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1 Introduction

This paper considers the analysis of repeated measures data. Conventional random

e®ects growth modeling in the tradition of Laird and Ware (1982) represents unob-

served heterogeneity among subjects in the form of random e®ects, i.e. continuous la-

tent variables. Growth mixture modeling (Muth¶en & Shedden, 1999; Muth¶en, 2001a, b;

Muth¶en, Brown, Masyn, Jo, Khoo, Yang, Wang, Kellam, Carlin, & Liao, 2000; Muth¶en

& Muth¶en, 1998-2001, Appendix 8) o®ers an important extension of conventional mod-

eling in that more general forms of unobserved heterogeneity can be captured using

categorical latent variables (latent classes). Growth mixture modeling as implemented

in the Mplus software (Muth¶en & Muth¶en, 1998-2001) allows for latent classes that

may have di®erent shapes, antecedents, and consequences. A related longitudinal tech-

nique, latent class growth analysis (Nagin, 1999), also studies unobserved heterogeneity

in the form of categorical latent variables. Growth mixture modeling, however, allows

categorical and continuous heterogeneity jointly, capturing potential further continuous

heterogeneity among individuals within the latent classes.

1.1 Non-Normal Outcomes

Growth mixture modeling is also useful for describing growth in outcomes that can be

seen as continuous but non-normally distributed. For continuous outcomes, Mplus uses

the assumption of within-class conditional normality for the set of repeated measures

given the set of covariates. This means that the outcomes are not necessarily normal
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within class due to non-normal covariates. More importantly, the mixture distribution

can obtain a very non-normal shape, especially with a majority class having the lowest

(or highest) mean and low variance combined with minority classes with higher (or

lower) means. This is illustrated by the hypothetical 2-class situation shown in Figure

1. Similar types of distributions were seen in the Muth¶en, et al. (2000) analysis of

teacher-rated aggressive behavior of children in classrooms. Histograms for 200 children

observed at 9 time points in grades 1-7 are shown in Figure 2 (the bar to the left of the

zero point represents missing data).

FIGURE 1

FIGURE 2

A type of non-normality that cannot be well captured by mixtures of normal distri-

butions arises in studies where a signi¯cant number of individuals are at the lowest value

of an outcome, for example representing absence of a behavior. Applications include al-

cohol, drug, and tobacco use among adolescents. Figures 3 and 4 show examples of such

situations using alcohol data from 1234 individuals in the Alcohol Misuse Prevention

Study (AMPS; Maggs & Schulenberg, 1998) in grades 6-12 (the bar to the left of the

zero point represents missing data). Figure 3 shows histograms for the variable TFQ,

frequency x quantity of beer, wine, hard liquor measured separately and then summed

and collapsed into a 12-point scale for number of drinks, scored as 0 (no drinking), 1

(< 1/year), 2 (1 to 2/year), 3 (> 2 to < 6/year), 4 (6 to < 12/year), 5 (1 to 2/month),

6 (> 2 to < 4/month), 7 (1 to 2/week), 8 (> 2 to 4/week), 9 (> 4 to 7/week), 10 (
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> 7 to 10/week), 11 (> 10 to 14/week), 12 (> 14/week). Figure 4 shows histograms for

the variable AMOVER, which is the average of three items related to alcohol misuse:

During the past 12 months, how many times did you - drink more than you planned to?

- feel sick to your stomach after drinking? - get very drunk? Responses were: 0 (never),

1 (once), 2 (two times), 3 (three or more times).

FIGURE 3

FIGURE 4

Figures 3 and 4 show that the lowest value, the absence of the behavior in question,

is often the most common outcome. Special modeling is required to properly represent

the large percentage of individuals not engaging in the behavior. These distributions

cannot be well represented by normal mixtures as in Figure 1. For values above the

lowest, however, the distributions are similar to those of ¯gures 1 and 2.

1.2 Related Research

Censored-normal models are often used for outcomes of the kind shown in ¯gures 3 and

4, including classic Tobit regression analysis (Amemiya, 1985; Tobin, 1958) and latent

class growth modeling in the TRAJ program (Jones, Nagin, & Roeder, 1998). A recent

article by Olsen and Schafer (2001) gives an excellent overview of several related modeling

e®orts. Censored-normal models have been critized, see e.g. Duan, Manning, Morris,

Newhouse (1983), because of the limitation of assuming that the same set of covariates

in°uences both the decision to engage in the behavior and the amount observed. A
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two-part modeling approach proposed in Olsen and Schafer (2001) avoids this limitation

and will be utilized here.

To simplify the discussion, the lowest value will be taken to be zero from here on.

It is useful to distinguish between two kinds of zero outcomes. First, individuals may

have zero values at a given time point because their behavioral activity is low and is

zero during certain periods ("random zeroes"). Second, individuals may not engage in

the activity at all and therefore have zeroes throughout all time points of the study

("structural zeroes"). Olsen and Schafer (2001) proposed a two-part model for the case

of random zeroes, whereas Carlin, Wolfe, Brown, and Gelman (2001) considered the case

of structural zeroes. In both articles, a random-e®ects logistic regression was used to

express the probabilities of non-zeroes versus zeroes.

Olsen and Schafer (2001) studied alcohol use in grades 7-11. To capture the changing

zero status across time, the logistic regressions for each time point were expressed as a

random-e®ects growth model. The term two-part model refers to having both a logistic

model part to model the probability of non-zero versus zero outcomes (part 1) and a

continuous-normal model part for the values of the non-zero outcomes (part 2). In

Olsen and Schafer (2000), the two parts have correlated random e®ects. The two parts

are also allowed to have di®erent covariates, avoiding the limitation of censored-normal

modeling.

Carlin et al. (2001) studied cigarette smoking among adolescents. A 2-class model

was used with a "zero class" (structural zeroes) representing individuals not susceptible
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to regular smoking (also referred to as "immunes"). As pointed out in Carlin et al.

(2001), an individual with zeroes throughout the study does not necessarily belong to

the zero class, but may show zeroes by chance. In their analysis, the estimated proportion

of immunes was 69%, while the empirical proportion with all zeroes was 77%. Because

of this, an ad hoc analysis based on deleting individuals with all zeroes may lead to

distorted results.

Although cross-sectional in nature, related work also includes Deb, Hall, Trivedi and

Hall (2000) who compared a two-part model for users and nonusers of health care with

a two-class model for infrequent and frequent users (see also Deb, 2001; Deb & Holmes,

2000).

As is clear from ¯gures 3 and 4, missing data is common in longitudinal studies so

that whether or not an individual is in the zero category may not be directly observable.

Both Olsen and Schafer (2001) and Carlin et al. (2001) allow for missing data, using

maximum-likelihood estimation under MAR (missing at random; Little & Rubin, 1987).

In this way, individuals with a combination of observed zeroes and missing values can

be classi¯ed as belonging to the zero class.

1.3 A Generalized Growth Mixture Model

Inspired by Olsen and Schafer (2001) and Carlin et al. (2001), this paper proposes a

generalization of growth mixture modeling to handle both random and structural zeroes

in a two-part model. Multiple latent classes are used to represent the growth in the
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probability of non-zero values in part 1 as well as to represent the growth in the non-

zero outcomes in part 2. For the part 1 modeling of the probability of non-zero values,

this represents a latent class growth alternative to the random e®ects modeling of Olsen

and Schafer (2001) and Carlin et al. (2001), i.e. a model in line with Nagin (1999).

The use of latent classes for the part 1 modeling of the probability of non-zero values

may be seen as a semi-parametric alternative to a random e®ects model in line with

Aitkin (1999). Maximum-likelihood estimation for logistic models with random e®ects

typically use Gauss-Hermite quadrature to integrate out the normal random e®ects. The

quadrature uses ¯xed nodes and weights for a set of quadarture points. As pointed out

by Aitkin (1999), a more °exible distributional form is obtained if both the nodes and

the weights are estimated and this approach is equivalent to mixture modeling. Aitkin

(1999) argues that the mixture approach may be particularly suitable with categorical

(binary) outcomes where the usual normality assumption for the random e®ects has

scarce empirical support.

In addition to accounting for random zeroes as in Olsen-Schafer, the proposed part

1 approach incorporates Carlin et al.'s concept of a zero class that has zero probability

of non-zero values throughout the study. A further advantage of the proposed approach

is that covariates are allowed to have di®erent in°uence in di®erent classes. This feature

has proven important in growth mixture applications (Muth¶en, 2001a). For the part 2

modeling of the non-zero outcomes, the proposed modeling extends the Olsen-Schafer

growth model to a growth mixture model, i.e. letting both categorical and continuous

latent variables capture unobserved heterogeneity. This is often necessary to represent
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qualitatively di®erent types of growth. The classes in part 2 do not necessarily all

have to correspond to those of part 1. It is shown that the proposed two-part growth

mixture model can be ¯tted into the general latent variable modeling framework of Mplus

(Muth¶en & Muth¶en, 1998-2001; Appendix 8), using maximum-likelihood estimation

under MAR via the EM algorithm. Mplus input for the analyses presented below can

be found at www.statmodel.com.

The remainder of the paper is organized as follows. Section 2 gives a brief overview

of the Olsen-Schafer model. Section 3 presents the proposed two-part growth mixture

model, including practical aspects of implementing it in Mplus. Section 4 describes in-

depth analyses of data from the alcohol misuse study mentioned in the introduction.

Section 5 concludes.

2 Two-Part Modeling

In line with Olsen and Schafer (2001), let uit (i = 1; : : : ; n; t = 1; 2; : : : ; ni) be a binary

variable representing the zero or non-zero value of the semicontinuous repeated measures

outcome yit,

uit =

8><>:
1 if yit > 0

0 if yit = 0;
(1)

and

yit =

8><>:
mit if yit > 0

ignored if yit = 0;
(2)
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where mit represents a growth model. For instance, with linear growth,

mit = ´0i + ´1i ait + ²it; (3)

where ´0i is a random intercept and ´1i is a random slope with means ®0, ®1 and

covariance matrix ª, ait represents an age-related variable (such as grade), and ²it

are time-speci¯c, normally distributed residuals with means zero and covariance matrix

£ = µI.

Olsen and Schafer (2001) speci¯es a random e®ects logit model for u. For instance,

with linear growth, the logit is expressed as

lit = log[P (uit = 1j´u0i; ´u1i)=(1¡ P (uit = 1j´u0i; ´u1i))] = ´u0i + ´u1i ait; (4)

with right-hand-side quantities de¯ned in line with (3). The random e®ects of ´0i, ´1i,

´u0i, and ´u1i are assumed to follow a joint normal distribution, allowing for correlations

between the u and y growth processes.

Continuing the example of linear growth, let ´i = (´
0
ui;´

0
yi)

0, where ´ui = (´u0i; ´u1i)
0

and ´yi = (´0i; ´1i)
0. Drawing on Olsen and Schafer (2001), the log likelihood for this

model can be expressed as
Pn
i=1 log Li with

Li =
Z
[uij´i] [yij´i] [´i] d´i (5)

=
Z
[uij´ui] [´ui] (

Z
[yij´ui;´yi] [´yij´ui] d´yi ) d´ui: (6)

Due to conditional independence of the ut's given ´u,

log [uij´ui] =
niX
t=1

[uit log lit + (1¡ uit) log (1¡ lit)]: (7)
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Furthermore, [´yij´ui] is a conditional normal density and [yij´ui;´yi] = [yij´yi] is a

conditional normal density for the n¤i £ 1 vector yi, where n¤i is the number of relevant

y outcomes for individual i, i.e. yit > 0 outcomes. The fact that zero y outcomes are

excluded from the y part of the likelihood is a key feature of the two-part approach.

Olsen and Schafer (2001) use maximum-likelihood estimation, solving the numerical

integrations involved in (6) by Laplace approximation.

3 Mixture Modeling

The two-part growth mixture modeling proposed here uses the same general idea as

Olsen-Schafer, but changes the random e®ects speci¯cation of the logit for the u part

into a mixture model and combines this with a growth mixture model for the y part.

The mixture modeling draws on the formulation in Muth¶en and Muth¶en (1998-2001,

Appendix 8) as implemented in the Mplus program.

The mixture is represented by ci, a latent categorical variable with K classes, ci =

(ci1; ci2; : : : ; ciK)
0, where cik = 1 if individual i belongs to class k and zero otherwise. For

simplicity, assume that the age-related variable ait = at and let T denote the maximum

number of time points, allowing individuals to have missing data at some time points.

De¯ne the T £ 1 logit vector for the u's, li = (li1; li2; : : : ; lini)
0. Conditional on an

individual being in class k, the growth model for u is expressed as

li = ¤uk ´ui +Kuk xi; (8)
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´ui = ®uk + ¡uk xi: (9)

Here, ¤uk speci¯es the growth shape, e.g. with linear growth and ´u0 de¯ned as the

initial status,

¤uk =

0BBBB@
1 0
1 a2
...
1 aT

1CCCCA ; (10)

i.e. held constant across classes. The vector xi contains time-varying and time-invariant

covariates. The e®ects of time-varying covariates are captured in Kuk , while the e®ects

of time-invariant covariates are captured in ¡uk . Conditional independence is assumed

for the u's given ci and xi,

P (ui1; ui2; : : : ; uiT jci;xi) = P (ui1jci;xi) P (uiT jci;xi) : : : P (uirjci;xi): (11)

In the Olsen-Schafer model, the logits of (4) vary across individuals, whereas conditional

on ci, xi, the logits of (8) do not. The non-independence of the u's across time instead

arises through the mixture across the K classes similar to latent class analysis (see, e.g.

Clogg, 1995). The classes are typically de¯ned as di®erent trends expressed by di®erent

®uk values in (9). This is a latent class growth analysis model in line with Nagin (1999).

The mixture model relates c to x by multinomial logistic regression

P (cik = 1jxi) = e
®ck+° 0ckxiPK

j=1 e
®cj+° 0cjxi

; (12)

where the last class is a reference class with coe±cients standardized to zero, ®cK = 0,

°ck = 0.

In Olsen and Schafer (2001), the u and the y processes are related through the correla-

tions between their two sets of random e®ects. The counterpart in the mixture modeling
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is to let the distribution of random e®ects for y vary across the latent classes. Following

Muth¶en and Muth¶en (1998-2001, Appendix 8), multivariate normality is assumed for y

conditional on x and class k,

yi = ¤k ´yi +Kk xi + ²i; (13)

´yi = ®k + ¡k xi + ³i; (14)

where the residual vector ²i is N(0;£k) and the residual vector ³i is N(0;ªk), both

assumed to be uncorrelated with other variables. The parameter interpretation is anal-

ogous to that of (8), (9). In line with growth mixture modeling, a basic model would

only let the means ®k vary across classes, whereas some applications may require the

covariance matrices ªk, £k to vary as well (see Muth¶en, 2001 a,b; Muth¶en, Brown,

Masyn, Jo, Khoo, Yang, Wang, Kellam, Carlin, & Liao, 2000).

Mplus carries out maximum-likelihood estimation using the EM algorithm, allowing

for missing data under MAR (Little & Rubin, 1987). The observed-data log likelihood

is
Pn
i=1 log Li, where

Li = [yi;uijxi]; (15)

where [yi;uijxi] is a mixture distribution de¯ned as
KX
k=1

P (cik = 1jxi) N(yij;¹i;§i) [uijcik = 1;xi]; (16)

where ¹i and §i class-speci¯c mean vectors and covariance matrices derived from (13)

and (14).

In the context of the Olsen-Schafer logit model in (4), the ®uk values of (9) can be

seen as points along the axes of the joint random e®ects distribution. In line with this,
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Aitkin (1999) points out that these mixture parameters can be related to the nodes of a

quadrature when integrating out the random e®ects and that the mixture probabilities

correspond to the weights of the quadrature. The mixture can therefore be seen as a

non-parametric representation of the normal distribution of ´ui, for example allowing

for a skewed distribution that may better represent the data. Essentially, the integrals

of (6) are replaced by sums over the latent classes as in (16).

3.1 Two-Part Growth Mixture Modeling In Practice

To carry out two-part growth mixture modeling in the Mplus framework (Muth¶en &

Muth¶en, 1998-2001) a vector of T u's scored 0 or 1 needs to be created for each person

based on the corresponding y being zero or greater than zero. A missing value for y

translates into a missing value for u. In addition, a key feature is to change each y that

is zero into missing data. Using the MAR ML approach, this has the e®ect of ignoring

such y's in the evaluation of the likelihood, as is done in the Olsen-Schafer approach. In

this way, two-part growth mixture modeling is in principle a straightforward application

of Mplus mixture modeling of u and y jointly. A good modeling strategy is, however,

needed given the °exibility of the model. The following ¯ve steps are recommended.

3.1.1 Step 1: Latent Class Analysis of u

A useful starting point is analysis of the u part alone. In step 1, conventional latent class

analysis provides an exploratory tool for ¯nding the number and shapes of the di®erent
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trend classes. Here, the choice of number of classes may be based on the chi-square test

against the unrestricted multinomial distribution, the Bayesian Information Criterion

(BIC; the lower the value the better the model) and the classi¯cation quality based on

posterior probabilities as outlined in Muth¶en and Muth¶en (1998-2001, Appendix 8); see

also Muth¶en and Muth¶en (2000).

3.1.2 Step 2: Latent Class Growth Analysis of u

In step 2, a latent class growth analysis is explored (see, e.g. Muth¶en, 2001, b; Nagin,

1999). Unlike the latent class analysis, latent class growth analysis explicitly utilizes the

fact that the di®erent u variables correspond to repeated measures over time, letting the

latent classes correspond to di®erent trends. The number of classes and the choice of

growth shapes can be based on the latent class analysis of step 1. Latent class growth

analysis uses the modeling structure of (8) and (9).

3.1.3 Step 3: Two-Part Growth Mixture Modeling of u and y jointly

Next, the y part is added to the model. The y part of the model uses the model structure

in (13), (14). In step 3, a growth mixture model is speci¯ed for the y part of the model

using the same number of classes as for the u part and letting only the random e®ect

means vary across the classes. The classes found for the u part of the model may, how-

ever, not be su±cient to describe the heterogeneity in the y development. The ¯t of the

model to the y data can be studied by comparing for each class estimated moments with
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moments created by weighting the individual data by the estimated conditional prob-

abilities (Roeder, Lynch & Nagin, 1999). To check how closely the estimated average

curve within each class matches the individual data, it is also useful to randomly as-

sign individuals to classes based on individual estimated conditional class probabilities.

"Pseudo-class" plots of the observed individual trajectories together with the model-

estimated average trajectory can be used to check the model (Bandeen-Roche et al.,

1997).

3.1.4 Step 4: Further Exploration of the y Part

The ¯t of the model may be improved if classes are added that capture further variation

in the y part in line with regular growth mixture modeling of y. Step 4 explores the need

for additional y classes. As an aid to this, it is useful to perform a separate analysis

of the y part of the model. This is di®erent from regular growth mixture modeling

given that observations with y = 0 have been rescored as missing data. Step 4 also

explores the need for allowing class-varying variances for the random e®ects and/or for

the time-speci¯c residuals.

3.1.5 Step 5: Two-Part Growth Mixture Modeling with Covariates

Step 5 adds covariates. Covariates may in°uence the class membership as in (12), the u

outcomes and trend factors as in (8), (9), and the y outcomes and random e®ects as in

(13), (14).
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4 An Example: Analysis of Alcohol Misuse

The alcohol misuse outcome AMOVER from the AMPS study, shown in Figure 4 above,

serves as an illustrative example of the proposed two-part growth mixture modeling.

The AMPS study was administered in forty-nine schools in south-eastern Michigan with

a total of 2; 666 students measured seven times from Fall of grade 6 to Spring of grade

12, starting in 1984 (Maggs & Schulenberg, 1998). The current analyses focus on the

random half of the sample who were measured in grade 6 and did not have missing data

on AMOVER, resulting in 1; 234 students. Each analysis is carried out with and without

the covariates of gender (female = 0, male = 1) and ethnicity (white = 0, black = 1).

To give a comparison with the results of the two-part growth mixture approach

proposed in this paper, results from conventional growth modeling, Olsen-Schafer two-

part growth modeling, and growth mixture modeling will ¯rst be presented including a

comparison of their estimated mean curves and the in°uence of the two covariates.

4.1 Conventional, Olsen-Schafer Two-Part, and Growth Mix-

ture Modeling

4.1.1 Conventional Modeling

A conventional random e®ects model was ¯tted to the development of the alcohol misuse

outcome AMOVER over the seven time points. For simplicity, a linear model was chosen.

Residual variances were allowed to vary across time. The log likelihood value, # pa-
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rameters, BIC, and chi-square (df) test against the unrestricted model are: ¡4; 772:311,

12, 9; 630:038, and 268:698 (23). The two random e®ects both have signi¯cant varia-

tion. Their means are estimated as 0:18 (intercept) and 0:13 (slope). A signi¯cant im-

provement in ¯t was obtained when allowing correlations between adjacent time-speci¯c

residuals, chi-square (df) = 55:647 (17). Here, the log likelihood value, # parameters,

and BIC values are: ¡4; 665:786, 18, and 9; 459:696. This model modi¯cation, how-

ever, did not alter the signi¯cance of the random e®ects variances and only slightly

changed their estimated means (same to two decimals), so this re¯nement of the model

will not be further considered. It should be noted that the conventional modeling uses

maximum-likelihood estimation under the assumption of normally distributed outcomes.

The chi-square test of model ¯t is most likely strongly in°ated due to the considerable

deviation from normality in these data.

Adding the two covariates Male and Black showed that the intercept had a signif-

icant positive relation to Male and an insigni¯cant relation to Black, while the slope

had a signi¯cant negative relation to Male and a signi¯cant negative relation to Black.

When allowing for correlated errors, the slope was no longer signi¯cantly related to Male

although the estimate was still negative.

4.1.2 Growth Mixture Modeling

A linear growth mixture was applied to 2, 3, 4, 5, and 6 classes. The analyses used a

class-invariant random e®ects covariance matrix and class-invariant residual variances
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allowed to vary across time but having zero correlations. A proper 6-class solution

could not be found but resulted in a singular information matrix using several sets of

starting values. The 5-class solution resulted in the best BIC value. For this model,

the log likelihood value, # parameters, BIC, and entropy values are: ¡3; 869:041, 24,

7; 908:915, and 0:881. The within-class variance of the slope is signi¯cant, while the

variance of the intercept is marginally insigni¯cant. The estimated mean curves and the

class percentages are shown in Figure 5.

FIGURE 5

Adding the two covariates Male and Black, showed signi¯cant e®ects on both class

membership and the random e®ects. Being male was found to give a signi¯cantly higher

odds of being in the high class 1 versus the low normative class 5, as well as being in

class 2 versus class 5. Being black was found to give a signi¯cantly lower odds of being

in the high class 1 versus the low normative class 5, as well as being in class 2 versus

class 5. The only signi¯cant e®ect of the covariates on the within-class intercept and

slope for y is a negative e®ect of being black on the slope.

4.1.3 Olsen-Schafer Two-Part Modeling

For the Olsen-Schafer two-part model, linear growth with random intercepts and slopes

was used in both parts, letting all four random e®ects correlate. Integrating out the two

random e®ects for the y part, this reduces to a two-dimensional quadrature for the two

random e®ects for the u part. Here, a 10£10 Gauss-Hermite quadrature was used. The
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computations were carried out using a not yet available, experimental version of Mplus.

The correlations between the four random e®ects were estimated as ¡0:40 (intercept

part 1, slope part 1), 0:91 (intercept part 1, intercept part 2), ¡0:01 (slope part 1,

intercept part 2), 0:76 (slope part 1, slope part 2), ¡0:18 (intercept part 2, slope part

2), where the 0:91 correlation between the two intercepts illustrates the ¯nding in Olsen

and Schafer (2001) of high correlation between the two processes. The variances for the

random e®ects were all signi¯cantly di®erent from zero, and the random e®ect means

estimated as ¡2:14 (intercept of part 1), 0:61 (slope of part 1), 0:32 (intercept of part

2), 0:17 (slope of part 2). Here, log likelihood = ¡5; 203:947 with 21 parameters, BIC

= 10; 654:080, and Â2LR(122) = 184:985. The log likelihood and BIC values are not

comparable to those of the conventional and growth mixture model analyses because

the two-part model brings in the u variables.

Adding the two covariates Male and Black, it was found that they had signi¯cant

in°uence on the random e®ects in both parts of the model. For the u probabilities of

part 1, the intercept is not signi¯cantly in°uenced by either covariate, while the slope

has a marginally signi¯cant negative in°uence of being male and a signi¯cantly negative

in°uence of being black. For the y outcomes in part 2, the only signi¯cant e®ect is a

negative in°uence on the slope of being black.
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4.1.4 Comparison of the Three Methods

The di®erences between the analyses presented above may be summarized as follows.

The estimated mean curve for y using the Olsen-Schafer two-part model is considerably

higher than for the conventional growth model with an intercept and slope mean of 0:32,

0:17 versus 0:18, 0:13. This is to be expected given that the two-part model estimates

refer to individuals who engage in the alcohol misuse at the respective time point, ex-

cluding random zeroes, while the conventional model estimates refer to everyone. The

estimates from the growth mixture model can be used to compute a mixture estimate

over the ¯ve classes for the intercept and slope mean, 0:17, 0:07. As expected, these

values are closer to those of the conventional model.

Regarding the in°uence of covariates on the y intercept, the conventional model found

a signi¯cant positive in°uence of Male for the intercept and negative in°uence of Male

and Black for the slope, while the growth mixture model and two-part model only found

the slope to be signi¯cantly negatively in°uenced by Black. The growth mixture model

and the two-part model, however, also have signi¯cant in°uence of the covariates on the

latent class and u part of the model, respectively. For the growth mixture model, Male

has a positive in°uence on being in high classes, while Black has a negative in°uence

on being in high classes. For the two-part model, Male and Black have negative e®ects

on the slope of the probability of y > 0. In sum, the in°uence of covariates is assessed

di®erently across the three methods. In particular, the two-part model does not show

the same degree of increased alcohol misuse for males as the other two models.
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4.2 Two-Part Growth Mixture Modeling

In line with the analysis steps for two-part growth mixture modeling outlined in Section

2, step 1 performs a latent class analysis on the u part of the model using an increasing

number of classes. Based on this, step 2 performs a latent class growth analysis focusing

more speci¯cally on trends over time. Following this, steps 3 and 4 carry out two-part

growth mixture modeling of u and y jointly with classes for y added as needed to those

found for u. Finally, step 5 adds the two covariates to the analysis of u and y.

4.2.1 Step 1: Latent Class Analysis of u

To explore the u data, it is of interest to obtain the estimated probabilities for each u

variable, pairs of u variables, and the di®erent u response patterns obtained under the

unrestricted multinomial distribution, i.e. without imposing a speci¯c model. The study

of these u probabilities, however, is made more challenging by the presence of missing

data, where for each time point that y is missing for a person, the corresponding u is

missing as well. With missing data on u, the EM algorithm described in Little and

Rubin (1987; chapter 9.3, pp. 181-185) can be used to compute the ML MAR estimated

frequencies in the unrestricted multinomial model. This procedure is incorporated in

the Mplus program. The estimated logit (probability) for u = 1 at the seven time points

are: ¡1:19 (0:23), ¡1:01 (0:27), ¡0:69 (0:33), ¡0:26 (0:44), 0:09 (0:52), 0:11 (0:53), and

0:61 (0:65). This suggests an approximately linear trend in the logits over time. This

trend, however, is seen for the mixture of possibly several underlying latent classes and
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it is of interest to be able to study trends for each latent class separately. To this aim,

latent class analysis is performed for the seven u variables.

Table 1 gives the latent class analysis results for 2-, 3-, 4-, and 5-class models. The

solutions are not contradictory, but represent increasingly more elaborate descriptions.

The 2-class solution has a low and a high class with increasing probability of u = 1

(y > 0). The 3-class solution adds a steeply increasing class, the 4-class solution adds a

class that starts high, drops sharply after Spring of 8th grade, and increases again after

10th grade, and the 5-class solution adds a class that starts low and increases sharply

after Spring of 8th grade. The 5-class solution is quite good judging from the likelihood-

ratio chi-square, and given that BIC increases slightly from 4 to 5 classes a 6th class may

not be needed. However, in order to begin the investigation of a zero class ("structural

zeroes") as discussed in the introduction, a 6th class is added with parameters ¯xed to

give zero probability of u = 1 (i.e. probability one for y = 0) at each time point. This

is Model 5 in Table 1.

TABLE 1

The zero class of Model 5 is estimated to have 10% or 124 individuals. The classi¯-

cation table given in Table 2 shows that the zero class (class 6) is di±cult to distinguish

from the low class 5. In contrast, classes 1-4 are reasonably well determined.

TABLE 2

The estimated u logits and probabilities for Model 5 are shown in Figure 6 together

with the estimated percentage of individuals in each class. The sharp change between
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Spring of 8th grade and the Fall of 10th grade for two of the classes is noteworthy given

the transition to high school. This feature will be explored further in the latent class

growth analysis presented next.

FIGURE 6

4.2.2 Step 2: Latent Class Growth Analysis of the u Part

The estimated Model 5 shown in Figure 6 above suggests using a linear growth model for

the logits of u in combination with a 2-piece linear growth model for the development

of classes 2 and 4. The two pieces of the growth model for classes 2 and 4 are for

grades 6 ¡ 8 and 10 ¡ 12, respectively. Given the novelty of the 2-piece latent class

growth analysis model, it is shown schematically in Figure 7 using the logit scale. A

latent class variable ct is added to classes 2 and 4 so that individuals in these two

classes are either transitioning into a di®erent development after grade 8 (ct = 1), or not

(ct = 0). The distinction between the two sub classes ct = 1 and ct = 0 o®ers interesting

developmental information. As drawn, Figure 7 shows that individuals in the ct = 1 sub

class starts out with the same alcohol misuse trend as ct = 1 individuals, de-escalates

their alcohol misuse upon entry into high school, resume the escalation at the end of

high school, although not reaching as high a level at the end of high school as for ct = 1

individuals. Technically, this modeling is a type of con¯rmatory latent class analysis

with two di®erent latent class variables in line with Muth¶en (2001b).

FIGURE 7
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In line with Figure 6, ¯ve classes - including a zero class - were chosen for the

development of individuals who do not transition (ct = 0). Transitioning was initially

allowed for all four non-zero classes, but empty classes for two of these transitions led to

a 7-class solution labelled Model 6. As seen in Table 1, Model 6 uses only 16 parameters

instead of 34 in the Model 5 latent class growth model. Model 6 has a better BIC value

than Model 5 and maintains an acceptable chi-square ¯t to the multinomial distribution

of u (chi-square = 129:373 with 111 df, p = 0:1122). In addition, Model 6 provides

an interesting explanation of the alcohol misuse development as seen in the estimated

probability curves shown in Figure 8. Classes 5 and 6 share the same slow starter

development through Spring of grade 8. These two classes make up an estimated 37%

of the population, or an estimated 449 individuals. Of the 449 individuals following this

early development, 46% are in class 6 which changes trajectory after Spring of grade

8 to an almost zero probability in Fall and Spring of grade 10, followed by an increase

by Spring of grade 12. Similarly, of the estimated 203 individuals in classes 2 and 3,

sharing the high development through Spring of grade 8, 20% drop down to a zero level in

grade 10, followed by an increase by Spring of grade 12. These transition patterns raise

interesting questions about why these individuals reduce their alcohol involvement when

entering high school and who these individuals are. As mentioned above, transitioning

could not be found for individuals in the highest class, class 1, nor for the rapidly

escalating class, class 4. Finally, it can be noted that the estimated percentage for the

zero class is now 14%.

FIGURE 8
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4.2.3 Step 3: Two-Part Growth Mixture Modeling of u and y jointly

The analysis of the u probabilities provides the basis for the full, two-part growth mixture

modeling. In line with the methodology described in Section 2, the development in the

y part is a growth mixture model with random e®ect means varying across the classes

found for the u part.

The two-part growth mixture model for joint analysis of u and y was based on the

7-class Model 6 shown in Figure 8. The 2-piece development used for the u part is

also used for the y part, except that the second piece of the 2-piece development is

simpli¯ed. Given that the u probability is estimated as zero for the ¯rst two time points

of the second piece (Fall and Spring of grade 10), the second piece simply consists of

a mean parameter for Spring grade 12. The ¯t statistics for the resulting Model 7

are shown in Table 1. The ¯t of the u part is somewhat worse, but has not seriously

deteriorated. The estimates of the class percentages for Model 6 versus Model 7 (in

parenthesis) are: 9 (5), 13 (12), 3 (3), 29 (22), 20 (29) 17 (15), and 10 (14).

4.2.4 Step 4: Further Exploration of the y Part

Exploration of additional classes for the y part included an analysis of the y variables

alone, using the rescoring of y = 0 to missing data as is used in the two-part model of

Step 3. This exploration pointed to four classes. In this case, a zero class is not included

given that zero values are missing. A new class type emerged with a high starting point

and a negative slope, although this class is relatively small (7%). Adding one class in
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the joint analysis of u and y, however, the new class was found to have a high starting

point but did not show decline. This is Model 8 in Table 1.

As an alternative two-part analysis, two separate and correlated latent class variables

can be used, one for the u part and one for the y part in line with Muth¶en (2001b). In

the current application, however, this leads to a very complex model where many of the

joint classes are presumably small or empty and this approach will not be pursued here.

As discussed in Section 3.1.3, pseudo-class plots for all classes are useful to check to

which extent the model describes the scatter of y observations. Note that to avoid a

misleading picture, these plots should use the original observed data on y instead of the

analysis data where y = 0 is changed to missing. The pseudo-class plots for Model 8

indicate that the observed data show a high degree of variability around the estimated

mean curves. This results in lower classi¯cation quality as evidenced by the moderate

entropy value of 0:578 and makes early prediction of problematic development di±cult.

The estimated y mean curves for each of the classes of Model 8 are shown in Figure

9. Figure 9 shows that, except for the additional class, the probability curves for u have

not changed much from those of Figure 8 where only the u part was analyzed. It is clear

that the additional class has a similar probability curve to the already existing high u

class, but is de¯ned by a di®erent y trajectory.

FIGURE 9

Figure 9 shows that the two classes with the highest y means throughout the grades

are also the ones with the highest u probabilities. An estimated 10% are found in these
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two classes and can be regarded as showing early onset of alcohol misuse. The zero class

(structural zeroes) still contains an estimated 14% in Model 8. Inspection of estimated

posterior probabilities from this model shows that for individuals with their highest

posterior probability for this class, the y values are either zero or missing as expected.

Figure 9 also shows the estimated probability of y = 0 (i.e. u = 0) at each time point,

i.e. the probability of observing either a random or a structural zero. This ranges from

a high of 0:63 in Fall of grade 6 to a low of 0:20 in Spring of grade 12. The probability

estimates are consistently lower than those from the unrestricted multinomial model

estimated under MAR reported in section 4.2.1. The section 4.2.1 values, however, were

obtained by considering the u part alone. As compared to the observed proportions,

the Model 8 probability estimates are lower for the ¯rst time points and higher for the

remaining time points. The observed proportions, however, ignore that missing values

may be distributed unequally across zero and non-zero true values. At the ¯rst time

point there is no missing data and the unrestricted multinomial probability estimate and

observed proportion are the same, 0:77. The lower Model 8 probabilty estimate of 0:63

suggests that Model 8 may need to allow for a deviation from the linear logit shape at

this ¯rst time point.

It is interesting to consider the improvement in classi¯cation when adding the y

information. This may be studied via the average posterior probabilities for individuals

classi¯ed via a highest posterior probability assignment. With the addition of the y

information, the class that transitions from a low trajectory to zero misuse in grade

10, class 6 (14%), obtains an improved average posterior probability value of 0:627
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compared to only 0:471 when using the latent class growth model for u in step 2. The

highest individual posterior probability value for this class is 0:802, obtained for the y

outcome vector (0, 0, 0, 0:33, 0, 0, 0). The low progression through the value of 0:33 in

Spring of grade 8 indicates that this class includes individuals who do not show a severe

form of alcohol misuse.

4.2.5 Step 5: Two-Part Growth Mixture Modeling with Covariates

Taking Model 8 as a starting point, the two covariates are added to study their in°uence

on both parts of the model. In Model 9, the covariates are only allowed to in°uence

the class membership, while in Model 10 they also in°uence the intercept and slope

for both the u and the y part, for simplicity excluding the second piece of the 2-piece

development. The covariates are speci¯ed to have no in°uence on the intercept or slope

of the zero class.

The ¯t statistics for Model 9 are given in Table 1, where it may be noted that

the likelihood and BIC values can be compared with those for the Olsen-Schafer two-

part model with covariates, given as Model 11. Model 9 is nested within Model 10 so

that a likelihood-ratio chi-square test is possible. Table 1 shows that the 7 additional

parameters of Model 10 relative to Model 9 are worthwhile given that the chi-square

value 35:656 with 7 degrees of freedom is signi¯cant at the 1% level.

As indicated by the entropy values, Model 10 gives slightly better classi¯cation than

Model 8 without covariates. The results are on the whole similar for the two models and
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the Model 10 curves will not be shown. Both models estimate the zero class membership

at 14%.

Model 10 ¯nds that being male increases the odds of being in the high class for the

u = 1 probability development relative to being in the zero class. Being black increases

the odds of being in the class that transitions from high to low probability relative to

the zero class. Being black decreases the odds of being in the class that shows a sharp

increase in the probability relative to the zero class. The intercept of the probability

development is signi¯cantly lower for Black, using a class-invariant speci¯cation of this

in°uence. The slope of the y development is signi¯cantly lower for Black, using a class-

invariant speci¯cation of this in°uence. These ¯ndings are in line with the alcohol

literature, indicating a higher probability of problematic alcohol involvement for males

and a later onset for blacks.

A ¯nal check of Model 10 is made possible due to the fact that the analyses used the

random half of the sample for which data collection started already in Fall of grade 6.

An ordinary cross validation is not possible because the other half of the sample does

not have the outcome for Fall of grade 6, but a check on the stability of the ¯ndings

is obtained by simply analyzing the full sample, yielding a sample size of 2; 580. The

¯ndings are very similar in the full and partial samples, including the class percentages.

The zero class is now estimated at 13%. The signi¯cant covariate ¯ndings of Model 10

are still signi¯cant using the full sample. In addition, two new relationships are found

signi¯cant due to the larger sample: the odds of being in the class that has the highest y

development (and second highest probability development) is signi¯cantly decreased for
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blacks; and the odds of being in the low, transitioning class is signi¯cantly increased for

males. The latter ¯nding sheds new light on the development of alcohol involvement for

adolescents. Here, a group of individuals, estimated as 38% of the population (estimated

as 37% in the earlier Model 6 using u only), follow the same relatively low, increasing

trajectory for both u and y through Spring of grade 8, but an estimated 35% of this

group (estimated as 46% in the earlier Model 6) transition to almost zero involvement in

grade 10, with a subsequent increase by Spring of grade 12. The male to female odds is

estimated at 2:90. The gender relationship for this low, transitioning class may warrant

further research.

4.3 Final Comparison of Results Across Models

Regular growth mixture modeling, ignoring the preponderance of zeroes, gives results

that are qualitatively similar to those of the ¯nal 8-class two-part growth mixture model,

Model 10. However, the chosen 5-class solution in section 4.1.2 is not as informative and

more than 5 classes could not be ¯tted. Model 10 bene¯tted from the exploratory

modeling of the u part, which led to the suggestion for a 2-piece model.

Comparing Model 10 with Model 11, the Olsen-Schafer two-part model, it is seen

that the results agree for the slope of the y development, but Model 11 did not ¯nd

a signi¯cant e®ect of the covariates on the u probability intercept as did Model 10.

Also, Model 11 found negative in°uence on the slope of the u probabilities from both

covariates, but this was not found in Model 10. The di®erences may be due to the
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greater detail of Model 10 due to the use of several latent classes, allowing the covariates

to in°uence the class membership probabilities, and allowing for a 2-piece growth model

in two of the classes.

As an interesting aside, in the ¯tting of the models, a relatively large residual was

found for the bivariate distribution of u at Fall and Spring of grade 10. To better

capture the relationship of those two u variables in the Olsen-Schafer models, a model

was ¯tted with an extra random e®ect for those two occasions, leading to a considerable

improvement in model ¯t. This model modi¯cation did not, however, a®ect the in°uence

of the covariates. The 2-piece modeling approach of Model 10, arrived at from the

exploratory latent class analyses, also serves to ¯t this part of the model better given

that grade 10 is allowed to deviate from the regular development for portions of the

sample. The 2-piece modeling, however, accomplishes this in a way that provides a

more useful interpretation in terms of transitions.

5 Conclusions

The ability to carry out growth mixture modeling for data where a large percentage is

at the lowest value is important for many types of applications, such as when analyzing

early development. The proposed two-part growth mixture model therefore meets a

great need for better modeling. The alcohol misuse example shows the strength of the

proposed approach. Both the development of the probability of misuse and the amount

of misuse can be modeled in a very °exible way. The class-speci¯c 2-piece growth model
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illustrates the detail that can be read out of the data. An interesting aspect of the

modeling is the possibility to estimate the proportion of individuals who are in the "zero

class", i.e. having structural zeroes. These modeling features are useful for substantive

researchers interested in onset and transitions of behavior.

The proposed two-part growth model is quite general. This has the disadvantage of

requiring an extensive, stepwise modeling process. It has the strong advantage, however,

of each step adding to the knowledge about the development. The two-part growth

mixture model also bene¯ts from being incorporated in a general latent variable modeling

framework, so that many modeling variations and extensions are possible. For example,

it is possible to analyze two processes such as alcohol and tobacco use simultaneously,

exploring their relationships. Other extensions are also available, such as analyzing

sequential processes (Muth¶en, Khoo, Francis, & Kim Boscardin) and distal outcomes

predicted by the latent classes (Muth¶en & Shedden, 1999). Furthermore, the general

framework allows for outcomes that are ordered categorical instead of continuous, leading

to a two-part latent class growth analysis.
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Table 1

Analysis Results
Model # classes log L # par’s BIC Entropy Chi-Square D.f. p

Latent Class Analysis
1 2 -3,205.580 15 6,517.931 0.626 398.390 112 0.0000
2 3 -3,089.375 23 6,342.465 0.612 165.988 104 0.0001
3 4 -3,065.454 291 6,337.331 0.648 118.150 98 0.0081
4 5 -3,057.035 332 6,348.965 0.622 101.311 94 0.2849
5 6 -3,054.913 342 6,351.838 0.574 97.066 93 0.3659

Latent Class Growth Analysis
6 7 -3,071.066 16 6,256.021 0.489 129.373 111 0.1122

Two-Part Growth Mixture Modeling
7 7 -5,133.579 39 10,544.761 0.573 149.551 111 0.0086
8 8 -5,104.211 44 10,521.614 0.578 146.244 108 0.0084

Two-Part Growth Mixture Modeling with Covariates
9 8 -5,008.650 58 10,428.911 0.610 142.838 108 0.0139

10 8 -4,990.822 653 10,442.931 0.610 _____4 _____4 _____4

Olsen-Schafer Two-Part Model with Covariates
11 1 -5,108.766 29 10,423.337 _____ _____4 _____4 _____4

1  Two item logits fixed at ±15.
2  Four item logits fixed at ±15.
3  Parameter fixed at –10 for class 5 regressed on Black.
4  Not available with covariates influencing the probabilities.



Table 2

Average Class Probabilities by Class for Model 5
1 2 3 4 5 6

Class 1 0.701 0.088 0.136 0.023 0.052 0.000
Class 2 0.013 0.861 0.044 0.000 0.082 0.000
Class 3 0.105 0.005 0.756 0.049 0.086 0.000
Class 4 0.020 0.000 0.188 0.765 0.026 0.000
Class 5 0.013 0.006 0.119 0.129 0.566 0.168
Class 6 0.000 0.000 0.000 0.012 0.460 0.527



Figure 1.  Mixture distributions
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Figure 2.  Aggressive behavior distributions at nine time points

0 2 4 6

0
20

40
60

80
SCTAA11F

SCTAA11F

0 2 4 6

0
20

40
60

80

SCTAA11S

SCTAA11S

0 2 4 6

0
20

40
60

80

SCTAA12F

SCTAA12F

0 2 4 6

0
20

40
60

80

SCTAA12S

SCTAA12S

0 2 4 6

0
20

40
60

80

SCTAA13S

SCTAA13S

0 2 4 6

0
20

40
60

80

SCTAA14S

SCTAA14S

0 2 4 6

0
20

40
60

80

SCTAA15S

SCTAA15S

0 2 4 6

0
20

40
60

80

SCTAA16S

SCTAA16S

0 2 4 6

0
20

40
60

80

SCTAA17S

SCTAA17S



Figure 3.  TFQ distributions at seven time points
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Figure 4.  AMOVER distributions at seven time points
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Figure 5.  Estimated means from growth mixture modeling
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Figure 6.  Estimated probabilities from latent class analysis (Model 5)
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Figure 7.  Hypothetical two-piece growth model for u probabilities in logit scale



Figure 8.  Estimated probabilities from latent class growth analysis (Model 6)
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Figure 9.  Estimated probabilities and means from two-part growth mixture modeling (Model 8)
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