estimates of the direct and indirect effects very much.”
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Input for Case 3 Moderated Mediation of Simulated Data

TITLE: x moderation of y regressed on m
DATA: FILE = xmVx4s1n200rep6.dat;
VARIABLE: NAMES = y m x;

USEVARIABLES = y m x mx;
DEFINE: mx = m*x;
ANALYSIS: ESTIMATOR = ML;

BOOTSTRAP = 10000;
MODEL: y ON m x mx;

m ON x;
MODEL INDIRECT:

y MOD m mx x(7 5);
OUTPUT: SAMPSTAT CINTERVAL(BOOTSTRAP);
PLOT: TYPE = PLOT3;
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Monte Carlo Study of Moderated Mediation

m

yx

z

xz

γ

β

β

β

γ

γ

1

3
2

1

2

3

The model used for data generation is

yi = β0 +β1 mi +β2 xi +β3 zi + εyi, (29)

mi = γ0 + γ1i xi + γ2 zi + εmi, (30)

γ1i = γ1 + γ3 zi, (31)

where γ1i is a random slope. Inserting (31) in (30) shows that the
random slope formulation is equivalent to adding an interaction term
xz as a covariate in the regression of m.
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Input for Simulation of z Moderation of m Regressed on x

TITLE: Simulating Z moderation of X to M using a random slope, saving the
data for external Monte Carlo analysis

MONTECARLO:
NAMES = y m x z;
NOBS = 400;
NREPS = 500;
REPSAVE = ALL;
SAVE = xzrep*.dat;
CUTPOINTS = x(0);

MODEL POPULATION:
x-z@1; [x-z@0];
x WITH z@0.5;
y ON m*.5 x*.2 z*.1; y*.5; [y*0];
gamma1 |m ON x;
[gamma1*.3];
gamma1 ON z*.2;
gamma1@0;
m ON z*.3; m*1; [m*0];

ANALYSIS: TYPE = RANDOM;
MODEL: y ON m*.5 (b)

x*.2 z*.1;
y*.5; [y*0];
gamma1 |m ON x;
[gamma1*.3] (gamma1);
gamma1 ON z*.2 (gamma3);
gamma1@0;
m ON z*.3; m*1; [m*0];

MODEL CONSTRAINT:
NEW(indavg*.15 indlow*.05 indhigh*.25);
indavg = b*gamma1;
indlow = b*(gamma1-gamma3);
indhigh = b*(gamma1+gamma3);
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Results for Monte Carlo Simulation of z Moderation of m
Regressed on x using n = 400 and 500 Replications

S.E. M.S.E. 95% % Sig
Population Average Std. Dev. Average Cover Coeff

gamma1 ON
z 0.200 0.2010 0.0775 0.0771 0.0060 0.950 0.744

y ON
m 0.500 0.5007 0.0524 0.0494 0.0027 0.922 1.000
x 0.200 0.2056 0.0783 0.0784 0.0061 0.938 0.754
z 0.100 0.0963 0.0470 0.0433 0.0022 0.926 0.604

m ON
z 0.300 0.2999 0.0531 0.0545 0.0028 0.964 1.000

Intercepts
y 0.000 -0.0017 0.0527 0.0522 0.0028 0.934 0.066
m 0.000 -0.0008 0.0543 0.0545 0.0029 0.946 0.054
gamma1 0.300 0.3010 0.0776 0.0770 0.0060 0.962 0.978

Residual
Variances
y 0.500 0.4938 0.0341 0.0347 0.0012 0.928 1.000
m 0.500 0.4940 0.0331 0.0346 0.0011 0.950 1.000
gamma1 0.000 0.0000 0.0000 0.0000 0.0000 1.000 0.000

New/Additional
Parameters
indavg 0.150 0.1505 0.0417 0.0416 0.0017 0.956 0.974
indlow 0.050 0.0497 0.0546 0.0548 0.0030 0.958 0.138
indhigh 0.250 0.2514 0.0628 0.0603 0.0039 0.928 0.988
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Sensitivity Analysis

Figure : Mediator-outcome confounding 1

c

Figure : Mediator-outcome confounding 2
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Sensitivity Analysis for Discrimination Study (Hayes, 2013)

respappr

likingprotest

sexism

xz

A moderated mediation model of
sex discrimination in the work
place. The interaction variable xz
is the product of the exposure
variable protest and the
moderator variable sexism
(n = 129)

Variables:
Protest: binary exposure variable (2 randomized scenarios of
female attorney taking action or not)
Sexism: Moderator variable
Respappr: Mediator - perceived appropriateness of response)
Liking: Outcome - how well the subject likes the female attorney
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Results for Combined Moderated Mediation
for Sex Discrimination

Two-Tailed
Estimate S.E. Est./S.E. P-Value

liking ON
respappr 0.098 0.533 0.184 0.854
protest -3.119 1.750 -1.782 0.075
sexism -0.462 0.502 -0.919 0.358
mx 0.112 0.157 0.715 0.475
mz 0.039 0.100 0.392 0.695
xz 0.500 0.341 1.466 0.143

respappr ON
protest -2.687 1.738 -1.546 0.122
sexism -0.529 0.320 -1.654 0.098
xz 0.810 0.346 2.343 0.019

Intercepts
liking 6.510 2.623 2.482 0.013
respappr 6.567 1.596 4.114 0.000

Residual Variances
liking 0.779 0.135 5.767 0.000
respappr 1.269 0.156 8.121 0.000
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Figure : Loop plot of indirect effect and confidence interval for combined
moderated mediation case of sex discrimination. The moderator is labeled z
in MODEL CONSTRAINT and corresponds to the sexism variable
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Table : Input for moderated mediation for sex discrimination data

TITLE: Hayes PROTEST moderation of X ->M, X->Y
DATA: FILE = protest.txt;
VARIABLE: NAMES = sexism liking respappr protest;

USEVARIABLES = liking respappr protest sexism xz;
DEFINE: xz = protest*sexism;
ANALYSIS: ESTIMATOR = ML;

BOOTSTRAP = 1000;
MODEL: liking ON respappr (beta1)

protest (beta2)
sexism
xz (beta4);
respappr ON protest (gamma1)
sexism (gamma2)
xz (gamma3);

MODEL INDIRECT:
liking MOD respappr sexism(4,6,.1) xz protest;

OUTPUT: SAMPSTAT STANDARDIZED
CINTERVAL(BOOTSTRAP);

PLOT: TYPE = PLOT3 SENSITIVITY;
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Figure : Sensitivity plot for the indirect effect and its confidence interval at
the sexism mean of 5 in a study of sex discrimination in the workplace. The
x-axis represents the residual correlation ρ and the y-axis represents the
indirect effect
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Counterfactually-Defined Causal Effects:
Potential Outcomes, Counterfactuals, and Causal Effects

Potential Outcomes Causal effect
i Xi Yi (Xi=1) Yi (Xi=0) Yi (Xi=1) - Yi (Xi=0)

1 1 11 9 2

2 1 14 10 4

3 0 8 5 3

4 1 9 8 1

5 0 18 12 6

6 0 11 10 1

True average 11.83 9 2.83
Observed average 11.33 9 2.33
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Counterfactually-Defined Causal Effects:
Robins, Pearl, VanderWeele, Imai

Counterfactuals and potential outcomes:
Chapter 4: continuous mediator and continuous outcome
Chapter 8: continuous mediator and binary outcome, binary
mediator and continuous or binary outcome, count outcome,
two-part outcome

Counterfactually-defined causal indirect and direct effects:
Strict assumptions including no mediator-outcome confounding
X = exposure variable, M = mediator, Y = outcome
Total effect: E[Y(1,M(1))]−E[Y(0,M(0))], treatment group
mean of Y minus control group mean of Y
The Total Natural Indirect Effect (TNIE)
= E[Y(1,M(1))]−E[Y(1,M(0))] where 1 and 0 represent
treatment and control for the exposure variable
What does it mean?
Explanations in words and formulas
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Indirect Effect TNIE = E[Y(1,M(1))]−E[Y(1,M(0))]

In words:
E[Y(1,M(1))] is the mean of the outcome when subjects get the
treatment (X = 1) and M varies as it would under the treatment
condition (X = 1) - this is the treatment group mean
E[Y(1,M(0))] is the mean of the outcome when subjects get the
treatment (X = 1) but M varies as it would under the control
condition (X = 0) - this is a counterfactual

In formulas:
To get an effect of X on Y we need to integrate out M
M has two different distributions f (M|X): M(0) for X = 0 and
M(1) for X = 1. For example:
E[Y(1,M(0))] =

∫ +∞

−∞
E[Y|X = 1,M = m]× f (M|X = 0) ∂M

In some cases, this integral is simple - integration does not need
to be involved: (1) Continuous M, continuous Y , (2) Continuous
M, binary Y with probit
In some cases, the integration is needed: (1) Continuous M,
binary Y with logistic (numerical integration needed), (2) Count
Y , (3) log(Y)
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Indirect Effect TNIE = E[Y(x1,M(x1))]−E[Y(x1,M(x0))]

Continuous M and Y:

Yi = β0 +β1 Mi +β2 Xi + εyi, (32)

Mi = γ0 + γ1 Xi + εmi. (33)

Inserting (33) in (32) and integrating over M,

E[Y(x1,M(x0))] = β0 +β2 x1+

+β1

∫ +∞

−∞

M f (M;γ0 + γ1 x0,σ
2) ∂M,

= β0 +β2 x1 +β1(γ0 + γ1 x0). (34)

Conditioning on X = x1 in (32) and X = x0 in (33) and inserting the
mediator expression in the outcome expression, the expected value is
the same:

= β0 +β2 x1 +β1(γ0 + γ1 x0). (35)
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Indirect Effect TNIE = E[Y(x1,M(x1))]−E[Y(x1,M(x0))]

TNIE for continuous M and Y:

E[Y(x1,M(x1))]−E[Y(x1,M(x0))] (36)

= β0 +β2 x1 +β1(γ0 + γ1 x1) (37)

− (β0 +β2 x1 +β1(γ0 + γ1 x0)) (38)

= β1 γ1(x1− x0). (39)

Note 1: Often x1− x0 = 1 such as with a one-unit change or
treatment/control.

Note 2: β0, γ0, β2 cancel out. The indirect effect is a product of 2
slopes. This is not the case for binary Y
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Now We Know How To Do TNIE for Binary Y

Y∗i = β0 +β1 Mi +β2 Xi + εyi, (40)

Mi = γ0 + γ1 Xi + εmi. (41)

Conditioning on X = x1 and X = x0, for Y∗ and M, respectively, and
inserting M into Y ,

E(Y∗|X) = β0 +β1 γ0 +β1 γ1 x0 +β2 x1, (42)

V(Y∗|X) = V(β1 εm + εy) = β
2
1 σ

2
m + c. (43)

P(Y = 1|X) = Φ[E(Y∗|X)/
√

V(Y∗|X)], (44)

TNIE = Φ[1,1]−Φ[1,0], (45)

where Φ[1,1] uses β0 +β1 γ0 +β1 γ1 x1 +β2 x1 in E(Y∗|X)
and Φ[1,0] uses β0 +β1 γ0 +β1 γ1 x0 +β2 x1. All 6 parameters
involved.
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Effects Expressed on an Odds Ratio Scale
for a Binary Outcome: Probit Model

The total natural indirect effect odds ratio for a binary exposure can
be expressed as

TNIE(OR) =
P(Yx1Mx1

= 1)/(1−P(Yx1Mx1
= 1)

P(Yx1Mx0
= 1)/(1−P(Yx1Mx0

= 1))

=
Φ[probit(1,1)]/(1−Φ[probit(1,1)])
Φ[probit(1,0)]/(1−Φ[probit(1,0)])

. (46)
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Odds Ratio Effects Assuming a Rare Binary Outcome:
Logistic Model

VanderWeele and Vansteelandt (2010) show that with logistic
regression the TNIE odds ratio is approximately equal to

TNIE(OR)≈ eβ1 γ1+β3 γ1 , (47)

that is, the indirect effect odds ratio uses the same formula as the
indirect effect with a continuous outcome, but exponentiated.
When the treatment variable is continuous, the indirect effect odds
ratio of (47) is modified as

TNIE(OR) = e(β1 γ1+β3 γ1 x1)(x1−x0), (48)

for a change from x0 to x1. For example, x0 may represent the mean of
the treatment and x1 may represent the mean plus one standard
deviation, so that x1−x0 corresponds to one standard deviation for the
continuous treatment variable.
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Example: Smoking Data

intent

cigusetx

γ1 β1

β2

Drug intervention program for
students in Grade 6 and Grade 7
in Kansas City schools (n = 864).
MacKinnon et al. (2007),
Clinical Trials.

Schools were randomly assigned to the treatment or control
group (the multilevel aspect of the data is ignored)
The mediator is the intention to use cigarettes in the following
2-month period which was measured about six months after
baseline
The outcome is cigarette use or not in the previous month which
was measured at follow-up
Cigarette use is observed for 18% of the sample
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The total effect can be computed without doing a mediation
analysis as the difference between the proportion of smokers in
the treatment group and the proportion of smokers in the control
group

This results in an estimate of the total effect as the difference in
the probabilities of 0.148−0.224 =−0.076

The corresponding estimate of the total effect odds ratio is

TE(OR) =
0.148/(1−0.148)
0.224/(1−0.224)

= 0.602. (49)

Both estimates indicate a lowering of the smoking probability
due to treatment
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Table : Input for smoking data using probit

TITLE: Clinical Trials data from MacKinnon et al. (2007)
DATA: FILE = smoking.txt;
VARIABLE: NAMES = intent tx ciguse;

USEVARIABLES = tx ciguse intent;
CATEGORICAL = ciguse;

ANALYSIS: ESTIMATOR = ML;
LINK = PROBIT;
BOOTSTRAP = 10000;

MODEL: ciguse ON intent tx;
intent ON tx;

MODEL INDIRECT:
ciguse IND intent tx;

OUTPUT: TECH1 TECH8 SAMPSTAT
CINTERVAL(BOOTSTRAP);

PLOT: TYPE = PLOT3;
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Table : Bootstrap confidence intervals for smoking data effects using probit
regression for the outcome cigarette

Confidence intervals of total, indirect, and direct effects based
on counterfactuals (causally-defined effects)

Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5%

Effects from tx to ciguse

Tot natural IE -0.040 -0.036 -0.022 -0.008 -0.006
Pure natural DE -0.104 -0.095 -0.050 -0.005 0.004
Total effect -0.128 -0.119 -0.072 -0.026 -0.017

Odds ratios for binary Y

Tot natural IE 0.757 0.772 0.853 0.939 0.958
Pure natural DE 0.520 0.551 0.731 0.969 1.025
Total effect 0.433 0.461 0.624 0.841 0.896
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Effects for Smoking Data Using Probit

The total natural indirect effect (TNIE) in probability metric is
estimated as −0.022 and is significant because the 95%
confidence interval does not cover zero: [−0.040,−0.006]

The indirect effect odds ratio is estimated as 0.853 and is
significant because the 95% confidence interval does not cover
one: [0.757,0.958]

The direct effect in probability metric is estimated as −0.050 and
is not significant. The direct effect odds ratio of 0.731 is not
significant

The total effect in probability metric of −0.072 is significant

The total effect can be compared to the proportion of cigarette
users in the control group of 0.224. This shows a drop of 34%
due to treatment
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Table : Input for smoking data using logistic regression for the cigarette use
outcome

TITLE: Clinical Trials data from MacKinnon et al. (2007)
DATA: FILE = smoking.txt;
VARIABLE: NAMES = intent tx ciguse;

USEVARIABLES = tx ciguse intent;
CATEGORICAL = ciguse;

ANALYSIS: ESTIMATOR = ML;
LINK = LOGIT;
BOOTSTRAP = 10000;

MODEL: ciguse ON intent (beta1)
tx (beta2);
intent ON tx (gamma);

MODEL INDIRECT:
ciguse IND intent tx;

MODEL CONSTRAINT:
NEW(indirect direct);
indirect = EXP(beta1*gamma);
direct = EXP(beta2);

OUTPUT: TECH1 TECH8 SAMPSTAT
CINTERVAL(BOOTSTRAP);

PLOT: TYPE = PLOT3;
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Indirect and Direct Effects for Smoking Data Using Logistic

Not assuming a rare outcome (using MODEL INDIRECT):
TNIE (OR) = 0.858, TNDE (OR) = 0.716

Assuming a rare outcome (using MODEL CONSTRAINT):
TNIE (OR) = 0.843, TNDE (OR) = 0.686

The rare outcome results indicate stronger effects with estimates
farther from one

The rare outcome assumption may not be suitable here with 18%
smoking prevalence

Probit and logistic give similar results
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Moderated Mediation with a Binary Outcome: Vaccination

Hopfer (2012) analyzed data from a randomized control trial
aimed at increasing the vaccination rate for the human
papillomavirus (HPV) among college women (n = 394)

Subjects were randomized into three different intervention groups
and a control group where the groups were presented with
different forms of video with vaccine decision narratives
The mediator measures intent to get vaccinated
Control variables are HPV communication with parents (yes/no),
age, sexually active (yes/no), and HPV knowledge
Only the effects of the combined peer-expert intervention are
considered (tx2)
In this group, to which 25% of the sample was randomized, the
vaccination rate is 22.2% whereas in the control group it is 12.0%
This gives an estimate of the total intervention effect in the
probability metric of 0.10 and in the odds ratio metric of 2.70
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Figure : Moderated mediation model for the HPV vaccination data using a
logistic regression for the vaccination outcome

vacc

hpvcomm

knowl

tx1

tx2

tx3

intent4

age

sxyes

mx
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Table : Input for the model with intervention-mediator interaction for HPV
vaccination data

VARIABLE:
USEVARIABLES = intent4 tx1 tx2 tx3 vacc hpvcomm age
sxyes knowl mx;
CATEGORICAL = vacc;
MISSING = ALL (99);

DEFINE: mx = intent4*tx2;
CENTER age knowl(GRANDMEAN);

ANALYSIS: ESTIMATOR = ML;
BOOTSTRAP = 10000;

MODEL: vacc ON intent4 tx1 tx2 tx3 hpvcomm age sxyes knowl mx;
intent4 ON tx1 tx2 tx3 hpvcomm age sxyes knowl;

MODEL INDIRECT:
vacc MOD intent4 mx tx2;

OUTPUT: SAMPSTAT PATTERNS CINTERVAL(BOOTSTRAP)
TECH1 TECH8;

PLOT: TYPE = PLOT3;
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Table : Results for HPV vaccination data

Two-Tailed
Estimate S.E. Est./S.E. P-Value

vacc ON
intent4 1.303 0.262 4.974 0.000
tx1 0.320 0.435 0.735 0.463
tx2 -1.180 2.271 -0.520 0.603
tx3 -0.818 2.141 -0.382 0.703
hpvcomm 0.242 0.350 0.693 0.488
age 0.194 0.084 2.311 0.021
sxyes 0.219 0.333 0.658 0.511
knowl -0.041 0.072 -0.572 0.568
mx 0.494 0.660 0.749 0.454

intent4 ON
tx1 0.149 0.106 1.400 0.161
tx2 0.300 0.092 3.270 0.001
tx3 -0.066 0.141 -0.465 0.642
hpvcomm 0.093 0.078 1.196 0.232
age -0.049 0.021 -2.283 0.022
sxyes 0.044 0.078 0.573 0.567
knowl -0.003 0.017 -0.160 0.873

Intercepts
intent4 2.718 0.082 32.959 0.000

Thresholds
vacc$1 6.227 0.877 7.100 0.000

Residual Variances
intent4 0.591 0.041 14.293 0.000
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Table : Bootstrap confidence intervals without and with
intervention-mediator interaction for HPV vaccination data

Confidence intervals of total, indirect, and direct effects based
on counterfactuals (causally-defined effects)

Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5%

Without intervention-mediator interaction

Effects from TX2 to VACC
Tot natural IE 0.016 0.020 0.048 0.083 0.092
Pure natural DE -0.019 -0.010 0.041 0.098 0.111
Total effect 0.013 0.024 0.089 0.165 0.182

Odds ratios for binary Y
Tot natural IE 1.155 1.197 1.448 1.833 1.932
Pure natural DE 0.803 0.894 1.523 2.715 3.045
Total effect 1.137 1.283 2.205 4.115 4.665

With intervention-mediator interaction

Effects from TX2 to VACC
Tot natural IE 0.016 0.020 0.056 0.099 0.109
Pure natural DE -0.022 -0.012 0.037 0.095 0.107
Total effect 0.016 0.028 0.093 0.169 0.186

Odds ratios for binary Y
Tot natural IE 1.147 1.200 1.541 2.096 2.238
Pure natural DE 0.773 0.865 1.467 2.662 2.964
Total effect 1.178 1.313 2.260 4.234 4.791
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Figure : Bootstrap distribution for the total natural indirect effect estimate in
probability metric for the model with intervention-mediator interaction for
the HPV vaccination data
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Mediation with a Count Outcome: Y is the Log Rate
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5
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6

logµi = β0 +β1 Mi +β2 Xi +β3 MXi +β4 Ci,
(50)

Mi = γ0 + γ1 Xi + γ2 Ci + εmi. (51)

As before, the counterfactually-based causal effects consider terms
such as

E[Y(x1,M(x0))] =
∫

∞

−∞

E[Y | C = c,X = x1,M = m] (52)

× f (M | C = c,X = x0) ∂M. (53)

This needs to take into account that the rate (mean) is

E[Y | C = c,X = x1,M = m] = eβ0+β1 m+β2 x1+β3 m x1+β4 c. (54)
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Example: A Mediation Model for Aggressive Behavior and a
School Removal Count Outcome: Case 3 (mx) Moderation

tx

agg5

remove

agg1

mx

Randomized field experiment in
Baltimore public schools with a
classroom-based intervention aimed at
reducing aggressive-disruptive behavior
among elementary school students
(Kellam et al., 2008). The analysis uses
n = 250 boys.

The outcome variable remove is the number of times a student has been
removed from school during grades 1-7
tx is the binary exposure variable representing the intervention
The Fall baseline aggression score is agg1 which was observed before the
intervention started
The mediator variable agg5 is the Grade 5 aggression score.
An intervention-mediator interaction variable mx is included to moderate the
influence of the mediator on the outcome.
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Table : Input for negative binomial model for school removal data

VARIABLE:
USEVARIABLES = remove agg5 agg1 tx mx;
IDVARIABLE = prcid;
COUNT = remove(NB);
USEOBSERVATIONS = gender EQ 1 AND (desgn11s EQ 1 OR
desgn11s EQ 2 OR desgn11s EQ 3 OR desgn11s EQ 4);

DEFINE: IF(desgn11s EQ 4)THEN tx=1;
IF(desgn11s EQ 1 OR desgn11s EQ 2 OR desgn11s EQ 3)THEN
tx=0;
remove = total17;
agg1 = sctaa11f;
agg5 = sctaa15s;
CENTER agg1 agg5(GRANDMEAN);
mx = agg5*tx;

ANALYSIS: ESTIMATOR = ML;
BOOTSTRAP = 10000;
PROCESSORS = 8;

MODEL: remove ON agg5 tx mx agg1;
agg5 ON tx agg1;

MODEL INDIRECT:
remove MOD agg5 mx tx;

OUTPUT: SAMPSTAT TECH1 TECH8 PATTERNS
CINTERVAL(BOOTSTRAP);

PLOT: TYPE = PLOT3;
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Table : Bootstrap confidence intervals for effects for school removal data

Confidence intervals of total, indirect, and direct effects based
on counterfactuals (causally-defined effects)

Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5%

Effects from TX to REMOVE
Tot natural IE -0.341 -0.283 -0.119 -0.024 -0.010
Pure natural DE -0.681 -0.608 -0.272 0.125 0.213
Total effect -0.794 -0.722 -0.391 -0.032 0.034

Other effects
Pure natural IE -0.358 -0.327 -0.183 -0.050 -0.023
Tot natural DE -0.587 -0.525 -0.208 0.135 0.213
Total effect -0.794 -0.722 -0.391 -0.032 0.034
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Figure : Total natural indirect effect bootstrap distribution for school
removal data
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The indirect effect estimate −0.119 is in a log rate metric for the
count outcome of school removal and is hard to interpret

One way to make the effect size understandable is to compute the
probability of a zero count
The intervention increases the probability of a zero school
removals from 0.294 to 0.435
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Two-Part Mediation Modeling

Example from Hayes (2013):
n = 262 small-business owners’ economic stress (Pollack et al.,
2011)
The exposure variable is a continuous variable representing
economic stress
The mediator variable is a continuous variable representing
depressed affect
The outcome variable is a continuous variable representing
thoughts about withdrawing from their entrepreneurship

The outcome variable withdraw has a 30% floor effect:
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Table : Input for two-part mediation modeling of economic stress data

TITLE: Hayes ESTRESS example, cont’s X
DATA: FILE = estress.txt;
VARIABLE: NAMES = tenure estress affect withdraw sex age ese;

USEVARIABLES = affect estress u y;
CATEGORICAL = u;

DEFINE: withdraw = withdraw - 1;
DATA TWOPART:

NAMES = withdraw;
BINARY = u;
CONTINUOUS = y;
CUTPOINT = 0;

ANALYSIS: ESTIMATOR = ML;
LINK = PROBIT;
BOOTSTRAP = 1000;

MODEL: y ON affect (beta1)
estress (beta2);
[y] (beta0);
y (v);
affect ON estress (gamma1);
[affect] (gamma0);
affect (sig);
u ON affect (kappa1)
estress (kappa2);
[u$1] (kappa0);

MODEL INDIRECT:
u IND affect estress (6.04 4.62);
-table continues-
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Table : Input for two-part mediation modeling of economic stress data
MODEL CONSTRAINT:

NEW(x1 x0 ey1 ey0 mum1 mum0 ay1 ay0 bym11 bym10 bym01
bym00 eym11 eym10 eym01 eym00 tnie pnde total pnie beta3 sd pi11
pi10 pi01 pi00);
beta3 = 0;
x1=6.04;
x0=4.62;
ey1=EXP(v/2)*EXP(beta0+beta2*x1);
ey0=EXP(v/2)*EXP(beta0+beta2*x0);
mum1=gamma0+gamma1*x1;
mum0=gamma0+gamma1*x0;
ay1=sig*(beta1+beta3*x1);
ay0=sig*(beta1+beta3*x0);
bym11=(ay1/mum1+1);
bym10=(ay1/mum0+1);
bym01=(ay0/mum1+1);
bym00=(ay0/mum0+1);
sd=SQRT(kappa1*kappa1*sig+1);
pi11=PHI((-kappa0+kappa2*x1+kappa1*bym11*
(gamma0+gamma1*x1))/sd);
pi10=PHI((-kappa0+kappa2*x1+kappa1*bym10*
(gamma0+gamma1*x0))/sd);
pi01=PHI((-kappa0+kappa2*x0+kappa1*bym11*
(gamma0+gamma1*x1))/sd);
pi00=PHI((-kappa0+kappa2*x0+kappa1*bym00*
(gamma0+gamma1*x0))/sd);
eym11=EXP((bym11*bym11-1)*mum1*mum1/(2*sig));
eym10=EXP((bym10*bym10-1)*mum0*mum0/(2*sig));
eym01=EXP((bym01*bym01-1)*mum1*mum1/(2*sig));
eym00=EXP((bym00*bym00-1)*mum0*mum0/(2*sig));
tnie=pi11*ey1*eym11-pi10*ey1*eym10;
pnde=pi10*ey1*eym10-pi00*ey0*eym00;
total=pi11*ey1*eym11-pi00*ey0*eym00;
pnie=pi01*ey0*eym01-pi00*ey0*eym00;

PLOT: TYPE = PLOT3;
OUTPUT: SAMPSTAT TECH1 TECH8

CINTERVAL(BOOTSTRAP);
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Table : Bootstrap confidence intervals for four mediation models

Confidence intervals for effects

Lower 2.5% Lower 5% Estimate Upper 5% Upper 2.5%

(1) Two-part: overall effects for continuous part of the outcome

TNIE 0.104 0.121 0.203 0.293 0.311
PNDE -0.304 -0.276 -0.145 -0.011 0.019
TE -0.124 -0.089 0.058 0.207 0.246

(2) Two-part: effects for binary part of the outcome

TNIE 0.036 0.041 0.071 0.103 0.108
PNDE -0.074 -0.062 -0.016 0.028 0.035
TE -0.006 0.005 0.055 0.098 0.105

(3) Two-part: conditional effects for continuous part of the outcome

TNIE 0.043 0.053 0.112 0.177 0.194
PNDE -0.322 -0.299 -0.160 -0.008 0.023
TE -0.219 -0.184 -0.048 0.105 0.131

(4) Regular: effects using log y

TNIE 0.098 0.108 0.182 0.267 0.284
PNDE -0.236 -0.209 -0.084 0.044 0.066
TE -0.072 -0.045 0.099 0.243 0.269

(5) Regular: effects using the original y

TNIE 0.103 0.117 0.189 0.266 0.282
PNDE -0.263 -0.243 -0.109 0.027 0.051
TE -0.116 -0.069 0.080 0.220 0.245
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