Recent Advances in Modeling Short and Long Longitudinal Data

Bengt Muthén
Professor Emeritus, UCLA

Mplus: https://www.statmodel.com
bmuthen@statmodel.com

Tihomir Asparouhov
Mplus

Presentation to the ASA Mental Health Statistics Section
May 24, 2022

We thank Katie Witkiewitz, Nick Ialongo, Cindy Bergeman, Loes Keijsers, Nicole Geschwind, Marieke Wichers, and Ellen Hamaker for helpful guidance on data sets, and Noah Hastings for expert assistance.
Section 1: Motivating Examples from Three Data Sets
- Stress, alcohol consumption, suicidal ideation, substance abuse, and negative affect (N = 270-1375)

PART 1: Short Longitudinal Data - Panel Data (T = 3-10)

Section 2: Brief Refresher of Longitudinal Modeling with Continuous Outcomes
- Dynamic models
- Models with auto-regressive residuals

Section 3: Brief Introduction to Multivariate Modeling with Categorical Outcomes
- Model specification, identification and estimation
- Model testing

Section 4: Applications of Binary RI-AR Modeling
- Suicidal ideation
- Abstinence
Section 5: Ordered Categorical (Ordinal) Outcomes

Two-Part Ordinal Modeling
- Model specification
- 5-category alcohol risk
- Treatment effects comparing regular and two-part ordinal

Section 6: Analysis of Two Processes: Cross-Lagged Panel Modeling
- Cross-lagged effects between a continuous stress outcome and a 5-category ordinal alcohol risk outcome

PART 2: Long Longitudinal Data - Intensive Longitudinal Data (T = 50-100)

Section 7: Two-level time series analysis, DSEM
- Two-level, cross-lagged modeling of positive and negative affect
- Two-level, two-part analysis of negative affect
- Daily cycles of positive affect
- Interaction effects in a randomized trial

Section 8: References
Section 1 Motivating Examples from Three Data Sets
Data from COMBINE, a 16-week, multisite randomized double-blind clinical trial comparing treatments of alcohol dependence (Anton et al., 2006, JAMA)

- N = 1,383. Mean age 44
- Measurement occasions: Baseline, week 1, week 2, week 4, week 6, week 8, week 10, week 12, week 16 and week 52 follow-up

Alcohol risk: Abstinence, low risk, medium risk, high risk, very high risk (risk levels based on amount of alcohol consumed)

Stress: Brief version of The Perceived Stress Scale

- Stress and alcohol use disorder (AUD). Stress causes drinking (Armeli et al., 2000 in J of Personality and Social Psych)

Covariates:

- Intervention - 9 groups (medication, placebo, and therapy), gender, race, age, education, marital status, employment
A 4-item version of The Perceived Stress Scale with scores of 0 to 16 has been used for analyses of the COMBINE data:

- McHugh et al. (2013). Positive affect and stress reactivity in alcohol-dependent outpatients. J. Studies in Alcohol and Drugs

- Can be treated as a continuous variable using non-normality robust ML

- Percentage at the lowest score of zero increases with time but does not exceed 15%
Distribution of the Alcohol Risk Variable

- WHO categories based on grams of pure alcohol per day (separate for males and females)
- Should not be treated as a continuous variable with linear relations because of the strong floor effect: Biases in correlations and regressions
- Can be analyzed as an ordered categorical (ordinal) with 5 categories. Floor effect not a problem
Binary vs ordinal:

- Traditionally, abstinence is the accepted outcome in treatment
- More recently, low-risk drinking is an alternative end point

Witkiewitz et al. (2017). Clinical validation of reduced alcohol consumption after treatment for alcohol dependence using the WHO risk drinking levels. Alcoholism: Clinical and Experimental Research
Suicidal ideation and substance abuse

Classic question of what influences what

Data from a preventive intervention study in Baltimore (Ialongo)

N = 737

T = 8: Ages 19-26

Covariates: Gender, race, lunch (poverty indicator)

References:

Musci et al. (2016). Suicide & Life Threatening Behavior

Thrul et al. (2021). Addiction
Suicidal Ideation and Substance Abuse: Binary Outcomes

- Number of suicidal thoughts or behaviors endorsed in the last year
- At age 19, 77% are at zero, 8% at 1: Dichotomize into 0 vs higher
 - At least one suicidal ideation and/or behaviors endorsed (Y)
 - At least one substance abuse or dependence criteria met across all substances assessed in the last year (Z)

<table>
<thead>
<tr>
<th>Age</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 19</td>
<td>23.0%</td>
<td>19.9%</td>
</tr>
<tr>
<td>Age 20</td>
<td>18.2%</td>
<td>19.8%</td>
</tr>
<tr>
<td>Age 21</td>
<td>15.2%</td>
<td>15.3%</td>
</tr>
<tr>
<td>Age 22</td>
<td>19.0%</td>
<td>20.4%</td>
</tr>
<tr>
<td>Age 23</td>
<td>23.0%</td>
<td>18.5%</td>
</tr>
<tr>
<td>Age 24</td>
<td>22.3%</td>
<td>15.0%</td>
</tr>
<tr>
<td>Age 25</td>
<td>23.4%</td>
<td>14.3%</td>
</tr>
<tr>
<td>Age 26</td>
<td>21.1%</td>
<td>13.3%</td>
</tr>
</tbody>
</table>
Data from the older cohort of the Notre Dame Study of Health & Well-being (Cindy Bergeman): N = 271, T = 56 (daily measures on consecutive days)

10 NA items (5-category scale): afraid, ashamed, guilty, hostile, scared, upset, irritable, jittery, nervous, distressed

Question format: Today I felt... (1 = Not at all, 2 = A little, 3 = Moderately, 4 = Quite a bit, 5 = Extremely)
Negative Affect Sum of 10 Items

- 54% at lowest value - answering Not at all on all 10 items
- Not suitable for continuous variable analysis with linear models due to strong floor effect
- Can be treated as a semi-continuous variable
Section 2 Brief Refresher of Longitudinal Modeling with Continuous Outcomes
Dynamic Models

- Auto-Regression of lag 1 (AR1)

- Dynamic Random Intercept ARMA (1,1). Zyphur et al. (2020)
Statistical theory used in repeated measurement modeling:
- Laird & Ware (1982, Biometrics) random effect model
- Chi & Reinsel (1989, JASA) added auto-regressions among the residuals, \(\varepsilon_t = \beta \varepsilon_{t-1} + \delta_t \) (AR-1):

Special case of no trend: Random intercept plus first-order auto-regressions among the residuals (RI-AR1 modeling):

The figure corresponds to a single-level, wide format analysis suitable for short longitudinal data
Separation of between- and within-individual variation

RI-AR modeling is the univariate part of random intercept cross-lagged panel modeling (RI-CLPM; Hamaker et al., 2015)
This model is similar in spirit to RI-AR because of its separation of between- and within-individual variation also referred to as latent centering (centering using the random intercept i), but adds MA

Muthén & Asparouhov (2022). Mplus Web Talk No. 4, Part 1
Section 3 Brief Introduction to Multivariate Modeling with Categorical Outcomes
Three contexts:
- Item Response Theory (IRT): item difficulty and discrimination
- Factor analysis: item thresholds and factor loadings
- Random intercept (5 time points, single-level, wide format): factor loadings fixed at 1

Typical specification:
- Normally distributed latent variable
- Logistic or Probit regressions

ML, WLSMV, and Bayes estimation available in Mplus
Equivalent representation with continuous latent response variables Y^*:

- $Y^* >$ threshold results in $Y = 1$, otherwise $Y = 0$
- Specifying normally distributed f together with probit regressions is the same as specifying normally distributed latent response variables Y^* ($N + N = N$). Logistic regression does not give Y^* normality
- Correlations between Y^* variables for binary Y: Tetrachoric correlations used in WLSMV; ML, Bayes use raw data (full info)
The cross-sectional modeling of IRT and factor analysis focuses on the relationship between f and Y.

The longitudinal modeling of panel data analysis adds a focus on the relationship between Y’s at different time points.

- The random intercept may not account for all the Y* correlation.
 - Especially not when occasions are close in time.

- Multivariate probit modeling allows linear regressions among normally distributed Y*’s such as in the below auto-regressive model (dynamic model in time series settings).
 - Auto-regression among the Y*’s or their residuals?
Binary case: y_t^* continuous latent response variable at time t with threshold τ_t, $y_t^* > \tau_t \rightarrow y_t = 1$, otherwise $y_t = 0$

\[
y_{it}^* = \alpha_i + \hat{y}_{it}^*, \quad (1)
\]

\[
\hat{y}_{it}^* = \beta_t \hat{y}_{it-1}^* + \zeta_{it}; \quad t = 2, \ldots, T \quad (2)
\]

\[
\hat{y}_{i1}^* = \zeta_{i1}; \quad (3)
\]

Random intercept $\alpha_i \sim N(0, \psi)$ and residuals $\zeta_t \sim N(0, \theta_t)$

A maximum of $T - 1$ θ_t variances can be identified

- Empirical identification issue: Number of identifiable variances depends on the data (correlations across time, # time points)
- Default of residual variances fixed at 1 is often reasonable
 ML: AR leads to too many dimensions of numerical integration

WLSMV: Second-order, limited-information estimator (tetrachoric/polychoric correlations). Fast, good with low missingness. Does not handle MAR

Bayes: Full-information estimator (like ML) using raw data (not tetrachoric/polychoric correlations). Advantageous due to handling MAR (Asparouhov & Muthén, 2022: RSEM)

Models need to be identified in terms of the second-order information
RI and AR1 Impact on Correlations Across Time (T=10)

(a) RI variance \((R^2) = 0.00 \)

(b) RI variance \((R^2) = 0.25 \)

(c) RI variance \((R^2) = 0.50 \)

(d) RI variance \((R^2) = 0.75 \)

Correlation \(Y^*_1, Y^*_t = \psi + \beta^{t-1}(1 - \psi) \) where \(\psi \) is the random intercept variance, \(\beta \) is the constant auto-regression among the residuals, and \(Y^* \) variances are all 1.
Simulations for RI-AR1 with Binary Outcome

- Time-varying thresholds and ARs
- No Missing Data. WLSMV Estimation (Bayes results similar)
- Parameter values:
 - Autocorrelations = 0.3
 - Random intercept variance = 1, residual variances = 1: R-square due to random intercept = 0.5, R-square for residuals = 0.09
 - \(P(Y=1) = 0.20 \) (thresholds = 1.2)
- Fixed variances (default):
 - T=3 gets good results for N=500
 - T=4 gets good results for N=500
 - T=8 gets good results for N=500 (no improvement due to no time-invariant parameters)
- Free 1st variance:
 - T=3 not identified
 - T=4 gets good results for N=2000
 - T=8 gets good results for N=500 (more corr’s for 1st var)
- Free T-1 variances (often not a stable model in practice):
 - T=4 is not identified. T=5 gets good results for N=5000
 - T=8 gets good results for N=500
Two Kinds of Model Assessments for Categorical Outcomes

- Fit to correlations among a set of normal, continuous latent response variables Y^* underlying the observed categorical Y’s (WLSMV and Bayes)
- Fit to the data in the form of response patterns, that is, a frequency table for all variables
 - A model may fit the Y^* correlations but not the frequency table
 - Even a just-identified Y^* model with free correlations may not fit the frequency table in some cases
Fit to correlations among a set of normal, continuous latent response variables Y^* underlying the observed categorical Y’s (WLSMV and Bayes)

- The Muthén et al. (1997) WLSMV chi-square works well when the number of variables is not large and the sample size is not small: Suitable for cross-lagged panel modeling
- Bayes PPP idea: Using any fit statistic, compute the fit statistic for the observed data, generate a fit statistic distribution based on generated data from the estimated model, and find the proportion of cases where the latter is larger than the former
 - Bayes PPP for categorical variables: Based on chi-square test of overall model fit for Y^*s
 - Analogous to WLSMV chi-square test of estimated versus sample tetrachorics and polychorics
 - Low power for binary outcomes and less powerful than the WLSMV chi-square test (Asparouhov-Muthén, 2021a)
 - More powerful for polytomous variables
Frequency table test of model fit:

- With categorical variables, the model can be tested against data using Pearson and likelihood-ratio chi-square frequency table tests. Summing over the cells of the table:

\[
\text{Pearson} : \sum_j (o_j - e_j)^2 / e_j \\
\text{Likelihood ratio} : 2 \sum_j o_j \log(o_j / e_j)
\]

- There are typically too many frequency table cells with many cells having estimated frequencies close to zero, invalidating the tests: Pearson and Likelihood ratio tests disagree
- Example with 8 binary variables: \(2^8 = 256\) possible response patterns, where many patterns are probably not observed (zero cells in the frequency table) - the two tests disagree strongly
- Alternative checks: Fit for univariate and bivariate tables (higher frequencies) and most common response patterns
Section 4 Applications of Binary RI-AR Modeling
Multivariate Probit Analysis of Binary Suicidal Ideation Using Bayes (N=737, T=8)

- Bayes PPP (posterior predictive p-value)
- Number of significant residuals:
 - 20 most frequent response patterns. Freq. = 155 for all 0’s
 - 4*28 = 112 bivariate cells. 5% = 6

<table>
<thead>
<tr>
<th>Model</th>
<th># par’s</th>
<th>PPP</th>
<th># Significant Residuals</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Resp Pattern (max obs freq)</td>
<td>Bivar</td>
</tr>
<tr>
<td>1. Unrestr.</td>
<td>36</td>
<td>0.524</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2. AR1</td>
<td>15</td>
<td>0.133</td>
<td>2 (155)</td>
<td>22</td>
</tr>
<tr>
<td>3. AR2</td>
<td>21</td>
<td>0.378</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4. RI</td>
<td>9</td>
<td>0.191</td>
<td>2 (25)</td>
<td>8</td>
</tr>
<tr>
<td>5. RI-AR1</td>
<td>16</td>
<td>0.422</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6. RI-AR2</td>
<td>22</td>
<td>0.466</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- 2 versus 5 shows importance of RI
- 4 versus 5 shows importance of AR
- ML can only estimate model 4, WLSMV can estimate all six models
Substantial random intercept variance = 0.756, S.E. (SD) = 0.102

STDYX estimates:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I BY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1</td>
<td>0.656</td>
<td>0.025</td>
</tr>
<tr>
<td>Y2</td>
<td>0.642</td>
<td>0.026</td>
</tr>
<tr>
<td>Y3</td>
<td>0.653</td>
<td>0.026</td>
</tr>
<tr>
<td>Y4</td>
<td>0.636</td>
<td>0.032</td>
</tr>
<tr>
<td>Y5</td>
<td>0.632</td>
<td>0.032</td>
</tr>
<tr>
<td>Y6</td>
<td>0.603</td>
<td>0.038</td>
</tr>
<tr>
<td>Y7</td>
<td>0.607</td>
<td>0.034</td>
</tr>
<tr>
<td>Y8</td>
<td>0.581</td>
<td>0.035</td>
</tr>
</tbody>
</table>

R^2 (Y4*) due to the random intercept = $0.636^2 = 0.404$

Corr (Y1*, Y8*) due to RI = $0.656 \times 0.581 = 0.381$
(total est corr = 0.383)

AR1 estimates (standardized):

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y2^ ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y1^</td>
<td>-0.231</td>
<td>0.131</td>
</tr>
<tr>
<td>Y3^ ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y2^</td>
<td>0.035</td>
<td>0.117</td>
</tr>
<tr>
<td>Y4^ ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y3^</td>
<td>0.304*</td>
<td>0.115</td>
</tr>
<tr>
<td>Y5^ ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y4^</td>
<td>0.339*</td>
<td>0.101</td>
</tr>
<tr>
<td>Y6^ ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y5^</td>
<td>0.488*</td>
<td>0.099</td>
</tr>
<tr>
<td>Y7^ ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y6^</td>
<td>0.473*</td>
<td>0.086</td>
</tr>
<tr>
<td>Y8^ ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y7^</td>
<td>0.565*</td>
<td>0.072</td>
</tr>
</tbody>
</table>
Multivariate Probit Analysis of Binary Abstinence Using Bayes (N=1375, T=8)

- Bayes PPP (posterior predictive p-value)
- Number of significant residuals:
 - 20 most frequent response patterns. Freq. = 312 for all 0’s
 - $4 \times 28 = 112$ bivariate cells. 5% = 6

<table>
<thead>
<tr>
<th>Model</th>
<th># par’s</th>
<th>PPP</th>
<th># Significant Residuals</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestr.</td>
<td>36</td>
<td>0.520</td>
<td>1 (38; z=1.98)</td>
<td>Good fit</td>
</tr>
<tr>
<td>AR1</td>
<td>15</td>
<td>0.082</td>
<td>1 (312)</td>
<td>Poor fit</td>
</tr>
<tr>
<td>AR2</td>
<td>21</td>
<td>0.474</td>
<td>0</td>
<td>Good fit</td>
</tr>
<tr>
<td>RI</td>
<td>9</td>
<td>0.000</td>
<td>8 (38)</td>
<td>Poor fit</td>
</tr>
<tr>
<td>RI-AR1</td>
<td>16</td>
<td>0.189</td>
<td>2 (38)</td>
<td>OK fit</td>
</tr>
<tr>
<td>RI-AR2</td>
<td>22</td>
<td>0.472</td>
<td>0</td>
<td>Good fit</td>
</tr>
</tbody>
</table>
Section 5 Ordered Categorical (Ordinal) Outcomes
Two-Part Ordinal Modeling
Brant (1990) chi-square test of the proportionality assumption of regular ordinal regression

- Chi-square (3) = 40 (p=0.000) rejects proportionality

Proportionality seems to hold for the 4 highest categories, suggesting a two-part model - one binary part and one 4-category ordinal part
Distribution of the Alcohol Risk Variable

- Binary vs ordinal:
 - Traditionally, abstinence is the accepted outcome in treatment
 - More recently, low-risk drinking is an alternative end point

- Witkiewitz et al. (2017). Clinical validation of reduced alcohol consumption after treatment for alcohol dependence using the WHO risk drinking levels. Alcoholism: Clinical and Experimental Research
The variable is split into two parts (Mplus DATA TWOPART):

\[
\begin{array}{ccc}
Y & U & V \\
>0 & 1 & \log Y \\
0 & 0 & 999 \\
999 & 999 & 999 \\
\end{array}
\]

Muthén (2001): Two-part growth mixture modeling

Muthén & Asparouhov (2022): Mplus Web Talk No. 4, Part 2: Cross-lagged modeling of categorical panel data
http://www.statmodel.com/Webtalk4P2.shtml

Mplus Version 8.8: Two-part ordinal multivariate probit model (TECH10 testing)

Hedeker (personal communication; longitudinal setting)
With censoring from below at zero and using probit regression with the event of $U = 1$ referring to a positive outcome, the two-part model can be expressed by a probit regression part and a continuous regression part typically with a log transformation,

$$P(U_i = 1|X_i) = \Phi\left(\frac{-\tau + \gamma_1 X_i}{\sqrt{\sigma^2}}\right), \quad (4)$$

$$V_i = \log Y_{U_i=1} = \beta_0 + \beta_1 X_i + \varepsilon_i. \quad (5)$$

Here, $\sigma^2 = 1$. Importantly, γ_1 and β_1 can be different and different X variables can be involved. Logit can be used instead of probit.

Alternative models:

- Inflation model using a mixture with a zero latent class
- Heckman selection modeling
- Censored (tobit), censored-inflated
Regular ordinal probit regression with categories $c = 0, 1, 2, \ldots C-1$

$$P(Y_i = c | X_i) = \Phi[(\tau_c - \mu_i)/\sqrt{\sigma^2}] - \Phi[(\tau_{c-1} - \mu_i)/\sqrt{\sigma^2}], \quad (6)$$

Two-part ordinal with categories $c = 0, 1, 2, \ldots C-1$ uses probit regression with the event of $U = 1$ referring to a positive outcome and ordinal probit for the positive categories $c = 1, 2, \ldots C - 1$,

$$P(U_i = 1 | X_i) = \Phi[(-\tau + \mu_i)/\sqrt{\sigma^2}], \quad (7)$$

$$P(V_i = c | X_i) = \Phi[(\tau_c - \mu_{pi})/\sqrt{\sigma_p^2}] - \Phi[(\tau_{c-1} - \mu_{pi})/\sqrt{\sigma_p^2}], \quad (8)$$

In the multivariate response case, the variances σ^2 and σ_p^2 contain key model parameters such as random intercept variance and auto-regression coefficients.
Comparison of regular and twopart ordinal analysis:
 - Modeling of the alcohol risk outcome
 - Modeling the treatment effects on the alcohol risk outcome
 - Possibly different effects on binary and ordinal parts
Testing regular versus two-part ordinal random intercept models for weeks 1 - 16 \((T = 8)\) for the 5-category alcohol risk outcome

- Most frequent pattern of all 0’s has frequency 312
- Bivariate tables have \(5 \times 5 \times \frac{8 \times (8-1)}{2} = 700\) cells. 5\% = 35
<table>
<thead>
<tr>
<th>Estimator/Model</th>
<th># par’s</th>
<th>Fit</th>
<th>Resp Pattern (Max Obs Freq)</th>
<th>Bivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular Ordinal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML, probit, RI</td>
<td>33</td>
<td>-10471</td>
<td>21180</td>
<td>11 (312)</td>
</tr>
<tr>
<td>Bayes, Unrestr.</td>
<td>60</td>
<td>0.498</td>
<td>[-29 27]</td>
<td>5 (312)</td>
</tr>
<tr>
<td>Bayes, RI</td>
<td>33</td>
<td>0.000</td>
<td>[398 530]</td>
<td>7 (312)</td>
</tr>
<tr>
<td>Bayes, RI, AR1</td>
<td>40</td>
<td>0.000</td>
<td>[31 107]</td>
<td>6 (312)</td>
</tr>
<tr>
<td>Bayes, RI, AR2</td>
<td>46</td>
<td>0.129</td>
<td>[11 44]</td>
<td>5 (312)</td>
</tr>
<tr>
<td>Two-Part Ordinal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML, probit, RI</td>
<td>35</td>
<td>-9749</td>
<td>19750</td>
<td>4 (25)</td>
</tr>
<tr>
<td>Bayes, Unrestr.</td>
<td>144</td>
<td>0.472</td>
<td>[-46 52]</td>
<td>1 (12)</td>
</tr>
<tr>
<td>Bayes, RI</td>
<td>35</td>
<td>0.000</td>
<td>[77 199]</td>
<td>4 (25)</td>
</tr>
<tr>
<td>Bayes, RI, AR1</td>
<td>49</td>
<td>0.110</td>
<td>[-16 85]</td>
<td>1 (12)</td>
</tr>
<tr>
<td>Bayes, RI, AR2</td>
<td>61</td>
<td>0.219</td>
<td>[-27 70]</td>
<td>1 (12)</td>
</tr>
</tbody>
</table>
Assessing Treatment Effects: Regular Versus Two-Part Ordinal RI-AR1 Models for the 5-Category Alcohol Risk Outcome

<table>
<thead>
<tr>
<th>Tx Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

2 = acamprosate, 3 = naltrexone, 4 = naltrexone + acamprosate, 5 = placebo + behavioral intervention, 6 = acamprosate and combined behavioral intervention, 7 = naltrexone and combined behavioral intervention, 8 = naltrexone + acamprosate + behavioral intervention, 9 = combined behavioral intervention with no mediations
Section 6 Analysis of Two Processes: Cross-Lagged Panel Modeling
Continuous outcomes:

Categorical outcomes:
- Muthén & Asparouhov (2022). Mplus Web Talk No. 4, Part 2
Returning to the question in the introduction: Does stress influence alcohol risk or the other way around?

Stress causes drinking (Armeli et al., 2000 in J of Personality and Social Psych)

The alcohol treatment setting may produce a different picture

RI-CLPM with one continuous and one categorical outcome
Bivariate Analysis of Stress and Alcohol Risk

Week 1 - Week 16 (N=1375, T=8)

Average Correlations as a Function of the Time Distance

- RI-AR1 model chosen for stress - continuous outcome
 - Asparouhov & Muthén (2022). RSEM paper
- Two-part ordinal RI-AR1 model chosen for 5-category alcohol risk
- 3 correlated random intercepts, 3 processes
Number of significant cross-lagged effects (out of 7 possible):
- Stress regressed on binary part of alcohol risk: 1
- Stress regressed on ordinal part of alcohol risk: 6
- Binary part of alcohol risk regressed on stress: 0
- Ordinal part of alcohol risk regressed on stress: 3 (small effects)

Most of the cross-lagged effect is alcohol risk increasing stress, not the other way around
- Abstinence or not has little effect on stress
- Higher degree of alcohol risk (non-abstinence) has a significant effect on stress
- Stress has a minor effect on higher degree of alcohol risk
Muthén & Asparouhov (2022): Mplus Web Talk No. 4, Part 2: Cross-lagged modeling of categorical panel data
http://www.statmodel.com/Webtalk4P2.shtml

Other models:
- Observed Y instead of latent Y* as predictor
- Reciprocal interaction
- Bivariate latent transition analysis (Mover-Stayer LTA, RI-LTA)
Section 7 Part 2: Long Longitudinal Data
- Intensive Longitudinal Data
Two-Level Time Series Analysis, DSEM
Frequent observations, large T (20, 50, 100, 1000): Daily diary data, ecological momentary assessments, experience sampling methods, wearables

Within level = time, between level = individual. Variation in within level parameters across individuals can be characterized by many random effects (continuous latent variables) not only random intercepts: Mean/intercepts (level), variance, auto-correlation, slopes, amplitude

Modeling with a large number of random effects is made possible by Bayesian estimation. Mplus implementation presented in:

More references and short course videos at:
http://www.statmodel.com/TimeSeries
Cross-lagged modeling with large T and Bayes estimation can in principle allow for more random effects than just intercepts.

Between-Within decomposition where the W variables correspond to the residuals in the earlier figures (hat variables in Mplus):

Hamaker, Asparouhov et al. (2018). At the frontiers of modeling intensive longitudinal data: Dynamic structural equation models for the affective measurements from the COGITO study. Multivariate Behavioral Research.
Data from a study designed to detect at-risk mood profiles related to depression in adolescents

- de Haan-Rietdijk, Voelkle, Keisers, Hamaker (2017). Discrete-vs. continuous-time modeling of unequally spaced experience sampling method data. frontiers in Psychology

- ESM questionnaires measuring positive and negative affect in Dutch adolescents (age 12 to 16)

- N = 233, several measures per day for 7 days
Random intercepts only model

PA ON PA&1 refers to the lag-1 auto-regression of \(PA_t \) on \(PA_{t-1} \). Because it appears on the Within level, it is the residual of PA, that is, the latent variable centered version of PA - or in other words, what is left in PA after the random intercept has been subtracted.

Standardized cross-lagged effects:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>S.D.</th>
<th>Lower 2.5%</th>
<th>Upper 2.5%</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA&1</td>
<td>0.374</td>
<td>0.016</td>
<td>0.340</td>
<td>0.403</td>
<td>*</td>
</tr>
<tr>
<td>NA&1</td>
<td>-0.013</td>
<td>0.015</td>
<td>-0.041</td>
<td>0.020</td>
<td></td>
</tr>
<tr>
<td>NA ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA&1</td>
<td>0.253</td>
<td>0.016</td>
<td>0.223</td>
<td>0.286</td>
<td>*</td>
</tr>
<tr>
<td>PA&1</td>
<td>-0.023</td>
<td>0.017</td>
<td>-0.055</td>
<td>0.010</td>
<td></td>
</tr>
</tbody>
</table>

Small or insignificant cross-lagged effects are often found for PA-NA
Negative Affect Distribution

- 60% at the lowest value
- A possible reason for small cross-lagged effects?
- Two-part modeling motivated and can be done in DSEM
 - Binary part uses multivariate probit
 - Positive part specified as continuous-normal using a log transformation
NU refers to the Y* (probit regression) for the binary part of negative affect \geq floor, POS refers to the continuous part (linear regression)

Standardized cross-lagged effects:

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>S.D.</th>
<th>Lower 2.5%</th>
<th>Upper 2.5%</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA&1</td>
<td>0.340</td>
<td>0.018</td>
<td>0.304</td>
<td>0.374</td>
<td>*</td>
</tr>
<tr>
<td>NU&1</td>
<td>-0.147</td>
<td>0.020</td>
<td>-0.189</td>
<td>-0.108</td>
<td>*</td>
</tr>
<tr>
<td>NPOS&1</td>
<td>-0.018</td>
<td>0.020</td>
<td>-0.059</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>NU ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NU&1</td>
<td>0.460</td>
<td>0.030</td>
<td>0.399</td>
<td>0.513</td>
<td>*</td>
</tr>
<tr>
<td>PA&1</td>
<td>-0.074</td>
<td>0.022</td>
<td>-0.119</td>
<td>-0.032</td>
<td>*</td>
</tr>
<tr>
<td>NPOS ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPOS&1</td>
<td>0.310</td>
<td>0.034</td>
<td>0.240</td>
<td>0.373</td>
<td>*</td>
</tr>
<tr>
<td>PA&1</td>
<td>-0.001</td>
<td>0.025</td>
<td>-0.052</td>
<td>0.045</td>
<td></td>
</tr>
</tbody>
</table>
Daily Cycles of Positive Affect: Observed Averages Over Individuals Tuesday - Monday
- **Biological cycles**
 - 24-hour cycles: Circadian rhythm such as heart rate
- **Behavioral cycles**
 - Weekly drinking pattern
- **Environmental cycles**
 - Monthly temperature fluctuations
f(t) = A cos (2\pi \omega t + \phi)

= -A sin \phi \sin (2\pi \omega t) + A cos \phi \cos (2\pi \omega t)

\beta_1 \beta_2
\beta_1
\beta_2
x_1 x_2

Amplitude = A = \sqrt{\beta_1^2 + \beta_2^2}

Phase = \phi = tan^{-1}(-\beta_1/\beta_2)

- \omega is a frequency index defined as cycles per unit. With 8 measurements per day, a daily cycle is obtained by \omega = 1/8
- Random effects for amplitude and phase are of interest and can be obtained via random effects for \beta_1, \beta_2
- 2-component model (cosinor) with 4 random slopes used for blood pressure. Madden et al. (2018) in Statistics in Medicine
- Dummy variables can be added for weekdays or weekend

- The estimated model uses two-level dynamic structural equation modeling (DSEM) allowing for individual differences in daily cycles

- Muthén et al. (2022). In preparation: DSEM with daily cycles modeled by sine-cosine curve with random effects
Are the two outcomes related after accounting for the daily cycles?

Residual dynamic SEM (RDSEM)

Randomized Trial

- Trial Design (N = 119):
 - Baseline: 6 days Experience Sampling (ESM) using 10 beeps/day via digital wristwatch
 - Randomization into 8 weeks of treatment or control
 - Post treatment: 6 days ESM again
 - Total T = 60 pre + 60 post
 - Positive affect
Preliminary findings for intervention effects on the random effects of the post-intervention time series for momentary positive emotions:

- Positive effect on level (intercept); higher effect on level for persons with higher pre-intervention level
- Positive effect on level for persons with high pre-intervention auto correlation
Section 8 References
Further DSEM References

- Schultzberg & Muthén (2018). Number of subjects and time points needed for multilevel time series analysis: A simulation study of dynamic structural equation modeling. Structural Equation Modeling

- McNeish & Hamaker (2020). A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus. Psych Methods

- Mplus Web Talk No. 5. Forthcoming. Focus on using Mplus
Further References

 http://www.statmodel.com/download/RSEM.pdf
 http://www.statmodel.com/bmuthen/articles/Article_045.pdf
 http://www.statmodel.com/download/Article_075.pdf

Zyphur et al. (2020). From data to causes II: Comparing approaches to panel data analysis. Organizational Research Methods