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Abstract

This paper discusses alternatives to single-step mixture modeling. A 3-

step method for latent class predictor variables is studied in several different

settings including latent class analysis, latent transition analysis, and growth

mixture modeling. It is explored under violations of its assumptions such as

with direct effects from predictors to latent class indicators. The 3-step method

is also considered for distal variables. The Lanza et al. (2013) method for

distal variables is studied under several conditions including violations of its

assumptions. Standard errors are also developed for the Lanza method since

these were not given in Lanza et al. (2013).
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1 Introduction

In mixture modeling, indicator variables are used to identify an underlying latent

categorical variable. In many practical applications we are interested in using

the latent categorical variable for further analysis and exploring the relationship

between that variable and other, auxiliary observed variables. Two types of

analyses will be discussed here. The first type of analysis is when we use the

observed variable as a predictor of the latent categorical variable. The second type

of analysis is using the latent categorical variable as a predictor of an observed

variable which we call a distal outcome. The standard way to conduct such an

analysis is to combine the latent class model and the latent class regression model

or the distal outcome model into a joint model which can be estimated with the

maximum-likelihood estimator. This will be referred to as the 1-step method.

Such an approach, however, can be flawed because the secondary model may

affect the latent class formation and the latent class variable may lose its meaning

as the latent variable measured by the indicator variables.

Vermunt (2010) points out several disadvantages of the 1-step method in the

context of predictors (covariates) of the latent class variable:

However, the one-step approach has certain disadvantages. The first

is that it may sometimes be impractical, especially when the number

of potential covariates is large, as will typically be the case in a more

exploratory study. Each time that a covariate is added or removed not

only the prediction model but also the measurement model needs to

be reestimated. A second disadvantage is that it introduces additional

model building problems, such as whether one should decide about
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the number of classes in a model with or without covariates. Third,

the simultaneous approach does not fit with the logic of most applied

researchers, who view introducing covariates as a step that comes after

the classification model has been built. Fourth, it assumes that the

classification model is built in the same stage of a study as the model

used to predict the class membership, which is not necessarily the case.

It can even be that the researcher who constructs the typology using

an LC model is not the same as the one who uses the typology in a

next stage of the study.

To avoid such drawbacks several methods have been developed that can

independently evaluate the relationship between the latent class variable and

the predictor or distal auxiliary variables. One method is to use the pseudo

class method see Wang et al. (2005), Clark and Muthén (2009), and Mplus

Technical Appendices: Wald Test of Mean Equality for Potential Latent Class

Predictors in Mixture Modeling (2010). With this method the latent class model

is estimated first, then the latent class variable is multiply imputed from the

posterior distribution obtained by the LCA model estimation. Finally the imputed

class variables are analyzed together with the auxiliary variable using the multiple

imputation technique developed in Rubin (1987). We call this method the pseudo

class (PC) method. The simulation studies in Clark and Muthén (2009), show

that the PC method works well when the entropy is large, i.e., the class separation

is large. An alternative 3-step approach has been developed in Vermunt (2010),

expanding ideas presented in Bolck et al. (2004); see also Bakk et al. (2013). This

approach is suitable for exploring relationships between the latent class variable
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and predictor variables. In this approach the latent class model is estimated in a

first step using only latent class indicator variables. In the second step the most

likely class variable is created using the latent class posterior distribution obtained

during the first step. In the third step the most likely class is regressed on predictor

variables taking into account the misclassification in the second step. Methods are

also needed to study the relationship between the latent class variable and distal

variables. In a recent paper, Lanza (2013) proposes one such method. Using Bayes

theorem, the joint distribution of the latent class variable and the distal variable

is represented as a regression of the latent class variable conditional on the distal

variable, combined with the marginal distribution of the distal variable.1

In this paper the 3-step method for latent class predictor variables is studied in

several different settings including latent transition analysis and is explored under

violations of its assumptions such as with direct effects from predictors to latent

class indicators. The 3-step method is also considered for distal variables. The

Lanza et al. (2013) method for distal variables is studied under several conditions

including violations of its assumptions. Standard errors are also developed for the

Lanza method since these were not given in Lanza et al. (2013). Appendices with

Mplus scripts are referred to in footnotes and are available at www.statmodel.com.

Section 2 presents the Vermunt method for predictors of latent classes and

1All of the above methods are obtained in the Mplus program using the AUXILIARY option
of the VARIABLE command. If an auxiliary variable is specified as (R) the PC method will
be used and the variable will be treated as a latent class predictor. If an auxiliary variable is
specified as (E) the PC method will be used and the variable will be treated as a distal outcome.
If an auxiliary variable is specified as (R3STEP) the 3-step method will be used and the variable
will be treated as a latent class predictor. If an auxiliary variable is specified as (DU3STEP)
the 3-step method will be used and the variable will be treated as a distal variable with unequal
means and variances. If an auxiliary variable is specified as (DE3STEP) the 3-step method
will be used and the variable will be treated as a distal variable with unequal means and equal
variances. If an auxiliary variable is specified as (DCON) or (DCAT), Lanza’s method for a
continuous or categorical distal variable will be used.
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carries out simulation studies of this method. Section 3 extends the method

to arbitrary secondary models. Section 4 presents 3-step methods for latent

transition analysis. Section 5 discusses direct effect violations of the 3-step method

for predictor variables. Section 6 discusses methods for distal outcomes and carries

out simulation studies of these methods. Section 7 presents studies of violations

of the assumptions for the distal outcome methods. Section 8 concludes.

2 Predictors of latent classes

Briefly described, the 3-step method for predictors of the latent class variable is as

follows. The first step is a regular latent class analysis (LCA) using only the latent

class indicators. In the second step the most likely class variable N , a nominal

variable, is created using the latent class posterior distribution obtained during

the LCA estimation, i.e., for each observation, N is set to be the class c for which

P (C = c|U) is the largest, where U represents the latent class indicators and C is

the latent class variable.2 The classification uncertainty rate for N is computed

as follows

pc1,c2 = P (C = c2|N = c1) =
1

Nc1

∑
Ni=c1

P (Ci = c2|Ui)

where Nc1 is the number of observations classified in class c1 by the most-likely

class variable N , Ni is the most likely class variable for the i-th observation, Ci

is the true latent class variable for the i-th observation and Ui represents the

class indicator variables for the i-th observation. The probability P (Ci = c2|Ui) is

2In Mplus this variable is automatically created using the SAVEDATA command with the
option SAVE=CPROB.
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computed from the estimated LCA model.3 For example in the case of a 3-class

model the probability pc1,c2 would look like in the top part of Table 1, where the

pc1,c2 is in row c1 and column c2. We can then compute the probability

qc1,c2 = P (N = c1|C = c2) =
pc1,c2Nc1∑
c pc,c2Nc

(1)

where Nc is the number of observations classified in class c by the most-likely class

variable N . This shows that N can be treated as an imperfect measurement of C

with measurement error defined by qc1,c2 .
4 These values are shown in the middle

section of Table 1.

In the third step, the most likely class variable is used as latent class indicator

variable with uncertainty rates prefixed at the probabilities qc1,c2 obtained in step

2. That is, the N variable is specified as a nominal indicator of the latent class

variable C with logits log(qc1,c2/qK,c2), where K is the last class.5 These values

are shown in the bottom section of Table 1. In this way the measurement error

in the most likely class variable N is taken into account in the third step. In

this final step we also include the auxiliary variable. Figure 1 illustrates the third

step of the 3-step method. The measurement relationships between the latent

class variable C and the nominal most likely class variable N are fixed according

to the logit values in the bottom section of Table 1, while the parameters of the

3In Mplus the probability pc1,c2 is automatically computed and can be found in the results
section under the title ”Average Latent Class Probabilities for Most Likely Latent Class
Membership (Row) by Latent Class (Column)”.

4These probabilities are also computed in Mplus and can be found in the results section
under the title ”Classification Probabilities for the Most Likely Latent Class Membership (Row)
by Latent Class (Column)”.

5These logits are also computed in Mplus and can be found in the results section under the
title ”Logits for the Classification Probabilities the Most Likely Latent Class Membership (Row)
by Latent Class (Column)”.
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multinomial regression of C on the predictor X are estimated.6

[Table 1 about here.]

More details on this approach are available in Vermunt (2010) where it is

referred as Modal ML. Here we will refer to this approach as the 3-step method. In

the Vermunt (2010) article this 3-step method was used for latent class predictors.

In this article we extend the method to distal outcomes, that is variables that are

predicted by the latent class variable.

[Figure 1 about here.]

2.1 Simulation study with a latent class predictor as an

auxiliary variable

In this simulation study we estimate a 2-class model with 5 binary indicator

variables. The distribution for each binary indicator variable U is determined by

the usual logit relationship

P (U = 1|C) = 1/(1 + Exp(τc))

where C is the latent class variable which takes values 1 or 2 and the threshold

value τc is the same for all 5 binary indicators. In addition we set τ2 = −τ1 for

all five indicators. We choose three values for τ1 to obtain different level of class

separation/entropy. Using the value of τ1 = 1.25 we obtain an entropy of 0.7,

with value τ1 = 1 we obtain an entropy of 0.6, and with value τ1 = 0.75 we obtain

6Appendix A shows the Mplus input for the third step and also the input for automatically
performing all three steps using the R3STEP option.
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an entropy of 0.5. The latent class variable is generated with proportions 43%

and 57%. In addition to the above latent class model we also generate a standard

normal auxiliary variable as a predictor of the latent class variable through the

multinomial logistic regression

P (C = 1|X) = 1/(1 + Exp(α + βX))

where α = 0.3 and β = 0.5. 500 samples of size 500 and 2000 are generated.

The data are analyzed using three different methods: the PC method, the 3-step

method, and the 1-step method.

Table 2 contains the results of the simulation study for the regression coefficient

β. The 3-step method outperforms the PC method substantially in terms of bias,

mean squared error and confidence interval coverage. The loss of efficiency of

the 3-step method when compared to the 1-step method is minimal. The 3-step

method also provides good coverage in all cases. The effect of sample size appears

to be negligible within the sample size range used in the simulation study. Further

simulation studies are needed to evaluate the performance for much smaller or

much larger sample sizes.7

[Table 2 about here.]

7Appendix B contains an input file for conducting a simulation study with a latent class
predictor auxiliary variable.
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3 Using Mplus to conduct the 3-step method

with an arbitrary secondary model

In many situations it would be of interest to use the 3-step procedure to estimate

a more advanced secondary model that includes a latent class variable. In

Mplus, the 3-step estimation of the distal outcome model and the latent class

predictor model can be obtained automatically using the AUXILIARY option

of the VARIABLE command as illustrated earlier. However, for more advanced

models the 3-step procedure has to be implemented manually, meaning that each

of the 3 steps is performed separately. In this section we illustrate this manual

3-step estimation procedure with a simple auxiliary model where the latent class

variable is a moderator for a linear regression. The joint model, which combines

the measurement and the auxiliary models, is visually presented in Figure 2.

[Figure 2 about here.]

Suppose Y is a dependent variable and X is a predictor and suppose that a 3-

category latent class variable C is measured by 10 binary indicator variables.

We want to estimate the secondary model independently of the latent class

measurement model part. The secondary model is described as follows

Y = αc + βcX + ε

where both coefficients αc and βc depend on the latent class variable C. The

measurement part of the model is a standard LCA model described by

P (Up = 1|C) = 1/(1 + Exp(τcp))
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for p = 1, ..., 10 and c = 1, ..., 3. We generate a sample of size 1000 using equal

classes and the following parameter values τ1p = −1, τ2p = 1, τ3p = 1 for p =

1, ..., 5, τ3p = −1 for p = 6, ..., 10. The parameters in the secondary model used

for generating the data are as follows: X and ε are generated as standard normal

and the linear model parameters are as follows α1 = 0, α2 = 1, α3 = −1, β1 = 0.5,

β2 = −0.5, β2 = 0.8

The first step in the 3-step estimation procedure is to estimate the measure-

ment part of the joint model, i.e., the latent class model. Thus in step 1 we

estimate the LCA model with the 10 binary indicator variables and without the

secondary model.9

In step 2 of the estimation we have to determine the measurement error for

the most likely class variable N . This measurement error will be used in the last

step of the estimation. In the step 1 output file we find the following 3x3 table

titled: Logits for the Classification Probabilities the Most Likely Latent Class

Membership (Row) by Latent Class (Column); see the bottom part of Table 1.

This table contains log(qi,c/q3,c), where the probabilities qc1,c2 are computed using

formula (1).

The final third step in the 3-step estimation procedure is estimating the desired

auxiliary model where the latent class variable is measured by the most likely class

variable N and the measurement error is fixed and pre-specified to the values

computed in Step 2.10 The estimates obtained in this final stage are presented

in Table 3. These estimates are very close to the true parameter values and we

8Appendix C contains the input file for generating this data set.
9The input file for this estimation is given in Appendix D along with an explanation of the

commands.
10The input file for our example is provided in Appendix E along with explanations of the

commands.
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conclude that the 3-step procedure works well for this example. This example

also illustrates how Mplus can be used to estimate an arbitrary auxiliary model

with a latent class variable in a 3-step procedure where the measurement model

for the latent class variable is estimated independently of the auxiliary model.

[Table 3 about here.]

4 Estimating latent transition analysis using the

3-step method

In latent transition analysis (LTA), several latent class variables are measured

at different time points and the relationship between these variables is estimated

through a logistic regression. A 3-step estimation procedure can be conducted for

the LTA model where the latent class variables are estimated independently of each

other and are formed purely based on the latent class indicators at the particular

point in time. This estimation approach is desirable in the LTA context because

the 1-step approach has the drawback that an observed measurement at one point

in time affects the definition of the latent class variable at another point in time.

We illustrate the estimation with two different examples. The first example is a

simple LTA model with two latent class variables. The second example is an LTA

model with covariates and measurement invariance. To achieve measurement

invariance an additional step is required so we illustrate this separately. Note,

however, that both examples can easily accommodate covariates. Thus to estimate

an LTA model with covariates but without measurement invariance the first

approach should be used because it is simpler.
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4.1 Simple LTA

For illustration purposes we consider an example with two latent class variables

C1 and C2 each measured by 5 binary indicators. The coefficient of interest,

estimated in the 3-step approach is the regression coefficient of C2 on C1.

As a first step, an LCA model is applied to the latent class indicators of time

point 1 and another LCA model is applied to the latent class indicators of time

point 2. These two analyses generate the most likely class variables N1 and N2.

These variables are the observed variables in the last step which uses log ratios as

in Section 3 to take into account classification errors. The last step estimates the

C1, C2 parameters.11

The 3-step approach produces an estimate of 0.645 for the regression of C2 on

C1 with a standard error of 0.175 where the true value is 0.5, i.e., the estimate

is close to the true value. Simulations studies are currently not easy to conduct

in Mplus using the manual approach because the log ratios need to be computed

for every replication. A small simulation study conducted manually using 10

replications revealed that the average estimate across the 10 replications is 0.486,

the coverage was 100% and the ratio between the average standard errors and

standard deviation is 1.18. Thus we conclude that the 3-step estimator performs

well for the LTA model. The above approach can also be used for 3-step LTA

estimation with more than two latent class variables and also with covariates

which will be used only in the third step.

11Appendices F, G, H, I to illustrate how the entire process is carried out in Mplus.
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4.2 LTA with covariates and measurement invariance

In addition it is possible to estimate the LCA measurement model under

the assumption of measurement invariance which implies that the threshold

parameters are equal across time. The approach illustrated in the previous section

is inadequate and can not be used to estimate the 3-step LCA with measurement

invariance because the LCA at the different time points are estimated in different

input files. It is possible however to estimate 3-step LTA with measurement

invariance and also include a covariate X.

In a first step, the two LCA models at the two time points are estimated in

one analysis but independently of each other while holding all thresholds equal

to obtain the LTA model with measurement invariance. Even though we are

interested in an auxiliary model estimation where C2 is regressed on C1, at this

point of the estimation we estimate the model without such a regression in line of

the 3-step methodology. The actual regression of C2 on C1 will be estimated in the

last step of the 3-step estimation. Thus in this step we estimate a model assuming

that C1 and C2 are independent. Note that if the measurement invariance is

removed from this model the estimation of C1 and C2 measurement models would

be identical to the one from the previous section where C1 and C2 measurement

models are estimated independently of each other and in two separate files. This is

because without the measurement invariance the log-likelihood of the joint model

will split in two independent parts that can be estimated separately.

In the second step, the LCA estimation is done for each set of latent

class indicators separately to obtain the most likely class variables and their

classification errors. In these two LCA models the measurement parameters are
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held fixed at the values estimated in the first step. We manually calculate the log

ratios from the error tables for N1 and N2 as was done in Section 3.

In the third and final step N1 and N2 are used as C1 and C2 indicators with

parameters fixed at the second step log ratios. This input now contains the

auxiliary model which contains the regression of C2 on C1 as well as the regression

of C1 and C2 on X.12

In this particular example the true value for C1 on C2 is 0.5 and the 3-step

estimate for that parameter is 0.63(0.19). The true value for C2 on X is -0.5 and

the 3-step estimate is -0.58(0.07). The true value for C2 on X is 0.3 and the 3-

step estimate is 0.22(0.08). All parameters of the auxiliary model are covered by

the confidence intervals obtained by the 3-step estimation procedure and thus we

conclude that the 3-step method works well for the LTA model with measurement

invariance.

5 Simulation studies of omitted direct effects

from the latent class predictor auxiliary vari-

able

In this section we study the ability of the 3-step method to absorb misspecifications

in the measurement model due to omitted direct effects from a covariate. Vermunt

(2010) suggests that the 3-step estimation might be a more robust estimation

method in that context. We consider two different situations: direct effects in

LCA and direct effects in Growth Mixture Models (GMM).

12Appendices J-N show how to generate data and carry out the analysis steps.
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5.1 Direct effects in LCA

Data are generated with 10 binary indicators using the following equations

P (C = 1|X) = 1/(1 + Exp(α + βX))

P (Up = 1|C) = 1/(1 + Exp(τpc + γpcX)).

The second equation above shows that there are direct effects from X to the

indicator variables. For data generation purposes almost all of the parameters γpc

are zero. To vary the magnitude of direct effect influence we vary the number of

non-zero direct effects. All non-zero direct effects γpc are set to 1. We generate

different samples with L direct effects for L = 1, 2, ..., 5. All non-zero direct effects

are in class one. To obtain different entropy values we use τpc = ±1.25 which leads

to entropy of 0.9 and τpc = ±0.75 which leads to entropy of 0.6. The values of α

and β are as in the previous section. We generate samples of size 2000.

The generated data are analyzed with 3 different methods. Method 1 ignores

the direct effect in the LCA measurement model and analyzes the regression of

C on X using the 3-step procedure. Method 2 includes the direct effect in the

LCA measurement model and analyzes the regression of C on X using the 3-step

procedure. Method 3 is the 1-step approach which includes the direct effects and

estimates the regression of C on X together with the measurement model in one

joint model.

Table 4 contains the bias and coverage simulation results for the regression

parameter β. It is clear from these results that the ability of the 3-step approach to

estimate the correct relationship between C and X is somewhat limited. Method
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1 which ignores the direct effects and estimates the β coefficient with the 3-step

approach performs quite poorly when the number of direct effects is substantial

but it has good performance when the number of direct effects is small and the

entropy is large. Using this method has the fundamental flaw that the latent

variable C can not be measured correctly if the covariate X is not included in

the model. This is because there is a violation in the identification condition for

the latent class variable which postulates that the measurement indicators are

independent given C. The indicator variables are actually correlated beyond the

effect of C through the direct effects from X. Therefore, if there is a sufficient

number of omitted direct effects the latent class variable can not be measured

well only by the indicator variables. That in turn leads to substantial biases in

the C on X regression using the 3-step approach. More extensive discussion on

the effects of omitted direct effects in the growth mixture context can be found in

Muthén (2004).

Method 2 which uses a properly specified measurement model that includes

the direct effects performs much better, however biases are found with this 3-

step method as well when the entropy is 0.6. In contrast, the 3-step procedure

performed very well at that entropy level when direct effects were not present.

Method 2 can also suffer from incorrect classification but to a much smaller extent

than Method 1. In this situation even with all direct effects included the effect

of X on U is not captured completely because the measurement model does not

include the effect of X on C, which will have to be absorbed by the direct effects.

That may lead to misestimation of some of the parameters which in turn will lead

to biases in the formation of the latent classes and biases in the auxiliary model
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estimation.13

The 1-step approach performs well in all cases. The analyses indicate that

the 3-step approach has a limited ability to deal with direct effects and thus

when substantial direct effects are found, those effects should be included in the

measurement model for the latent class variable even with the 3-step approach.

In the above simulation study the direct effects are quite large and in many

practical applications the direct effect could be much smaller. Further exploration

is necessary to evaluate the performance of the 3-step methods for various levels

of direct effect.

[Table 4 about here.]

5.2 Direct effects in growth mixture models

The impact of direct effects on the 3-step estimation can also be seen in the context

of growth mixture models (Muthén & Shedden, 1999; Muthén, 2004; Muthén &

Asparouhov, 2009) when the direct effect is not on the observed variables but it

is on the growth factors. Consider the following growth mixture model (GMM).

Yt = I + S · t+ εt

where Yt are the observed variables and I and S are the growth factors which also

identify the latent class variable C through the following model

I|C = α1c + β1cX + ξ1

13The use of Mplus to carry out this approach is illustrated in Appendix O.
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S|C = α2c + β2cX + ξ2

where X is an observed covariate. The above model simply postulates that the

latent classes are determined by the pattern of growth trajectory, i.e., the latent

class variable determines the mean of the intercept and the slope growth factors,

but individual variation is allowed. The above growth mixture model is essentially

the measurement model for the latent class variable C. In this situation we are

again interested in estimating with the 3-step approach the relationship between

C and X independently of the measurement model, i.e., we want to estimate the

logistic regression model

P (C = 1|X) = 1/(1 + Exp(α + βX)).

We generated 100 samples of size 5000 using the following parameter values: α =

0, β = 0.5, V ar(εt) = 1, V ar(I) = 1, V ar(S) = 0.4, Cov(I, S) = 0.2, α21 = 1,

α22 = −0.5, and t = 0, 1, ..., 4. We also vary the values of α1c to obtain different

entropy levels. Choosing α11 = 1, α12 = −1 yields entropy of 0.6. Choosing α11 =

2, α12 = −2 yields entropy of 0.85. Choosing α11 = 3, α12 = −3 yields entropy of

0.95. We also want to explore different types of direct effects so we generate three

different types of data. Type 1 uses no direct effects, i.e., β1c = β2c = 0. Type

2 uses the same direct effects across the two classes β1c = 1 and β2c = 0.2, i.e.,

the direct effect is independent of the latent class variable. Type 3 uses different

direct effects across the two classes β11 = 1, β21 = 0.2 and β12 = β22 = 0. As in the

LCA simulation study we use different estimation methods. Method 1 is a 3-step

method that uses only the growth model as the measurement model, Method 2

use the growth model as the measurement model but includes the direct effects
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from X to the growth factors. Method 3 is the 1-step approach using the direct

effects and the regression from C on X.

The results for the β estimates are presented in Table 5. Again we see here

that Method 1 works well but only if there are no direct effects from X to

the measurement model (Type 1 data). The biases for Type 2 and 3 decrease

substantially when the the entropy increases but these biases are too high even

with entropy of 0.85. Method 2 performed much better than Method 1, thus

including covariates in the measurement model is important here as well, however,

the biases are unacceptable when the entropy is 0.6. Method 2 seems to perform

better for Type 2 data where the direct effects are independent of C, even though

the direct effects are bigger. Method 3 as expected performed well. This method

uses the ML estimator for the correctly specified model.

The identification of the latent class variable is more complicated in the GMM

model than in the LCA model. The local independence assumption of the LCA

model is not present in the GMM model. Nevertheless we see the same pattern, if

the covariates have direct effects on the measurement model, these effects should

be included for the 3-step approach to work well. More simulation studies are

needed to evaluate the impact of the size of the direct effects on the 3-step

estimation.

[Table 5 about here.]

6 Distal outcome auxiliary variable

Turning to the case of a distal outcome, two approaches are studied: the 3-step

method applied to distal outcomes and Lanza’s method. The 3-step method for
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a distal outcome uses the approach of Section 3. For example, Figure 3 without

the X variable is exactly the situation considered here.14

A new method for the estimation of auxiliary distal outcomes has been

proposed in Lanza et al. (2013). This method has the advantage over the 3-

step method that it does not allow for the distal outcome to dramatically change

the class membership for individual observations. The method can be used with

a categorical or a continuous distal outcome. The idea behind the method is

that after the LCA model is estimated we can estimate an auxiliary model where

the distal outcome X is used as a latent class predictor within a multinomial

logistic regression in addition to the the original measurement LCA model. The

auxiliary model is used to obtain the conditional distribution P (C|X) as well as

the marginal distribution P (C). Using also the sample distribution of X one can

easily derive the desired conditional distribution P (X|C) by applying the Bayes’

theorem

P (X|C) =
P (X)P (C|X)

P (C)
. (2)

If X is a continuous variable the mean parameters can then be estimated within

each class and if it is a categorical variable the probabilities for each category can

be estimated within each class.

14In Mplus this can be analyzed using the ”manual” method shown in Section 3 or all 3
steps carried out automatically using either of two auxiliary options. If an auxiliary variable
is specified as (DU3STEP) the 3-step method will be used and the variable will be treated
as a distal outcome with unequal means and variances. If an auxiliary variable is specified as
(DE3STEP) the 3-step method will be used and the variable will be treated as a distal outcome
with unequal means and equal variances. The equal variance estimation is useful for situations
when there are small classes and the distal outcome estimation with unequal variance may have
convergence problems due to near zero variance within class. For example, if the distal outcome
is binary this can occur quite easily. However the equal variance option should not be used
in general because it may lead to biases in the estimates and the standard error if the equal
variance assumption is violated.
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Lanza’s method has a number of limitations. The method can only be used

with distal auxiliary variables. In addition the method can not have a latent class

measurement model that already includes latent class predictors. The original

article by Lanza et al. (2013) does not include standard error computations. While

such standard errors are easy to obtain if the auxiliary variable is categorical using

the delta method in (2), in the continuous case it is not very clear how to compute

the standard errors because P (X) is the sample distribution. As implemented in

Mplus, Lanza’s method uses approximate standard errors for continuous distal

outcomes by estimating the mean and variance within each group as well as

the within class sample size. Standard errors are then computed as if the mean

estimate is the sample mean. For both continuous and categorical distal outcomes

Mplus computes an overall test of association using Wald’s test as well as pairwise

class comparisons between the auxiliary variable means and probabilities. There

is a slight difference between the continuous distal outcome estimation described

in Lanza et al. (2013) and the method implemented in Mplus. Lanza’s method

uses kernel density estimation to approximate the density function for the distal

outcome while the method implemented in Mplus uses the sample distribution for

the auxiliary variable directly. The two methods, however, should yield similar

results.15

15If an auxiliary variable is specified as (DCON) Lanza et al. (2013) method will be used and
the variable will be treated as a distal continuous outcome. If an auxiliary variable is specified
as (DCAT) Lanza et al. (2013) method will be used and the variable will be treated as a distal
categorical outcome.
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6.1 Simulation study with a continuous distal auxiliary

outcome: Comparing the 3-step and Lanza methods

In this simulation study we estimate a 2-class model with 5 binary indicator

variables. The distribution for each binary indicator variable U is determined by

the usual logit relationship

P (U = 1|C) = 1/(1 + Exp(τc))

where C is the latent class variable which takes values 1 or 2 and the threshold

value τc is the same for all 5 binary indicators. In addition we set τ2 = −τ1 for

all five indicators. We choose three values for τ1 to obtain different level of class

separation/entropy. Using the value of τ1 = 1.25 we obtain an entropy of 0.7,

with value τ1 = 1 we obtain an entropy of 0.6, and with value τ1 = 0.75 we obtain

an entropy of 0.5. The latent class variable is generated with proportions 43%

and 57%. In addition to the above latent class model we also generate a normally

distributed distal auxiliary variable with mean 0 in class one and mean 0.7 in class

2 and variance 1 in both classes. We apply the PC method, the 3-step method,

Lanza’s method, and the 1-step method to estimate the mean of the auxiliary

variable in the two classes.

Table 6 presents the results for the mean of the auxiliary variable in class 2.

We generate 500 samples of size 500 and 2000 and analyze the data with the

four methods. It is clear from the results in Table 6 that the 3-step procedure

outperforms the PC procedure substantially in terms of bias, mean squared error

and confidence interval coverage. When the 3-step procedure is compared to the
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1-step procedure it appears that the loss of efficiency is not substantial especially

when the class separation is good (entropy of 0.6 or higher). The loss of efficiency

can be seen however in the case when the entropy is 0.5 and the sample size

is 500. The 3-step procedure also provides good confidence interval coverage.

Lanza’s method appears to be slightly better than the 3-step method in terms of

bias and MSE, but in terms of coverage the 3-step method appears to be better.

The effect of the sample size appears to be negligible in the sample size range

500-2000. Further simulation studies are needed to evaluate the performance of

the 3-step procedure and Lanza’s method for much smaller or much larger sample

sizes.16

[Table 6 about here.]

Next we conduct a simulation study to compare the performance of the two

different 3-step approaches. The two approaches differ in the third step. The

first approach estimates different means and variance for the distal variable in the

different classes while the second approach estimates different means but equal

variances. The second approach is more robust and more likely to converge but

may suffer from the mis-specification that the variances are equal in the different

classes. We use the same simulation as above except that we generate a distal

outcome in the second class with variance 20 instead of 1. The results for the mean

in the second class are presented in Table 7. It is clear from these results that the

unequal variance 3-step approach is superior particularly when the class separation

is poor (entropy level of 0.6 or less). The equal variance approach can lead to

severely biased estimates when the class separation is poor and the variances

16Appendix P contains an Mplus input file for conducting a simulation study with a distal
auxiliary variable.
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are different across classes. The results obtained in this simulation study may

not apply if the ratio between the variances is much smaller. Further simulation

studies are needed to determine exactly what level of discrepancy between the

variances leads to accuracy advantage for the unequal variance 3-step approach.

[Table 7 about here.]

6.2 Simulation study with distal categorical outcome us-

ing Lanza’s method

In this section we conduct a simulation study to evaluate the performance of

Lanza’s method with categorical auxiliary outcome. We generate data from a 3-

class LCA model where the latent class variable is measured by 10 binary variables.

In class 1, P (Ui = 0|C = 1) = 1/(1 + Exp(τ)) for all indicator variables Ui. In

class 3, P (Ui = 0|C = 3) = 1/(1 + Exp(−τ)) for all indicator variables Ui. In

class 2, P (Ui = 0|C = 2) = 1/(1 +Exp(τ)) for i = 1, ..., 5 and P (Ui = 0|C = 2) =

1/(1 +Exp(−τ)) for i = 6, ..., 10. We use two τ values in the generation process.

If τ = 0.75 the entropy for the LCA model is I = 0.5 and if τ = 1 the entropy

for the LCA model is 0.65. The class probabilities P (C = j) for the 3-classes are

0.32, 0.44, 0.24 respectively. The auxiliary variable X is a categorical variable

with 6 categories. The probabilities P (X = k|C = 1) of these 6 categories in class

one are: 0.18, 0.09, 0.23, 0.23, 0.09, 0.18. In class 2 these probabilities are 0.08,

0.65, 0.05, 0.03, 0.11, 0.08. In class 3 these probabilities are 0.07, 0.11, 0.32, 0.23,

0.09, 0.18. We generate 100 samples of size N = 200, N = 500, and N = 2000

using both entropy levels and analyze the X variable as an auxiliary variable.

The results of the simulation are presented in Table 8. We present the bias
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and the coverage for category 2 in the 3 different classes p2j = P (X = 2|C = j).

The results for the remaining categories are similar. The simulation shows that

the estimates are unbiased and the coverage is near the nominal level of 95%.

Some small sample size bias can be seen here when N = 200 in particular when

the entropy is low I = 0.5. These biases are, however, mostly due to the quality of

the estimation of the measurement model which also has estimation biases when

the sample and the entropy are small. Overall we conclude that Lanza’s method

as well as the standard error method based on the delta method implemented in

Mplus works well. Note here that in the categorical distal outcome case Lanza’s

method does not rely on the multinomial model assumption. In this case, the

multinomial model together with the marginal distribution model for the auxiliary

variable yield a saturated bivariate model for the two categorical variables. The

estimated joint distribution model for the latent class and the distal outcome

variables is the full contingency unrestricted model. Thus there are no underlying

assumptions in this case as is the case in the continuous distal outcome situation.

[Table 8 about here.]

7 Distal outcome estimation failures

In this section we discuss different situations where the distal outcome estimation

methods fail. In Section 7.1 we present a simulated example where the 1-step

and the 3-step methods fail due to change in the latent class variable when the

auxiliary variable is added to the latent class measurement model. In Section 7.2

we present a simulated example where Lanza’s method fails due to an incorrect

multinomial model assumption.
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7.1 Failure due to change in the latent class variable

In this section we describe a distal outcome simulated example that illustrates the

potential failure when using the 1-step and the 3-step methods. In this example

Lanza et al. (2013) does not fail. This shows that Lanza et al. (2013) method

may be more robust in practical situations.

We generate a data set of size N = 5000 according to a two class LCA model

with 5 binary indicators Ui, i = 1, ..5 using P (Ui|C = 1) = 0.73 and P (Ui|C =

2) = 0.27. The two latent classes are equally likely P (C = j) = 0.5, for j = 1, 2.

To that data set we add a continuous variable X which has a bimodal distribution

0.75·N(0, 0.01)+0.25·N(1, 0.01), i.e., the bimodal distribution is a mixture of two

normal distributions with means 0 and 1 and variance 0.01 and with weights 0.75

and 0.25. The continuous variable X is generated as an independent variable. The

variable is independent of the class indicators Ui as well as the latent class variable

C. Thus if we analyze the variable X as an auxiliary distal outcome variable we

expect to see no significant effect from C to X, i.e., if mj = E(X|C = j) is the

class specific mean of X we expect the mean difference parameter m = m2 −m1

to be statistically insignificant from 0. In addition we expect the latent class

proportions P(C=1)/P(C=2)to be near 1.

[Table 9 about here.]

The results of this analysis are presented in Table 9. We analyze the simulated

data with the four different methods available in Mplus, 1-step, 3-step with

unequal variances, the pseudo class method, and the Lanza et al. (2013) method.

In addition we analyze model with the 3-step manual procedure described in

Section 3. Both the 1-step procedure and the 3-step manual procedures failed.
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The class allocation changed from equal classes to a ratio of 3, which corresponds

to the bimodal distribution weights suggesting that the latent class variable has

changed its meaning and is now used to fit the bimodal distribution of the auxiliary

variable and the original measurement model is ignored. This happens because the

methods use the maximum-likelihood estimation. Ultimately the log-likelihood

will be maximized and in this particular example the log-likelihood benefits more

by fitting the distal outcome variable rather than the measurement model. Most

importantly, the 1-step and the 3-step manual procedures failed in the distal

outcome estimation. Both method find large and statistically significant effect

from the latent class variable on the auxiliary distal outcome where such an effect

does not exist, according to how the data were generated. This effect was found

because the latent class variable meaning changed.

Interestingly, the Mplus automated 3-step procedure did not fail. The

difference between the automated and the manual procedure is in the starting

values. The manual procedure will use a number of random starting values, by

default Mplus will use 20, to guarantee that the global maximum is found. On

the other hand the automated procedure will not use random starting values

and instead will use as starting values only the parameters obtained in the first

step estimation when the latent class measurement model is estimated separately

without the auxiliary variable. Using such starting values it is very likely that

a local optimum will be reached that preserves the meaning of the latent class

variable from the first step if such a local optimum exists. If that local optimum

is also a global optimum the manual 3-step procedure and the automated 3-step

procedure will yield the same result, however, if the local optimum is not a global

optimum the two procedures will yield different results. In our simulated data set
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the local optimum is not a global optimum. The log-likelihood obtained with the

manual 3-step procedure is −770.197 and it is much better than local optimum

obtained with the automated procedure −1300.201.

There are two issues that we need to address related to local and global optima.

First one may ask if it is a good statistical practice to use the local optimum

instead of the global optimum. Obviously in this particular example it makes

sense, because, the local optimum yields unbiased estimates for the distal outcome

model while the global optimum does not. The fact is that it is also a theoretically

solid approach. Using a local optimum instead of a global optimum usually is

equivalent to adding parameter constraints to the model. In our example we

could have added to the model estimation the constraint that the two classes

probabilities are between 45% and 55%. Given that the LCA class without the

auxiliary variable yields almost equal two classes such a parameter constraints

seems reasonable. If the parameter constraints are added then the global optimum

is unacceptable and the local optimum becomes the global optimum and therefore

an acceptable solution. In fact what we obtained in this example as the global

optimum is not really the global optimum. Given that the variance of the distal

outcome is unconstrained a class allocation where one of the classes has a single

observation and a variance of 0 has a likelihood of infinity, i.e., the log-likelihood

doesn’t have a global maximum in a completely unconstrained sense.

The second issue we have to address is the fact that a local optimum

corresponding to the original latent class model might not exist. This actually is

very likely to happen, when the number of classes is large and larger than what is

supported by the data, i.e., when the classes are poorly identified and the entropy

of the step one latent class model is low, and thus the nominal indicator S is a
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weak class indicator. In that case the 3-step method simply fails.17

The Table 9 results also show that the PC method and the Lanza method

are more robust estimation methods than the 1-step and the 3-step methods.

Because these methods do not include new dependent variables in the final model

estimation, they are less likely to alter the meaning of the latent class variable.

Both methods yield the correct result that the effect of the latent class on the

auxiliary variable is not statistically significant.

7.2 Failure due to incorrect multinomial model assump-

tions

Lanza’s method is based on the underlying assumption that we can estimate the

joint distribution of the latent class variable and the auxiliary variable through

estimating a multinomial regression model where the latent class variable is

regressed on the auxiliary variable. This multinomial model, however, may not

hold. In that case, the estimated class specific means for the auxiliary distal

variable might be biased. Note that in the simulation studies in Section 6.1 the

multinomial model does not hold. Nevertheless we obtained unbiased results.

Apparently, the multinomial model is quite robust in recovering the class specific

means for the distal outcome. The multinomial model with K classes has

2K − 2 model parameters and those are estimated to fit as well as possible to

17A simple check is implemented in Mplus to verify that this failure does not occur and if
it does the method will not report any results because those results are likely to be incorrect
similar to the results reported in Table 9. This consistency check is computed as follows. Each
observation is classified into the most likely class using both the first step model and the third
step model. If more than 20% of the observations in step 1 class move to a different class in
step 3 then the 3-step estimation is determined to be inconsistent and no results are reported.
Because this check is already implemented in Mplus Version 7.1 it is safe to use the automatic
3-Step procedure without investigating further the class formation.
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the conditional probabilities P (C|X). Ultimately however, the best multinomial

model is estimated to fit the data well and since the conditional mean E(X|C)

is essentially a first order sample statistic we can generally expect that this

statistic will be fitted well by the model. This is exactly what the simulations

in Section 6.1 illustrate. Even when the multinomial model is not correct the

basic sample statistics may be fitted well. Other simulations, not reported here,

also confirmed that. For example, generating data from a model where log(X) is

the true predictor in the multinomial regression rather than X, which is clearly

a multinomial model misspecification, did not yield bias in the the conditional

mean estimates E(X|C). This, however, may not always happen.

Consider the following example. We generate data as in the previous section

with the exception that the mean of the auxiliary variable is 0 in class 1 and 1

in class 2, i.e., the mean of the auxiliary variable changes over classes, which was

not the case in the simulation we used in the previous section. Here there is a

positive association between the auxiliary variable and the latent class variable.

We generate a sample of size N = 1000. To make sure that any difference between

the methods is not due to the LCA measurement model we adopt a perfect

measurement model, i.e., a model where the latent class variable is measured

exactly by one binary indicator. Thus the latent class variable is perfectly

measured, i.e., is observed. In that case we would expect the auxiliary model

estimates to be the same as the class specific sample means for the auxiliary

variable which can be explicitly computed now because the latent class variable

is observed.

In this situation, when the latent class variable is observed, both the 3-step

method and the PC method will always yield the correct results, regardless of
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how the data set is generated, i.e., the estimated class specific means will be the

same as the class specific sample means for the auxiliary variable. This, however,

is not true for Lanza’s method which will need to estimate a potentially incorrect

multinomial model. When estimating the auxiliary model with our generated data

set all three methods, namely, the 3-step method, the PC method and Lanza’s

method yield correct results. This again illustrates that Lanza’s method is fairly

robust and can perform well even when the multinomial model does not hold.

Next we introduce an outlier in the data set. We add one observation in class

1 with an auxiliary value of 100. When estimating the auxiliary model with the

three methods, the 3-step method and the PC method yield the correct result,

while Lanza’s method does not. In class 1 the sample mean for the auxiliary

variable, the 3-step estimate and the PC estimate are all 1.240. Lanza’s method

estimate is 1.433. The problem with Lanza’s method in this example is the fact

that the multinomial model does not fit the conditional distribution P (C|X) well.

This multinomial logit assumption yields biased results for the distal outcome

class-specific means.

7.3 Summary

In this section we summarize the potential failures of the various distal outcome

estimation methods. First, if the measurement model has low entropy that means

that the latent class variable is poorly measured and in that case all methods can

be expected to fail. The second possible failure is the case when the entropy is

relatively high but the latent class variable changes when the auxiliary variable is

included in the analysis. In this situation the 1-step and the 3-step methods can
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fail while Lanza’s method and the PC method are more robust. The third possible

failure is specific to Lanza’s method. If the multinomial model is substantially

violated, Lanza’s method estimates may be biased. Fortunately this appears to

be relatively rare. The 1-step and the 3-step methods also have distributional

assumptions for the distal outcome. Within each class the distribution of the

auxiliary variable is assumed to be normal. If this assumption is violated the

latent class may change. This was the case in the example described in Section 7.1.

To the above list of possible failures we also need to add the fact that the PC

method will tend to be biased unless the entropy is high.

8 Conclusions

The new 3-step approach uniformly outperforms the pseudo-class approach for

analyzing the relationship between a latent class variable and an auxiliary variable.

If the class separation is good the 3-step approach has the same efficiency as the

1-step approach. Our simulations seem to indicate that an entropy level of 0.6 or

higher provides sufficiently good class separation and in that case we can expect

the 3-step approach to work as efficiently as the 1-step approach. In principle

the 1-step approach can be used in practical applications as well. However, if

the latent classification changes dramatically when the auxiliary variables are

included in the model a detailed analysis should be conducted to determine the

cause of the classification shift. We illustrated also that if the auxiliary variables

are dependent variables as in the case of the distal outcome, both the 1-step and

the 3-step approach can fail due to the change in the formation of the latent classes.

In the case of the distal outcome auxiliary model, Lanza’s method provides a good
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alternative to the 1-step and the 3-step approaches because it will preserve the

latent class variable.

In the Mplus implementation of the 3-step methods, multiple predictor

variables can be used for the latent class variable and the estimated multinomial

model in the third step will include all of the predictor variables. Multiple

distal auxiliary variables can also be used, however the distal outcome models are

estimated one at a time. The Mplus automatic implementation for the auxiliary

variables is limited to the distal outcome model and the latent class predictor

model. Other models may be of interest as well, such as for example a distal

outcome model where the distal outcome is regressed on the latent class variable

and other observed variables. For such models, it is easy to manually set up

all the steps of the 3-step estimation method following the description provided

here. The 3-step procedure can be used with an arbitrary auxiliary model. The

examples we presented in this paper used an LCA model as a measurement model

for the latent class variable. The Mplus implementation however is very flexible

and can use any other latent class model as the measurement model including for

example growth mixture models and any type of dependent variables.

Lanza’s method as implemented in Mplus can accommodate continuous and

categorical distal outcomes, however, it is more limited in terms of the scope

of models it can accommodate. The latent class measurement model can be

an arbitrary measurement model but the model can not include latent class

predictors. Also, Lanza’s method can not be used with an arbitrary auxiliary

model. It is important to note, however, that the underlying assumption of

Lanza’s method, namely, that the auxiliary model can be estimated indirectly

by assuming a multinomial regression model between the latent class variable and
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the auxiliary variable does not appear to have substantial drawbacks. That is,

even when the multinomial regression model does not hold, in most situations

Lanza’s method still yields unbiased estimates.
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Figure 1: 3-step with regression on a predictor
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Figure 2: Linear regression auxiliary model
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Table 1: Latent class probabilities, classification probabilities, and logits for
classification probabilities

Average Latent Class Probabilities for Most

Likely Latent Class Membership (Row)

by Latent Class (Column)

1 2 3

1 0.839 0.066 0.095

2 0.053 0.845 0.102

3 0.125 0.107 0.768

Classification Probabilities for the Most

Likely Latent Class Membership (Row)

by Latent Class (Column)

1 2 3

1 0.830 0.046 0.124

2 0.072 0.811 0.177

3 0.099 0.094 0.807

Logits for the Classification Probabilities

for Most Likely Latent Class Membership

(Row) by Latent Class (Column)

1 2 3

1 1.901 -0.990 0.000

2 -0.486 1.936 0.000

3 -2.100 -2.147 0.000
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Table 2: Latent class predictor simulation study: Bias/Mean Squared
Error/Coverage

N Entropy PC 3-step 1-step

500 0.7 .13/.023/.84 .01/.015/.95 .01/.014/.95

500 0.6 .20/.044/.59 .00/.019/.96 .01/.017/.96

500 0.5 .28/.083/.24 .02/.029/.95 .03/.028/.97

2000 0.7 .13/.019/.24 .00/.004/.93 .00/.004/.94

2000 0.6 .20/.042/.01 .00/.004/.95 .00/.004/.94

2000 0.5 .29/.085/.00 .01/.007/.94 .01/.006/.95
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Table 3: Final estimates from the manual 3-step estimation with linear regression
auxiliary model.

Parameter True Value Estimate Standard Error

α1 0 0.022 0.068

β1 0.5 0.490 0.067

α2 1 1.083 0.072

β2 -0.5 -0.452 0.063

α3 -1 -1.078 0.070

β3 0 0.092 0.059
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Table 4: LCA with direct effects: absolute bias and coverage

Method 1 Method 2
Number 3-step 3-step

of excluding including
direct direct direct Method 3
effects Entropy effects effects 1-step

1 0.9 0.02(.92) 0.02(.94) 0.01(.94)

2 0.9 0.04(.88) 0.00(.94) 0.01(.94)

3 0.9 0.08(.68) 0.01(.96) 0.01(.94)

4 0.9 0.15(.24) 0.01(.97) 0.01(.95)

5 0.9 0.25(.04) 0.00(.94) 0.01(.95)

1 0.6 0.08(.79) 0.05(.83) 0.01(.95)

2 0.6 0.19(.30) 0.04(.92) 0.01(.97)

3 0.6 0.38(.00) 0.01(.92) 0.01(.97)

4 0.6 0.56(.00) 0.07(.81) 0.01(.99)

5 0.6 0.76(.00) 0.08(.80) 0.01(.97)
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Table 5: GMM with direct effects: absolute bias and coverage

Method 1 Method 1 Method 1 Method 2 Method 2 Method 3
Entropy Type 1 Type 2 Type 3 Type 2 Type 3 Type 3

0.6 0.00(.97) 0.68(.00) 0.49(.00) 0.18(.00) 0.24(.00) 0.00(.93)

0.85 0.04(.95) 0.35(.00) 0.23(.00) 0.02(.92) 0.09(.26) 0.00(.96)

0.95 0.00(.95) 0.12(.06) 0.07(.32) 0.00(.95) 0.01(.90) 0.00(.94)

46



Table 6: Distal outcome simulation study: Bias/Mean Squared Error/Coverage

N Entropy PC 3-step Lanza 1-step

500 0.7 .10/.015/.76 .00/.007/.95 .00/.006/.92 .00/.006/.94

500 0.6 .16/.029/.50 .01/.008/.94 .00/.007/.89 .00/.007/.94

500 0.5 .22/.056/.24 .03/.017/.86 .00/.012/.80 .01/.012/.96

2000 0.7 .10/.011/.23 .00/.002/.93 .00/.002/.89 .00/.002/.93

2000 0.6 .15/.025/.03 .00/.002/.93 .00/.002/.87 .00/.002/.94

2000 0.5 .22/.051/.00 .00/.004/.91 .00/.003/.80 .00/.003/.94
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Table 7: Distal outcome simulation study. Comparing equal and unequal variance
3-step methods: Bias/Mean Squared Error/Coverage

N Entropy 3-step equal variance 3-step different variance

500 0.7 .05/.147/.95 .00/.099/.94

500 0.6 .06/.174/.96 .00/.099/.95

500 0.5 .12/.822/.93 .01/.101/.95

2000 0.7 .05/.040/.92 .00/.027/.92

2000 0.6 .09/.056/.92 .00/.027/.93

2000 0.5 .11/.094/.95 .00/.029/.92
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Table 8: Categorical distal outcome simulation study using Lanza’s method:
Absolute Bias(Coverage)

N Entropy p21 p22 p23
200 0.5 .03(.62) .08(.74) .07(.74)

200 0.65 .00(.87) .01(.90) .02(.90)

500 0.5 .01(.87) .00(.99) .01(.91)

500 0.65 .01(.88) .00(.93) .00(.92)

2000 0.5 .00(.91) .00(.95) .01(.95)

2000 0.65 .00(.93) .00(.95) .00(.95)
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Table 9: Distal outcome simulated example

Method m P-value P(C=1)/P(C=2)

1-Step 0.986 0.007 2.8

3-Step Manual 0.986 0.007 2.8

3-Step 0.013 0.858 1.0

PC 0.019 0.492 1.0

Lanza 0.019 0.492 1.0
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