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1 Introduction

In mixture modeling, indicator variables are used to identify an underlying latent

categorical variable. In many practical applications we are interested in using

the latent categorical variable for further analysis and exploring the relationship

between that variable and other, auxiliary observed variables. If we use a direct

approach where the auxiliary variables are included in the mixture model the

latent class variable may have an undesirable shift in the sense that it is no longer

measured simply by the original latent class indicator variables but now it is also

measured by the auxiliary variables. The shift can be so substantial that the

analysis can yield meaningless results because it is no longer based on the original

latent class variable.

Different approaches have been proposed recently to remedy this problem and

are discussed in detail in Asparouhov and Muthén (2014). Among these are

the 3-step approach proposed by Vermunt (2010) and the approach of Lanza et

al. (2013). Both of these approaches are implemented in Mplus and the details

of that implementation are discussed in Asparouhov and Muthén (2014). It is

pointed out in Asparouhov and Muthén (2014) that the 3-step approach does not

resolve the problem of shifting classes completely. In some situations when the

auxiliary variable is included in the final stage the latent class variable can shift

substantially and invalidate the results. Mplus monitors the shift in classes with

the 3-stage approach and if this shift is substantial results are not reported. This

monitoring is conducted with the automatic Mplus commands DU3STEP and

DE3STEP, however, if a manual 3-step approach is conducted the monitoring has

to be done manually as well.
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Further simulation studies conducted in Bakk and Vermunt (2014) confirm the

finding that the 3-step approach fails in certain situations. Bakk and Vermunt

(2014) also point out that the approach of Lanza (2013) for distal continuous

outcomes, implemented in Mplus with the DCON command, can also fail due to

assumptions underlying this method, primarily related to unequal variance across

classes. The method yields poor results when the entropy is low and there is a

substantial difference between the variances of the distal outcome across classes. If

either one of these is not present then Lanza’s method works well. With categorical

distal outcome Lanza’s method has no such drawbacks or any assumptions that

can be violated.

A method proposed in Bray et al. (2014) appears to yield results similar to

the method in Lanza et al. (2013) for continuous distal outcomes. This method

also fails when the distal outcome has unequal variance across classes.

Bakk and Vermunt (2014) also consider in simulation studies the modified

BCH method, BCH for short, described in Vermunt (2010) and also in Bakk et

al. (2013). For the distal outcome model that evaluates the means across classes

for a continuous auxiliary variable these simulations show that the BCH method

substantially outperforms Lanza’s method and the 3-step method. The BCH

method avoids shifts in latent class in the final stage that the 3-step method is

susceptible to. In its final stage the BCH method uses a weighted multiple group

analysis, where the groups correspond to the latent classes, and thus the class

shift is not possible because the classes are known. In addition, the BCH method

performs well when the variance of the auxiliary variable differs substantially

across classes, i.e., resolving the problems that Lanza’s method is susceptible to.

The BCH method uses weights wij which reflect the measurement error of the
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latent class variable. In the estimation of the auxiliary model, the i-th observation

in class/group j is assigned a weight of wij and the auxiliary model is estimated

as a multiple group model using these weights. The main drawback of the BCH

method is that it is based on weighting the observations with weights that can take

negative values. If the entropy is large and the latent class variable is measured

without error then the weight wij is 1 if the i-th observation belongs to class j and

zero otherwise. If the entropy is low, however, the weights wij can become negative

and the estimates for the auxiliary model can become inadmissible. For example,

it is possible that the variance of the distal outcome is estimated to a negative

value or that the frequency table of a categorical auxiliary variable has a negative

value. In such cases it would be difficult to utilize the BCH method beyond the

basic distal outcome mean comparison model. Bakk and Vermunt (2014) show

that the means of a continuous distal outcomes can be estimated correctly even

when the sample group specific variances are negative. To obtain an admissible

solution the estimated model holds equal the variances across group/class. In

this simple model the mean and variance estimates are independent and thus the

equal variance restriction has no effect on the mean estimates. However, if one is

interested in evaluating the effect of the latent class variable on a more general

auxiliary model it is not clear how to resolve the problems with inadmissible

solutions due to negative weights.

Two versions of the BCH method are implemented in Mplus. The first version

is referred to as the automatic version. This procedure evaluates the mean of a

continuous distal outcome variable across classes using the approach of Bakk and

Vermunt (2014). In this version one simply specifies the measurement model for

the latent class variable and specifies the auxiliary variable as such. The second
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version is the manual version which allows us to estimate the effect of a latent class

variable on an arbitrary auxiliary model. This version requires two separate runs.

In the first run we estimate the latent class measurement model and save the BCH

weights. In the second run we estimate the general auxiliary model conditional on

the latent class variable using the BCH weights. Both BCH versions are illustrated

in the next two sections.

2 The automatic BCH approach for estimating

the mean of a distal continuous outcome

across latent class

This approach is very similar to the DU3STEP and DE3STEP commands in

Mplus. With the following input file we estimate a latent class model using the 8

binary indicator variables U1, ..., U8. We also independently estimate the mean of

the auxiliary variable Y across the different classes with the BCH method.

Variable:

Names are U1-U8 Y;

Categorical = U1-U8;

Classes = C(4);

Auxiliary = Y(bch);

Data: file=a1.dat;

Analysis: Type = Mixture;
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The model estimates for the latent class model are not affected by the auxiliary

variable and the results for the auxiliary variable mean estimates can be located

in the output file

3 Using Mplus to conduct the BCH method

with an arbitrary secondary model

In many situations it would be of interest to estimate a more advanced secondary

model with the BCH method. In the Mplus implementation the secondary model

can be an arbitrary model with any number and types of variables. The model

is essentially estimated as a multiple group model as if the latent class variable

is observed. The BCH method uses group specific weights for each observation

that are computed during the latent class model estimation. An outline of the

procedure is as follows. First estimate a latent class model using only the latent

class indicator variables and save the BCH weights. All variables that will be
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used in the secondary model should be placed in the auxiliary variable command

without any specification. That way the auxiliary variables will be saved in the

same file as the BCH weights. This is step 1 of the estimation. In step 2 we simply

specify the auxiliary model and we use the BCH weights as training data.

3.1 Regression auxiliary model

In the following example we estimate the auxiliary regression model of a dependent

variable Y on a covariate X. We measure a 3-class latent variable using an LCA

model with 10 binary items and then use that latent variable to estimate class

specific regression Y on X. The example and the data are the same as the example

presented on page 332 in Asparouhov and Muthén (2014). In the first step we use

the following input file to estimate the LCA model and save the BCH weights

Variable:

Names=U1-U10 Y X;

Categorical = U1-U10;

Classes = C(3);

Usevar=U1-U10;

Auxiliary=Y X;

Data: file=manBCH.dat;

Analysis: Type = Mixture;

Savedata: File= manBCH2.dat; Save=bchweights;

Here the key command is Save=bchweights; which requests the BCH weight
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for further analysis. In the second step the following input file can be used to

estimate the class specific regression of Y on X.

Variable:

Names = U1-U10 Y X W1-W3 MLC;

Usevar are Y X W1-W3;

Classes = C(3);

Training=W1-W3(bch);

Data: file=manBCH2.dat;

Analysis: Type = Mixture; Starts=0; Estimator=mlr;

Model:

%overall%

Y on X;

%C#1%

Y on X;

%C#2%

Y on X;

%C#3%

Y on X;

Note that the latent class indicator variables U1-U10 are not on the USEVAR

list in this step. The key commands here are Training=W1-W3(bch); which

specifies the BCH weights to be used in this secondary analysis, Starts=0;

because this is a multiple group analysis and random starting values are not
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needed, and Estimator=mlr; because that estimator leads to better standard

errors becasue the analysis utilizes weights, see Bakk and Vermunt (2014). The

results of the auxiliary model estimation are found as usual in the output file of

the second step run.

3.2 Regression auxiliary model combined with latent class

regression

Distal outcomes are often studied in the presence of covariates so that the effect

of the latent class variable on the distal is controlled for by those covariates. This

is a variation on the modeling just discussed where the covariate X influences not

only Y but also the latent class variable. Following is an illustration of the manual

BCH estimation for such a model.

The auxiliary model we are interested in estimating with the BCH method is

given by the following two equations

Y |C = αc + βcX

P (C = c|X) =
Exp(γ0c + γ1cX)∑
cExp(γ0c + γ1cX)

We illustrate this BCH manual estimation with a four class model measured by 8

binary indicators Ui where

P (Ui = 1|C) = 1/(1 + Exp(sciτ))

where s1p = −1, s4p = 1, s2p = 1 for p = 1, ..., 4, s1p = −1 for p = 5, ..., 8, s3p = −1
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for p = 1, ..., 4 and s3p = 1 for p = 5, ..., 8. We set the value of τ to 1 to generate

the data. We generate a single data set of size N = 50000 according to the above

model. The first step model input is as follows.

Variable:

Names are U1-U8 y x;

Usevar=U1-U18;

Categorical = U1-U8;

Classes = C(4);

Auxiliary=Y X;

Data: file=1.dat;

Analysis: Type = Mixture; starts=0;

Savedata: File= 2.dat; Save=bchweights;

Model:

%Overall%

%c#1%[
U1$1-U8$1*-1.0

]
;

%c#2%[
U1$1-U4$1*1.0 U5$1-U8$1*-1.0

]
;

%c#3%[
U1$1-U4$1*-1.0 U5$1-U8$1*1.0

]
;

%c#4%[
U1$1-U8$1*1.0

]
;
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Starting values are provided so that the class order does not reverse from the

generated order. In real data analysis starting values are not needed. Instead, a

large number of random starting value should be set using the starts command.

The second step input is as follows

Variable:

Names = U1-U8 Y X W1-W4 MLC;

Usevar = Y X W1-W4;

Classes = c(4);

Training=W1-W4(bch);

Data: file=1.dat;

Analysis: Type = Mixture; starts=0;

Model:

%Overall%

C on X;

Y on X;

%c#1%

Y on X;

%c#2%

Y on X;

%c#3%

Y on X;

%c#4%

Y on X;
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The results of this simulation are presented in Table 1. All estimates are

close to the true parameter values and all but one of them are within the implied

confidence limits. Thus we conclude that the manual BCH approach can be used

for more complex auxiliary models. If we remove the variable Y from the above

example we get an example where the auxiliary variable is a latent class predictor.

Thus the BCH manual approach can be used as an alternative to the R3STEP

auxiliary command which uses a 3-step estimation approach.

4 Simulation study with a continuous distal

auxiliary outcome

In this section we extend the simulation studies presented in Section 6.1 of

Asparouhov and Muthén (2014) to include the BCH method and the Lanza et al.

(2013) method referred to as DCON. For completeness we describe the simulation

and include the results already presented in that article.

We estimate a 2-class model with 5 binary indicator variables. The distribution

for each binary indicator variable U is determined by the usual logit relationship

P (U = 1|C) = 1/(1 + Exp(τc))

where C is the latent class variable which takes values 1 or 2 and the threshold

value τc is the same for all 5 binary indicators. In addition we set τ2 = −τ1 for

all five indicators. We choose three values for τ1 to obtain different level of class

separation/entropy. Using the value of τ1 = 1.25 we obtain an entropy of 0.7,
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Table 1: Manual BCH estimation

Parameter True Value Estimated Value SE

α1 0 0.013 0.035

α2 1 0.984 0.030

α3 0 0.123 0.042

α4 2 1.979 0.022

β1 1 0.964 0.037

β2 2 2.043 0.047

β3 -1 -0.910 0.046

β4 0 -0.005 0.027

γ11 1 1.004 0.027

γ12 0.5 0.542 0.029

γ13 -0.3 -0.246 0.030

with value τ1 = 1 we obtain an entropy of 0.6, and with value τ1 = 0.75 we obtain

an entropy of 0.5. The latent class variable is generated with proportions 43%

and 57%. In addition to the above latent class model we also generate a normally

distributed distal auxiliary variable with mean 0 in class one and mean 0.7 in class

2 and variance 1 in both classes. We apply the pseudo-class method, the 3-step

method, Lanza’s method, the 1-step method, and the BCH method to estimate

the mean of the auxiliary variable in the two classes.

Table 2 presents the results for the mean of the auxiliary variable in class 2.

We generate 500 samples of size 500 and 2000 and analyze the data with the five

methods. The results in Table 2 show that the BCH procedure and the 3-step

procedure have almost identical performance in terms of bias, MSE and coverage.

In this simulation the BCH method shows no bias and the coverage is near the

nominal level with the exception of the case of low entropy of 0.5 and sample size

of 500 where a small bias is observed which also leads to decrease of coverage.
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Table 2: Distal outcome simulation study: Bias/Mean Squared Error/Coverage

PC 3-step Lanza
N Entropy (E) (DU3STEP) (DCON) 1-step BCH

500 0.7 .10/.015/.76 .00/.007/.95 .00/.006/.92 .00/.006/.94 .00/.007/.94

500 0.6 .16/.029/.50 .01/.008/.94 .00/.007/.89 .00/.007/.94 .01/.008/.94

500 0.5 .22/.056/.24 .03/.017/.86 .00/.012/.80 .01/.012/.96 .03/.017/.86

2000 0.7 .10/.011/.23 .00/.002/.93 .00/.002/.89 .00/.002/.93 .00/.002/.93

2000 0.6 .15/.025/.03 .00/.002/.93 .00/.002/.87 .00/.002/.94 .00/.002/.94

2000 0.5 .22/.051/.00 .00/.004/.91 .00/.003/.80 .00/.003/.94 .00/.004/.91

Next we conduct a simulation study to compare the performance of the four

different methods DU3STEP, DE3STEP, Lanza’s method and the BCH method

in the situation when the distal variable variances are different across class. The

two 3-step approaches DU3STEP and DE3STEP differ in the third step. The

DU3STEP approach estimates different means and variances for the distal variable

in the different classes while the DE3STEP approach estimates different means but

equal variances. The second approach is more robust and more likely to converge

but may suffer from the mis-specification that the variances are held equal in the

different classes. We use the same simulation as above except that we generate a

distal outcome in the second class with variance 20 instead of 1. The results for

the mean in the second class are presented in Table 3.

It is clear from these results that the unequal variance 3-step approach

(DU3STEP) is superior particularly when the class separation is poor (entropy

level of 0.6 or less). The equal variance approach (DE3STEP) can lead to severely

biased estimates when the class separation is poor and the variances are different

across classes. Lanza’s method appears to have completely failed particularly

when the class separation is poor. The BCH method appears to be slightly worse
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Table 3: Distal outcome with unequal variance simulation study: Bias/Mean
Squared Error/Coverage

N Entropy DE3STEP DU3STEP Lanza(DCON) BCH

500 0.7 .05/.147/.95 .00/.099/.94 .03/.129/.77 .00/.114/.93

500 0.6 .06/.174/.96 .00/.099/.95 .15/.397/.70 .00/.121/.94

500 0.5 .12/.822/.93 .01/.101/.95 1.20/5.755/.46 .04/.160/.94

2000 0.7 .05/.040/.92 .00/.027/.92 .03/.035/.76 .00/.029/.94

2000 0.6 .09/.056/.92 .00/.027/.93 .07/.056/.70 .00/.031/.93

2000 0.5 .11/.094/.95 .00/.029/.92 1.18/4.613/.44 .00/.041/.94

than the DU3STEP approach in terms of bias and MSE but the coverage remains

good near the nominal level. Thus for the continuous distal variable estimation if

the distal variable variances are unequal across class we can recommend only the

DU3STEP and the BCH methods.

5 Simulation study with a non-normal distal

auxiliary outcome

In Section 7.1 of Asparouhov and Muthén (2014) it was shown that when the

distal outcome is not normally distributed the 3-step estimation can fail due

to switching of the classes and the parameter estimates maybe severely biased.

Further simulations illustrating this point were conducted in Bakk and Vermunt

(2014). In this section we conduct a simulation study similar to the those in Bakk

and Vermunt (2014).

We estimate and generate data according to a 4 class LCA model with 8 binary

indicators. The class proportions are as follows: 0.375, 0.25, 0.1875 and 0.1875.
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The measurement model is described as follows

P (Up = 1|C) = 1/(1 + Exp(scpτ))

where s2p = 1, s4p = −1, s1p = −1 for p = 1, ..., 5, s1p = 1 for p = 6, ..., 8, s3p = 1

for p = 1, ..., 5 and s3p = −1 for p = 6, ..., 8. We vary the value of τ to obtain

different entropy value and class separation. If τ = 1.5 the entropy is 0.7. If

τ = 1.25 the entropy is 0.6. If τ = 1 the entropy is 0.5. The distal outcome in

class 1 has the following bimodal distribution 0.5N(0, 0.1)+0.5N(−2, 0.1), in class

two it is also bimodal 0.75N(−2/3, 0.1) + 0.25N(2, 0.1), in class 3 it is the normal

distribution N(2, 0.1) and in class 4 it is the normal distribution N(0.5, 0.1). We

use three different sample sizes N=2000, 5000 and 10000 and generate and analyze

500 replications for each size. In this simulation we can expect that the DU3STEP,

DE3STEP, 1-step and PC method to fail due to non-normality and we can expect

Lanza’s method to fail due to varying variances across class.

In Table 4 we present the results for the distal mean in class 2 for the most

favorable case where Entropy=0.7 and N = 10000 for all of the estimation

methods. No results are presented for the DE3STEP and DU3STEP because in

almost all replications there was no convergence due to large differences between

the step 1 class allocation and step 3 class allocation. Mplus will not report any

results if substantial shift in the classes occur in step 3. The remaining methods

fail dramatically as well with the exception of the BCH method. This simple

simulation suggest that BCH may indeed be much more robust than any other

method.

Next we evaluate the performance of the BCH method for different sample
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Table 4: Non-normal distal outcome simulation study

Method Bias MSE Coverage

DE3STEP - - -

DU3STEP - - -

Lanza 0.663 0.440 0.00

BCH 0.004 0.001 0.89

1-Step 0.643 0.414 0.00

PC 0.155 0.025 0.00

Table 5: Non-normal distal outcome simulation study for the BCH method

N Entropy Bias MSE Coverage Std. Err/Std. Dev.

2000 0.7 0.00 0.007 0.89 0.82

5000 0.7 0.00 0.003 0.89 0.83

10000 0.7 0.00 0.001 0.89 0.81

2000 0.6 0.00 0.016 0.80 0.62

5000 0.6 0.00 0.005 0.82 0.66

10000 0.6 0.00 0.003 0.82 0.67

2000 0.5 0.05 0.057 0.58 0.42

5000 0.5 0.01 0.021 0.59 0.43

10000 0.5 0.00 0.010 0.67 0.43
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sizes and entropy levels. The results are presented in Table 5. The estimates are

unbiased in all cases with small bias being visible for smaller sample sizes and

entropy levels. On the other hand the coverage drops substantially particularly

when the entropy is low. Also the ratio of the standard errors to the standard

deviation, which should be near 1 for large sample sizes is consistently smaller

and it does not improve with increasing the sample size. For example in the

last row of Table 5 we see that even when the sample size is 10000 and entropy

is 0.5 the ratio is 0.43, i.e., the standard errors are underestimated by 57%

and should be nearly twice to what the method currently computes. This has

been noted also in Bakk and Vermunt (2014) and has been suggested there

that the underestimation occurs due to unaccounted variability of the posterior

probabilities that are used as weights in step 3. The BCH method heavily depends

on these posterior probabilities and one can expect that this effect is substantial.

When the class separation is large the underestimation disappears which also

reflects the diminished variability in the posterior probabilities. At this point no

reasonable method is available to resolve this shortcoming although bootstrapping

would resolve this problem and it can be run in Mplus as external montecarlo

where the bootstrap samples are obtained separately.

6 Summary

Many methods have been proposed in recent years for mixture modeling with

auxiliary variables. To clarify the choice of method, Table 6 and 7 list the Mplus

options, give their intended use, and give recommendations on which method

should be used for which purpose.
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Table 6: Alternative auxiliary settings for mixture modeling

DU3STEP

Useage: Continuous distal outcomes

Description; reference: Classification-error corrected; Vermunt (2010) and Asparouhov-Muthén (2014)

Pros and cons: Susceptible to class changes. Mplus will not report results if the class formation changes.

Manual version also available for an arbitrary auxiliary model, including controlling for covariates.

Estimates unequal distal variances across classes.

Recommendation: Preferred method for continuous distal outcomes

Use when Mplus reports results, i.e., there are no class formation changes, otherwise use BCH.

BCH

Useage: Continuous distal outcomes

Description; reference: Measurement-error weighted; Bakk and Vermunt (2014)

Pros and cons: Avoids class changes. Avoids the DCON shortcomings with class-varying variances for distals.

Manual version also available for an arbitrary auxiliary model, including controlling for covariates.

Possible SE underestimation with low entropy.

Recommendation: Preferred method for continuous distal outcomes

DCAT

Useage: Categorical distal outcomes

Description; reference: Distal treated as covariate; Lanza et al. (2013)

Pros and cons: Avoids class changes

Recommendation: Preferred method for categorical distal outcomes

R3STEP

Useage: Covariates

Description; reference: Classification-error corrected; Vermunt (2010)

Pros and cons: Works well

Recommendation: Recommended method with covariates
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Table 7: Alternative auxiliary settings for mixture modeling, continued

DE3STEP

Useage: Continuous distal outcomes. Equal distal variances across classes

Description; reference: Classification-error corrected; Vermunt (2010) and Asparouhov-Muthén (2014)

Pros and cons: Susceptible to class changes and class-varying variances.

Mplus will not report results if the class formation changes.

Recommendation: Inferior to BCH and DU3STEP.

Use only when DU3STEP does not converge.

DCON

Useage: Continuous distal outcomes

Description; reference: Distal treated as covariate; Lanza et al. (2013) and Asparouhov-Muthén (2014)

Pros and cons: Avoids class changes. Sensitive to class-varying variances for distals when entropy is low

Recommendation: Inferior to BCH and DU3STEP when DU3STEP does not change the class formation.

Use only when entropy is higher than 0.6.

If variance appears to be varying across class more than a factor of 2 do not use this method.

This check can be done using most likely class assignment - it is not done automatically by Mplus.

Use only for methods research purposes

E

Useage: Continuous distal outcomes

Description; reference: Pseudo-class (PC) method; Wang et al. (2005)

Pros and cons: Gives biased results

Recommendation: Superseded by BCH and DU3STEP. Use only for methods research purposes

R

Useage: Covariates

Description; reference: Pseudo-class (PC) method; Wang et al. (2005)

Pros and cons: Gives biased results

Recommendation: Superseded by R3STEP. Use only for methods research purposes
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