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1 Introduction

In this note we describe the implementation details for estimating latent
variable models with the Bayesian estimator in Mplus. The algorithm used
in Mplus is Markov Chain Monte Carlo (MCMC) based on the Gibbs sampler,
see Gelman et al. (2004).

The Gibbs sampler generates iteratively a sequence of parameters, latent
variables, and missing observations, which upon convergence can be used
to construct the posterior distribution given the observed data and prior
specifications for the parameters. The Gibbs sampler blocks the parameters,
latent variables, and missing observations, into groups that are updated se-
quentially. Denoted by θt a vector of all model parameters, latent variables
and missing observations generated during iteration t. The Gibbs sampler is
based on splitting θt into d groups

θt = (θ1t, ..., θdt).

and generating the the components of this vector in the following sequence
from the following conditional distributions

[θ1t|θ2t−1, ..., θd t−1, data, priors]

[θ2t|θ1t, θ3 t−1..., θd t−1, data, priors]

...

[θdt|θ1t, ..., θd−1 t−1, data, priors].

Upon convergence Mplus uses a segment of the generated sequence (usually
the end of the sequence) θn,...,θm to construct the posterior distributions of
the parameters, latent variables and missing observations, given the observed
data and priors, i.e, the draws θn,...,θm can be assumed to be independent
draws from the posterior distributions. Note that generally they are not in-
dependent and θt and θt+1 are often highly correlated, however when enough
iterations have been generated the posterior distribution formed by these
generated observations will be the same as the true posterior distribution.

The success of this estimation process depends on correctly diagnosing
convergence. Convergence depends very heavily on correct split of the θt
vector. Mplus will attempt to choose the most optimal such split for a
particular model and perform different updating algorithms in different situ-
ations. Generally speaking highly correlated elements in the θt vector have to
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be in the same updating group, if this is not the case then the sequence will
essentially not converge. For example if θ1t and θ2t are perfectly correlated,
if they are in different updating groups then they will never change in the
MCMC sequence and the process will essentially not converge.

Convergence in the MCMC sequence is unfortunately not always easy to
diagnose. Mplus provides trace and autocorrelation plots for the parame-
ter estimates as well as the Potential Scale Reduction (PSR) convergence
criteria, which compares several independent MCMC sequences. In some ap-
plications careful and to a large extent subjective convergence analysis has
to be done after the Mplus estimation process to ensure that convergence
has really occurred. Models can also be parameterized in various different
ways. Certain parameterizations will be better than others, i.e., choosing the
optimal parameterizations will affect the rate of convergence as well as the
quality of the final results.

2 Structural Equation Models with Continu-

ous Variables

2.1 Model

Let y be a vector of p observed dependent variables, η be a vector of m
latent variables, and x be a vector of q independent observed variables. The
structural equation model we consider is

y = ν + Λη +Kx+ ε (1)

η = α +Bη + Γx+ ζ (2)

where ε and ζ are normally distributed zero mean residuals with variance
covariance matrix Θ and Ψ. The matrices Θ and Ψ are assumed to be block
diagonal. For example

Ψ =


Ψ11 0 · · · 0
0 Ψ22 · · · 0
...

...
. . .

...
0 0 · · · Ψdd


where each of the matrices Ψjj is a full variance covariance matrix
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Ψjj =


ψj11 ψj12 · · · ψj1k

ψj21 ψj22 · · · ψj2k
...

...
. . .

...
ψjk1 ψjk2 · · · ψjkk


where k is the size of Ψjj and k is different across the blocks. The same
definition applies to Θ.

Models with non-block diagonal Θ and Ψ can also be included in this
framework. Such models can be estimated in Mplus using the ALGORITHM
option of the ANALYSIS command. The ALGORITHM option has to be
set to GIBBS(RW), which means that a random walk algorithm will be used
in the estimation of Θ and Ψ. This Metropolis-Hastings based algorithm
can estimate an arbitrary structured variance covariance matrix. However
the algorithm is somewhat less efficient in terms of mixing quality than the
Mplus default algorithm based on conjugate priors. Details of the random
walk algorithm can be found in Chib and Greenberg (1998).

2.2 Model Extension

Equation (2) in the above model is more flexible than equation (1) because
the dependent variable in (2) can also be a predictor variables. It is possible
however to obtain that additional flexibility for the first equation by adding
to the model artificial latent variables. For example, suppose that we need
to regress Y1 on Y2. Since (1) does not provide this flexibility we can use the
following two latent variable setup to incorporate that into the above model.
Suppose η1 and η2 are latent variables and Y1 = η1, Y2 = η2, η1 = α+βη2+.....
The first two equations can be part of (1) and the last one is part of (2). In
total the above three equations are equivalent to Y1 = α + βY2 + .... Mplus
will implement the above 3 equation setup automatically.

2.3 Priors

Let γ be the vector of all of the free parameters among ν, α, Λ, B, Γ, K.
We assume a normally distributed prior for γ

γ ∼ N(γ0,Ωγ).
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For all blocks in the variances covariances matrices Ψ and Θ we assume
Inverse Wishart prior, for example for a block Ψjj we assume

Ψjj ∼ IW (ΩΨjj
, dΨjj

).

There is one exception to this rule. If the size of the block is 1 then we
assume an inverse gamma prior

Ψjj ∼ IG(αΨjj
, βΨjj

).

All of the above specified priors are conjugate priors, i.e., the conditional
distributions in the Gibbs sampler are in the same family of distributions as
the prior distribution.

2.4 Estimation

The parameters and the latent variables are split in 3 groups: the slope
intercept and loading parameters γ, the variance covariance parameters Ψ
and Θ, and the latent variables η. Thus the Gibbs sampler has 3 steps

� Step 1. Update η
[η|Ψ,Θ, γ, Y, priors]

� Step 2. Update γ
[γ|Ψ,Θ, η, Y, priors]

� Step 3. Update Ψ,Θ

[Ψ,Θ|γ, η, Y, priors]

Below we describe the computation of these conditional distributions. All
3 conditional distributions are easy to sample from. These conditional distri-
butions have been derived for example in Lee (2007), Muthen and Arminger
(1995), Arminger and Muthen (1998) among others and can be considered
well known. We provide these here for completeness.

Step 1.
In this step we obtain the conditional distribution of η given everything

else. Denote this conditional distribution by [η|∗]. Let B0 = I − B where I
is the identity matrix. We can rewrite equation (2) as

η = B−1
0 (α + Γx) + ζ0
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where ζ0 = B−1
0 ζ has a variance covariance matrix Ψ0 = (B−1

0 )Ψ(B−1
0 )T . The

conditional distribution is then given by

[η|∗] ∼ N(Dd,D)

where

D =

(
ΛTΘ−1Λ +Ψ−1

0

)−1

d = ΛTΘ−1(y − ν −Kx) + Ψ−1
0 B−1

0 (α + Γx)

Step 2.
To obtain the conditional distribution of γ given everything else we rewrite

(1) and (2) in the following equivalent form

z = Fγ + ϵ

where ϵ = (ε, ζ), z = (y, η), and F is a matrix of dimensions p + m by
(p+m)(1 +m+ q)

F = I ⊗ (1, η, x)

and I is the identity matrix of size p+m. Let V be the variance covariance
of ϵ

V =

(
Θ 0
0 Ψ

)
Let’s assume that there are n observations in the data. We will index by i
the variables from the i-th observation. The conditional distribution of γ is
given by

[γ|∗] ∼ N(Dd,D) (3)

where

D =

(
n∑

i=1

FiV
−1Fi + Ω−1

γ

)−1

(4)

d =
n∑

i=1

FiV
−1zi + Ω−1

γ γ0 (5)

Step 3.
In this step we need to determine the conditional distribution of the

variance covariance matrices given the observed dependent variables Y and
the latent variables η, i.e., in this step of the computation η is also observed
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and is essentially not different from the observed variable Y . Therefore we
will describe the conditional distribution only for Θ. We consider the two
cases separately, blocks of size 1 and blocks of size greater than 1.

Suppose that θ11 is a block of size 1, with prior distribution

θ11 ∼ IG(α0, β0).

The conditional distribution of θ11 is

[θ11|∗] ∼ IG(α0 +
n

2
, β0 + β1) (6)

where

β1 =
1

2

n∑
i=1

(
yi1 − ν1 −

m∑
j=1

λ1jηij −
q∑

j=1

K1jxij

)2

.

Now suppose that Θ11 is a block of size d

Θ11 =


θ11 θ12 · · · θ1d
θ21 θ22 · · · θ2d
...

...
. . .

...
θd1 θd2 · · · θdd


with prior distribution

Θ11 ∼ IW (Ω, f). (7)

The conditional distribution of Θ11 is

[Θ11|∗] ∼ IW (E + Ω, n+ f) (8)

where E is the first diagonal block of size d in the matrix

n∑
i=1

(yi − ν − Ληi −Kxi)(yi − ν − Ληi −Kxi)
T (9)

2.5 Convergence

The main criterion used in Mplus for determining convergence of the MCMC
sequence is based on the potential scale reduction (PSR). Mplus will run
several different MCMC chains (2 by default). From each chain the first half
of the iterations is considered preliminary. Only the second half is used for
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forming the posterior distribution and for evaluating convergence. There is
one exception to this rule. If Mplus is run with only one chain the first half of
the iterations are removed but the second half itself is split in half and those
two halves are treated as if they were two different chains for the purpose
of computing PSR. Suppose that there are m chains and n iterations (after
the preliminary iterations are removed). Let θ be a parameter in the model
and denote by θij the value of θ in iteration i in chain j. The PSR for this
parameter is computed as follows.

θ̄.j =
1

n

n∑
i=1

θij

θ̄.. =
1

m

m∑
j=1

θ̄.j

B =
1

m− 1

m∑
j=1

(θ̄.j − θ̄..)
2

W =
1

m

m∑
j=1

1

n

n∑
i=1

(θij − θ̄.j)
2

PSR =

√
W +B

W
If PSR is less than 1 + ϵ for all the parameters in the model Mplus will
conclude that convergence has occurred. The convergence criterion is checked
every 100-th iteration. Here ϵ = fc where c is controlled by the user with the
bconvergence command in Mplus. The factor f is a multiplicity factor that
makes the convergence criteria more lenient when there are more parameters
in the model. For most models 1 + ϵ is between 1.05 and 1.1, using the
default value of c = 0.05.

Essentially the PSR convergence criteria is equivalent to monitoring the
ICC for the parameters (the chains being the clusters) and concluding con-
vergence if ICC is below a certain value. For example if the convergence
criterion is PSR< 1.05, that is equivalent to ICC< 0.09 because

ICC =
B

W +B
= 1− 1

PSR2
< 1− 1

1.052
≈ 0.09.

Small ICC values imply that the chains are so similar that given a particular
parameter value it is not possible to determine which chain it comes from.
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3 Structural Equation Models with Continu-

ous and Categorical Variables

3.1 Model

For each categorical variable Yj in the model, taking the values from 1 to
k, we assume that there is a latent variable Y ∗

j and threshold parameters
τ1j, ..., τk−1j such that

Yj = t⇔ τt−1j ≤ Y ∗
j < τtj (10)

where we assume τ0j = −∞ and τkj = ∞. The above definition essentially
converts a categorical variable Yj into an unobserved continuous variable
Y ∗
j . The rest of the model is then defined as in (1) and (2) where for each

categorical variable we use Y ∗
j instead of Yj. For identification purposes the

intercept of Y ∗
j is assumed to be νj = 0 and the residual variance θjj = 1.

3.2 Priors

The new parameters in the model are the thresholds parameters τtj. The
prior for these parameters can be of any kind, i.e., there are no known conju-
gate prior distributions. There is one exception to this rule. When a binary
variable Yj is used in the model there is only one threshold parameter τ1j. In
certain models an alternative parameterization is used because it allows con-
jugate priors. The threshold parameter τ1j and the intercept parameter νj
are essentially perfectly correlated parameters with correlation -1. Instead of
using a parameterization where τ1j = a and νj = 0, we can use a parameteri-
zation where τ1j = 0 and νj = −a. This way there is no threshold parameter
to be estimated and the intercept parameter νj can be estimated with the
conjugate normal prior. The above parameterization is however not possible
when the variable Y ∗

j is not only a dependent variable but also a predictor
variable in the general model.

In addition to the new τtj parameters we now have a new type of vari-
ance covariance matrices in the model. A variance covariance block can now
include categorical variables for which the residual variance is fixed to 1, i.e.,
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a Θ block can be an unrestricted correlation matrix
1 θ12 · · · θ1d
θ21 1 · · · θ2d
...

...
. . .

...
θd1 θd2 · · · 1


or a matrix that is partially a correlation matrix and partially a covariance
matrix with some elements on the diagonal fixed to 1 and some free param-
eters

Θ =



1 · · · θ1d θ1d+1 · · · θ1k
...

. . .
...

...
...

...
θd1 · · · 1 θdd+1 · · · θdk
θd+1 1 · · · θd+1 d θd+1 d+1 · · · θd+1 k

...
...

...
...

. . .
...

θk1 · · · θkd θk d+1 · · · θkk


. (11)

We will call the above matrices partial correlation matrices. The parameters
in a partial correlation matrix are essentially new parameters as well. We
need to define priors for such partial correlation matrices and derive their
conditional distribution to be used in the Gibbs sampler. Consider the pa-
rameter matrix expanded to include the non-identified variance parameters
v1,...,vd

Θ∗ =



v1 · · · θ1d
√
v1vd θ1d+1

√
v1 · · · θ1k

√
v1

...
. . .

...
...

...
...

θd1
√
v1vd · · · vd θdd+1

√
vd · · · θdk

√
vd

θd+1 1
√
v1 · · · θd+1 d

√
vd θd+1 d+1 · · · θd+1 k

...
...

...
...

. . .
...

θk1
√
v1 · · · θkd

√
vd θk d+1 · · · θkk


. (12)

To obtain a prior for Θ we specify an Inverse Wishart prior IW (Ω, f) for the
expanded matrix Θ∗ = (Θ, v1, v2, ..., vd) and we use the marginal distribution
of Θ as the prior specification for Θ. Mplus will not allow a complete specifi-
cation of the matrix Ω, it will allow specification for all of the entries except
the diagonal entries corresponding to the fixed entries of 1 on the main di-
agonal. This actually does not limit in any way the shapes of the marginal
distributions of Θ that can be obtained. In fact it only affects the distribu-
tion of the expanded parameters v1, ..., vd. Internally Mplus will complete
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the Ω matrix with the following entries corresponding to the 1’s on the main
diagonal: f + k + 1. This has to be taken into account when off diagonal
elements are given for the prior matrix Ω.

The above approach of using parameters that are full or partial correlation
matrices is used in Mplus not just for categorical variables but also for other
variables, for example, in some cases for identification purposes the variance
covariance matrix for latent factors is specified as correlation matrices.

3.3 Estimation

The estimation of the model for the combination of categorical and con-
tinuous variables described above builds naturally on the estimation of the
model with all continuous variables. Basically we need to derive Step 4 in
the Gibbs sampler which generates the underlying continuous variables [Y ∗

j |∗]
for all categorical variables Yj. Steps 1-3 will then remain the same with the
exception that Y ∗

j will be used in the place of Yj. Note however that Step
5 has to be derived in which we generate the thresholds parameters. In ad-
dition, Step 3 needs to be expanded to handle the cases where the variance
covariance matrices include partial correlation blocks.

In the Mplus implementation however Steps 4 and 5 are intertwined and
are done in 3 different ways depending on the model. This is done so that the
most optimal and efficient algorithm is used for each model. But even before
we start considering which algorithm is used in which case we have to again
mention the fact that for binary variables, in most cases, the thresholds
are simply substituted by means for the underlying continuous variables,
see Section 3.2, i.e., the discussion below will not apply for most models
with binary variables. More precisely, for each binary variable that is not a
predictor of any other variable the threshold parameter is substituted with
a mean parameter for the underlying continuous variable. In that case there
is no need to generate the threshold. However, Y ∗ still has to be generated.

The three algorithms that Mplus uses can be described as follows.
Method 1. τ and Y ∗ are one block of parameters and are generated

together in two steps using the following decomposition

[τ, Y ∗|∗] ∼ [τ |∗][Y ∗|τ, ∗]

Method 2. If there are d categorical variables, say Y1,...,Yd and τ and
Y ∗ are separated into d groups {Y ∗

j , τ.j}, for j = 1, ..., d, and essentially the
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Gibbs sampler gets d new separate steps

[τ.1, Y
∗
1 |∗, τ.j, Y ∗

j , j ̸= 1]

[τ.2, Y
∗
2 |∗, τ.j, Y ∗

j , j ̸= 2]

·

[τ.d, Y
∗
d |∗, τ.j, Y ∗

j , j ̸= d]

Each of the above steps is again separated into two substeps just like in
Method 1. For example for the i-th categorical variable we have

[τ.i, Y
∗
i |∗, τ.j, Y ∗

j , j ̸= i] ∼

[τ.i|∗, τ.j, Y ∗
j , j ̸= i][Y ∗

i |τ.i, ∗, τ.j, Y ∗
j , j ̸= i]

Method 3. If there are d categorical variables, say Y1,...,Yd and τ and
Y ∗ are separated into d + 1 groups {Y ∗

j }, for j = 1, ..., d form d groups and
all threshold parameters form another group. Gibbs sampler gets d+ 1 new
steps

[Y ∗
1 |∗, τ, Y ∗

j , j ̸= 1]

[Y ∗
2 |∗, τ, Y ∗

j , j ̸= 2]

·

[Y ∗
d |∗, τ, Y ∗

j , j ̸= d]

as well as one additional step that generates all thresholds

[τ |∗, Y ∗]

Mplus will automatically determine which method is best for each model
and will apply that method in the estimation. It is not possible for the user
to select the estimation method. Generally Method 1 is the most efficient,
Method 2 is less efficient than Method 1 but more efficient than Method 3 and
Method 3 is the least efficient. The reason we need however the additional
methods is because Method 1 is not available for all models, nor is Method
2. Method 3 is available for all models.

To determine which method can be used we need to consider the condi-
tional distribution of the vector Y ∗ = (Y ∗

1 , ..., Y
∗
d ) given Yo = (Yd+1, ..., Yp), X
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and η as well as all model parameters. It is easy to show that this conditional
distribution is normal

Y ∗ ∼ N(µ+ β1Yo + β2X + β3η, V ) (13)

where the values of µ, β1, β2, β3 and V can easily be obtained with matrix
algebra from the model parameters. If V is a diagonal matrix then Method 1
can be applied. If V is not a diagonal matrix then Method 2 is applied with
the exception to the case when the model also contains parameter equalities
between the τ groups, which basically implies that Method 2 can not be
defined since τ groups with model constraints can not be separated into
different blocks. Therefore Method 3 is applied only in the case when there
are threshold equalities as well as non-zero off diagonal elements in V .

Now we describe in detail the three methods. Method 1 and Method 2 can
be considered multivariate extensions of the algorithm proposed by Cowles
(1996) for estimating univariate probit regression model, see also Johnson and
Albert (1999). This method amounts to a simple Metropolis-Hastings sam-
pling for the thresholds using a normal distribution as the proposal (jumping)
distribution. For completeness we will describe this algorithm. Method 3 is
a multivariate extension of the Albert and Chib (1993) method.

3.3.1 Method 1

Let’s first focus on Method 1. Notice that when V is diagonal (and the
prior distributions for the τ groups are independent), then the τ groups are
conditionally independent, that is

[τ |∗] ∼ [τ.1|∗][τ.2|∗]...[τ.d|∗]

therefore we can simply focus on a single group [τ.j|∗], i.e., the threshold set
for the j−th categorical variable. We use Cowles (1996) approach to sample
from this conditional distribution. This consists of two steps

Step 1. Generate sequentially a proposed new threshold set g = (g1, ..., gk)
where k is the number of thresholds for the j−th categorical variable. For
t = 1, ..., k generate gt from the normal distribution N(τtj, σ

2) truncated to
the interval (gt−1, τt+1 j), assuming as usual the notation that g0 = −∞ and
τk+1 j = ∞. The variance of the proposal/jumping distribution σ2 is chosen
to be a small value such as 0.1 and is adjusted during a preliminary stage of
the estimation to obtain optimal mixing, i.e., optimal acceptance rate in the
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Metropolis-Hastings algorithm. The optimal acceptance rate is considered
to be between .25 and 0.50.

Step2. Compute the acceptance ratio R

R =
n∏

i=1

Φ(v−0.5
jj (gyij −mij))− Φ(v−0.5

jj (gyij−1 −mij))

Φ(v−0.5
jj (τyijj −mij))− Φ(v−0.5

jj (τyij−1 j −mij))

×
k∏

i=1

Φ(σ−1(τi+1 j − τi j))− Φ(σ−1(gi−1 − τi j))

Φ(σ−1(gi+1 − gi))− Φ(σ−1(τi−1 j − gi))

× P (g)

P (τ.j)

where P () is the prior distribution for τ.j, mij is the conditional mean given
in (13) and vjj is the diagonal entry in the matrix V from the conditional
distribution in (13). The Metropolis-Hastings algorithm accepts the proposed
new threshold set g with probability min(1, R). If the new thresholds set is
rejected the old threshold set is retained. Thus using the Metropolis-Hastings
algorithm we can sample from [τ.j|∗] without having an explicit derivation
for this distribution.

Method 1 is completed by specifying the conditional distribution [Y ∗|τ, ∗].
Under the assumption of diagonal V , the Y ∗

j are independent

[Y ∗|τ, ∗] ∼ [Y ∗
1 |τ, ∗]...[Y ∗

d |τ, ∗]

and we can simply describe the univariate conditional distribution [Y ∗
j |τ, ∗].

The conditional distribution of Y ∗
ij is (13) truncated to the interval (τyijj, τyij+1 j).

3.3.2 Method 2

Here we need to describe the following two conditional distributions

[τ.i|∗, τ.j, Y ∗
j , j ̸= i]

and
[Y ∗

i |τ.i, ∗, τ.j, Y ∗
j , j ̸= i].

First consider the conditional distribution of Y ∗
i conditional on X, η, Yo and

Y ∗
j for all j ̸= i. Let’s denote the group of variables Y ∗

j for all j ̸= i by Y ∗
−i.

This conditional distribution is normal

Y ∗
i ∼ N(µi + β1iYo + β2iX + β3iη + β4iY

∗
−i, vi) (14)
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where all the coefficients in the above distribution can be obtained alge-
braically from the coefficients in (13). To generate the distribution

[τ.i|∗, τ.j, Y ∗
j , j ̸= i]

we can use the Cowles (1996) algorithm just as we did in Method 1 but using
the conditional distribution (14) instead of the conditional distribution (13).
The conditional distribution

[Y ∗
i |τ.i, ∗, τ.j, Y ∗

j , j ̸= i].

can also be described just as it was described for Method 1 but using the
conditional distribution (14) instead of the conditional distribution (13).

3.3.3 Method 3

The conditional distribution

[Y ∗
j |∗, τ, Y ∗

−j]

here is given the same way as it is for Method 2. Therefore we only need to
describe the conditional distribution

[τ |∗, Y ∗].

Assuming that the τ blocks have independent priors the conditional distri-
butions are also independent

[τ |∗, Y ∗] ∼ [τ.1|∗, Y ∗]...[τ.d|∗, Y ∗]

and therefore we can simply describe [τ.j|∗, Y ∗], or more precisely how to
sample from this distribution. We use the Albert and Chib (1993) algorithm.
The conditional distribution for [τtj|∗, Y ∗, τ−tj] is simply the prior distribution
of τtj truncated to the interval

(max(τt−1 j,max(Y
∗
ij : Yij = t)),min(τt+1 j,min(Y

∗
ij : Yij = t+ 1))).

3.3.4 Generating partial correlation matrices

In this section we discuss the algorithms implemented in Mplus for generating
the partial correlation blocks in the variance covariance matrices. There are
four different algorithms implemented in Mplus.
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The first algorithm is a simple parameter extended estimation where the
variances for Y ∗ are estimated as free parameters. These parameters are for-
mally unidentified if estimated with classical frequentist estimators. However
within the Bayesian estimation framework they are identified as long as their
prior distribution is a proper prior. The resulting posterior distribution is
the same as the prior distribution for these parameters. During the estima-
tion a posterior distribution is built for the full variance covariance block.
Subsequently that posterior distribution is used to obtain the posterior dis-
tribution for the actual parameters of interest, i.e., the identified correlation
parameters. This algorithm is the default algorithm in Mplus and it can also
be specified using the ALGORITHM option of the ANALYSIS command,
using the setting ALGORITHM=GIBBS(PX1).

The second algorithm implemented in Mplus for the estimation of corre-
lation matrices is the algorithm described in Boscardin et al. (2008). This al-
gorithm can be specified using the command ALGORITHM=GIBBS(PX2).

The third algorithm implemented in Mplus for the estimation of correla-
tion matrices is the algorithm described in Liu and Daniels (2006). This al-
gorithm can be specified using the command ALGORITHM=GIBBS(PX3).

The forth algorithm implemented in Mplus for the estimation of correla-
tion matrices is the algorithm described in Chib and Greenberg (1998). This
algorithm can be specified using the command ALGORITHM=GIBBS(RW).

Extensive simulations studies, not reported here, have shown that the
simple parameter extended algorithm used in Mplus as a default method is
the best algorithm in terms of optimal mixing and fast convergence.

4 Estimating Structural Equation Models with

Missing Data

If a categorical variable is missing the change that is needed in the above
algorithm is simply that during the generation of Y ∗ the normal distribution
that produces Y ∗ is not truncated to the corresponding threshold interval,
instead it is not truncated at all, or simply put it is truncated to the interval
(−∞,∞). If a continuous variable, say for example Yj, has missing values,
then we include a new step in the Gibbs sampler where the missing values of
Yj are generated from the univariate [Yj|∗] which is a univariate conditionally
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normal distribution

N(µj + βj1η + βj2X + βj3Y−j, vj) (15)

where the parameters mj, βj1, βj2, βj3, and vj can be obtained from the
model parameters using matrix algebra. Note that if multiple continuous
variables have missing values they are updated one at a time. For example,
if each of the continuous variable Y1, ..., Yk have missing values then the Gibbs
sampler gets k new steps

[Y1|∗, Y−1]

[Y2|∗, Y−2]

· · ·

[Yk|∗, Y−k]

All of the above Gibbs steps are done using univariate distributions as de-
scribed in (15). Just like the maximum-likelihood estimation method this
algorithm will correctly estimate the model under the assumption that the
missing data is missing at random (MAR), see Little and Rubin (1987).

5 Fixed Parameters and Equalities Between

the Parameters

Fixed parameters in the model are simply not updated in the Gibbs sampler,
i.e., fixed parameters do not present any estimation challenge. However, cer-
atin parameters in the current Mplus implementation are updated as blocks
of parameters, for example all the threshold parameters for a particular cat-
egorical variable or all the parameters in a variance covariance block. There-
fore it is not possible with the current implementation in Mplus to fix only
one parameter in such a block, either all parameters have to be free or all
the parameters have to be fixed within each of these blocks. One exception
to this rule is the variance parameters in a variance covariance block which
can be fixed to 1 and thereby converting the variance covariance matrix to a
partial correlation matrix.

Equalities between parameters are slightly more challenging than fixed
parameters. First note that the above model has three different types of
parameters: thresholds, variance/covariance parameters and the third group

17



is the parameters γ which consists of all loadings, intercepts and slopes.
Equalities between parameters from different groups are not possible. For
example a threshold parameter can not be held equal to a variance parameter.
In addition groups such as variance covariance blocks and threshold groups
(the thresholds of a single categorical variable) must simultaneously be held
equal to another group. Partial equality constraints is not possible.

For thresholds and variance covariance parameters equalities simply amounts
to combining the ”data” part of the conditional distribution, i.e., if two pa-
rameters are held equal then the data driven portion of the conditional like-
lihood will essentially change from n observations to 2n observations. The
first n will be those that are used for the conditional distribution of the
first parameters and the second n are those that are used for the conditional
distribution of the second likelihood. For example, let θ11 and θ22 be the vari-
ances of Y1 and Y2. If the two parameters are estimated as unequal then their
conditional distributions are obtained as follows. If the prior distribution of
θjj is

θjj ∼ IG(α0j, β0j)

then the conditional distribution of θjj is

[θjj|∗] ∼ IG(α0j + n/2, β0j + β1j)

where

β1j =
1

2

n∑
i=1

(
yij − νj −

m∑
l=1

λ1lηil −
q∑

l=1

K1lxil

)2

.

If the parameters are held equal the conditional distribution of θ11 is

[θ11|∗] ∼ IG(α01 + n/2 + n/2, β01 + β11 + β12).

For the γ parameters the idea is slightly different. The conditional dis-
tribution of γ is given by

[γ|∗] ∼ N(Dd,D) (16)

where D and d are given in (4) and (5). Both d and D−1 are sums of
a term due to the prior and a term due to the data. Let’s ignore for a
second the term due to the prior (this term will not change under parameter
equalities). Assuming that there is no prior, d is simply the first derivative
of the log-likelihood evaluated at 0 and D−1 is the second derivative of the
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log-likelihood. Now using simple derivatives rule we obtain the method for
deriving the d and D−1 under equality constraints. If parameter j1 and j2 are
held equal then in the vector d the values dj1 and dj2 are combined into one
and also in the matrix D−1 the four values with coordinates (j1, j1), (j1, j2),
(j2, j1) and (j2, j2) are combined into one.

6 Non-conjugate Priors

Non-conjugate priors are implemented in Mplus for the threshold parameters
and also for the variance covariance parameters. The derivations given above
for the threshold parameters were done using arbitrary priors. In fact all
priors for the thresholds are non-conjugate priors. Therefore in this section
we focus only on the estimation of the variance covariance parameters with
non-conjugate priors. It is well known that variance parameters priors for
the variances of random effects and factors have relatively high influence on
the posterior estimates. Therefore it is important in practice to be able to
specify various different priors for these parameters.

Two separate algorithms are implemented in Mplus for generating vari-
ance covariance parameters with non-conjugate priors. The first algorithm is
used for variance parameters only, i.e., for variance covariance blocks of size
1. A separate algorithm is used for variance covariance blocks of size bigger
than 1. First we describe the algorithm for variance covariance blocks of size
1. In this case Mplus simply implements a Metropolis-Hastings step to gener-
ate the variance parameter using normally distributed random walk jumping
rule. Let’s illustrate this algorithm using θ11. At each MCMC iteration we
generate a new value θ∗11 value from the proposal distribution N(θ11, σ

2). The
value is accepted with probability min(1, R) where R is the acceptance ratio

R =
P (θ∗11|∗)
P (θ11|∗)

P0(θ
∗
11)

P0(θ11)
(17)

where P0(θ11) is the prior non-conjugate density of θ11 and P (θ11|∗) is the
density given in (6) with α0 = β0 = 0 (to eliminate the conjugate prior). If
the proposed value is rejected the old value of θ11 is retained. The variance
σ2 of the jumping distribution can be adapted within a preliminary stage of
the estimation so that an acceptance rate between 0.25 and 0.50 is obtained.

Now we describe the Metropolis-Hastings algorithm for generating vari-
ance covariance matrices of size bigger than 1 with non-conjugate priors.
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Suppose that the prior for a Θ11 block is P0(Θ11). Let’s call this prior the
target prior, using the terminology of Liu and Daniels (2006). Let’s call the
prior given in (7) the proposal prior. That proposal prior will be used as if
it is the true target prior but only to construct a jumping distribution. If
the prior is given by (7) then the posterior of Θ11 is given by (8). We use
that posterior as the jumping distribution J(Θ11) ∼ IW (E + Ω, n+ f), i.e.,
we draw a new Θ∗

11 matrix from that distribution. Let’s now compute the
acceptance probability

R =
J(Θ11)

J(Θ∗
11)

P (Θ∗
11|∗)

P (Θ11|∗)
=

|Θ11|−0.5(n+f+p+1)Exp(−0.5Tr((E + Ω)Θ−1
11 ))

|Θ∗
11|−0.5(n+f+p+1)Exp(−0.5Tr((E + Ω)Θ∗−1

11 ))

|Θ∗
11|−0.5(n)Exp(−0.5Tr(EΘ∗−1

11 ))

|Θ11|−0.5(n)Exp(−0.5Tr(EΘ−1
11 ))

P0(Θ
∗
11)

P0(Θ11)
=

(|Θ∗
11|/|Θ11|)0.5(f+p+1)Exp(−0.5Tr(Ω(Θ−1

11 −Θ∗−1
11 )))

P0(Θ
∗
11)

P0(Θ11)
.

If we now choose the parameters in the proposal prior to be f = −p− 1 and
Ω = 0 the above formula simplifies to

R =
P0(Θ

∗
11)

P0(Θ11)
.

This approach generally works quite well unless the desired prior variance is
very small. In such a case however the estimated parameter can be generally
converted to a fixed parameter.

The above algorithm is used for non-conjugate priors for variance covari-
ance matrices as well as partial correlation matrices when the default algo-
rithm is used in Mplus for variance covariance generation. In Mplus this algo-
rithm is specified as ALGORITHM=GIBBS(PX1). Several other algorithms
are available for the generation of variance covariance matrices and partial
correlation matrices, see Section 3.3.4. The availability of non-conjugate pri-
ors is specific for each of these algorithms. For ALGORITHM=GIBBS(PX2)
non-conjugate priors are not available in Mplus, i.e., the priors are limited
to the Inverse Wishart prior. For ALGORITHM=GIBBS(PX3) only the
constant density prior is available. For ALGORITHM=GIBBS(RW) all pri-
ors are non-conjugate as this algorithm is already based on the Metropolis-
Hastings algorithm.
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7 Observed Mediator

There are two different ways to use a categorical variable as a predictor. One
way is to use the underlying Y ∗ variable as the predictor, which we call a
latent mediator. Another way is to use the observed categorized value Y as
the predictor, which we call the observed mediator. Both options are imple-
mented in Mplus. So far in this paper only Y ∗ has been used in equations
(1) and (2), since we simply converted categorical Y into continuous Y ∗ and
used the estimation algorithm for continuous variables. Thus the algorithm
described previously can be used to estimate the latent mediator models.
In this section we briefly describe the implementation that is used in Mplus
for the observed mediator model. For each categorical mediator variable we
essentially create a new predictor X variable that is equal to the categorized
value. If the categorical variable has no missing values then nothing else is
needed. However if the mediator has missing values those values need to be
generated within the Gibbs sampler. So far we had not discussed generation
of missing categorized value because it is not used anywhere, although that
is a straight forward process because Y ∗ and τ determines the categorized
value completely. When the mediator is observed however we use the fol-
lowing approach to generate the missing categorical value Y . Let Yj is the
categorical variable which has missing values and let w1 represent the de-
pendent variables that can be predicted by Yj and w2 represents all other
variables with the exception of Y ∗

j , which is not a part of either w1 and w2.
Under the assumption of model consistency one can split the variables into
variables that can be predicted by Yj, these are the variables in the w1 vector,
and variables that can predict Yj, these are the variables in the w2 vector.
Then

P (Yj = k|w1, w2) =
P (w1|Yj = k, w2)P (Yj = k|w2)∑
k P (w1|Yj = k, w2)P (Yj = k|w2)

where P (Yj = k|w2) is computed from the probit regression implied from
the model for Yj and P (w1|Yj = k, w2) represents a conditionally normal
distribution where Yj and w2 are the predictors.

Using the above computation we can sample from the distribution [Yj|∗]
when Yj is missing. This step is then followed by the generation of [Y ∗

j |∗, Yj]
which is done the way as in the case when Yj is not missing.
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8 Mixture Models

Let C be a categorical latent variable, which takes the values from 1, ..., k
with probabilities p1,...,pk. The mixture model is described by the following
two equations

[y|C = j] = νj + Λjη +Kjx+ ε (18)

[η|C = j] = αj +Bjη + Γjx+ ζ (19)

where ε and ζ in class C = j have variance covariance matrices Θj and Ψj.
In addition if Yi is a categorical variables we have

Yi = t|C = j ⇔ τt−1 ij ≤ Y ∗
i < τtij

8.1 Estimation

If the latent variable C is actually observed then the model is essentially
a multiple group structural equation model. The parameters p1,...,pk are
essentially fixed parameters and the estimation of such a model essentially
repeats the estimation for the non-mixture model k times at every step in
the Gibbs sampler. When C is truly a latent variable then we have to include
in the Gibbs sampler the following two new steps

Steps 1. Generate C from the conditional distribution [C|∗].
Steps 2. Generate the parameters p1,...,pk from the conditional distribu-

tion [pj|∗].
The second step is quite simple. Assuming a conjugate Dirichlet prior

D(a1, ..., ak) the conditional distribution [pj|∗] is simplyD(a1+n1, ..., ak+nk),
where nj is the number of observations in class j, i.e., nj =

∑n
i=1 δij where

δij = 1 if Ci = j and is 0 otherwise.
The first step however is more complicated. Three different methods are

implemented in Mplus for generating the C variable. The methods differ in
the way the C variables are grouped for use in the Gibbs sampler. Mplus
will automatically attempt to determine the best method for each model and
will use that method, however the Methods can also be pre-specified by the
user as well.

8.1.1 Method 1

Method 1 uses the C variables as a separate group and generates C from

[C|Y, η, Y ∗, X]. (20)
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Let w be the vector of all η, all Y ∗ for all categorical dependent variables and
all Y for all continuous dependent variables. The conditional distribution of
w is

[w|X,C = j] ∼ N(aj + bjX, vj) (21)

where aj, bj and vj can be obtained from (18) and (19) using simple matrix
algebra. The conditional distribution (20) is then given by

P (C = j|Y, η, Y ∗, X) =
pjP (w|X,C = j)∑
j pjP (w|X,C = j)

where P (w|X,C = j) is the density implied by (21).

8.1.2 Method 2

Method 2 groups C and η in one Gibbs sampler group and generates C and
η in the following sequence

[η, C|Y, Y ∗, X] = [C|Y, Y ∗, X][η|C, Y, Y ∗, X].

Note that sampling from [η|C, Y, Y ∗, X] is the same as for non-mixture mod-
els so here only the first conditional distribution

[C|Y, Y ∗, X] (22)

is described. Let w be the vector of all Y ∗ for all categorical dependent
variables and all Y for all continuous dependent variables. The conditional
distribution of w is

[w|X,C = j] N(aj + bjX, vj) (23)

where aj, bj and vj can be obtained from (18) and (19) using simple matrix
algebra. The conditional distribution (22) is then given by

P (C = j|Y, Y ∗, X) =
pjP (w|X,C = j)∑
j pjP (w|X,C = j)

where P (w|X,C = j) is the density implied by (23). Method 2 is available
for all models and it is usually more efficient (i.e. provides better mixing and
faster convergence) than Method 1.
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8.1.3 Method 3

Method 3 is available only for models without continuous latent variables η.
This method groups C and Y ∗ in one Gibbs sampler group and generates C
and Y ∗ in the following sequence

[C, Y ∗|Y,X] = [C|Y,X][Y ∗|C, Y,X].

Note that the last conditional distribution [Y ∗|C, Y,X] is the same as for
non-mixture models so here only the first conditional distribution [C|Y,X]
is described. Let w1 be the vector of all Y for all continuous variables and
let w2 be the vector of all Y ∗ for all categorical variables and let w3 be the
vector of all categorical Y variables.

Using (18) and (19) we obtain the following conditional distributions

[w1|X,C = j] ∼ N(aj + bjX, v1j) (24)

[w2|X,w1, C = j] ∼ N(cj + djXejw1, v2j) (25)

using simple matrix algebra. The conditional distribution [C|Y,X] is now
given by

P (C = j|Y,X) =
pjP (w3|X,w1, C = j)P (w1|X,C = j)∑
j pjP (w3|X,w1, C = j)P (w1|X,C = j)

where P (w1|X,C = j) is the density implied by (24) and P (w3|X,w1, C = j)
is essentially given by (25) with the probit link function. Note however that
if v2j is not diagonal P (w3|X,w1, C = j) will involve the multivariate probit
function which is very computationally demanding and thus this Method 3
is only available when v2j is diagonal. One example where v2j is not diagonal
is the case when the residual terms corresponding to categorical variables in
(18) are correlated.

There are certain models that can be done only with Method 3. We will
describe two such examples. The first example is an LCA model with a
perfect binary indicator Y1 in class 1. Suppose that P (Y1 = 2|C = 1) = 1. If
C and Y ∗

1 are not generated in the same step then in the MCMC simulation
C and Y ∗

1 will never change. That is because C = 1 will imply a large value
for Y ∗

1 which in turn will imply C = 1, i.e., if Y1 = 2 and the starting value
for C is 1 - the MCMC will not generate another value regardless of the
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rest of the data for that observation. The second example is an LCA model
with categorical variables that have more than 2 categories. In this case if
C is not generated directly from the observed categorical Y values, but from
Y ∗, we again will have convergence problems because Y ∗ is simply a zero
mean standard normal variable that carries no information about C. The
convergence problems described above may actually be difficult to detect in
practice because they are based to a large extent on problems with some
of the latent variables rather than with the parameter estimates which are
closely monitored by Mplus. Method 3 would be the preferred method by
Mplus when the method is available.

8.2 Label Switching

Label switching is a well documented estimation problem for Bayesian es-
timation of mixture models, see for example Celeux et al. (2000). Most
Mixture models do not uniquely determine the class labelling, i.e., the first
class in a model can actually be set as the second class by simply switching
the parameters in the first two classes. This means that the posterior distri-
bution will contain essentially k! symmetric peaks since there are k! possible
ordering of the classes. If these peaks are not disjoint an MCMC sequence
that is run long enough will provide this posterior distribution. The problem
however with this posterior distribution is that we are not interested in the
entire posterior with all k! peaks but only in one of these peaks. If we look
for the mean or the median of the entire posterior we can obtain values that
may be between the peaks and are so unlikely that as point estimates are en-
tirely useless. The mode point estimates however do not have that problem.
The estimates for the multivariate mode will always be in just one of these
symmetric peaks, whichever peak has had the most values occur during the
finite number of iterations.

If we need more than just point estimates however, using the mode point
estimates will not resolve the problems. Note that if the peaks are connected
it is not clear how to define 1/k! portion of the posterior distribution that
can be used for inference. So the problem is that the one peak search is not
even well defined. For large samples the peaks are not connected and then
there is no such problem. For moderately large samples the peaks might be
connected only in their tails which means that we could probably ignore the
”undefined” problem because, regardless of the way it is defined it will only
affects the tails of the posterior distribution. For small samples however the
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peaks may be connected more heavily and the precise definition of what is
1/k! of the posterior will affect all results quite heavily.

Label switching can be prevented by identifying the labelling uniquely and
that can be done by introducing parameter constraints (inequalities) among
the model parameters. Depending on which inequalities are used however a
different definition of 1/k! arises.

There are two types of label switching that are possible. Both of these
are described in the following two sections.

8.2.1 Label switching between chains

This label switching means that one MCMC chain has converged to one
peak in the posterior, while another chain has converged to another peak.
Using PSR convergence criteria will basically conclude non-convergence even
though both chains have converged well. One possible solution to this prob-
lem is to simply run one chain only to estimate the model. Alternative solu-
tion is that Mplus runs a number of identical iterations in all of the chains
within a preliminary stage and then runs non-identical iterations among the
chains to estimate the posterior and determine convergence. Because of the
initial identical iterations phase it is likely that all the chains will near the
same peak and in the second stage when the iterations are different among
the chains the chains will stay in that same peak. The longer the preliminary
phase is the greater the chance for success will be in this alternative solution.
This method is implemented in Mplus and by default 50 identical iterations
are done prior to generating the independent chains.

Note also that this kind of label switching can occur even for large samples
simply because of starting values pointing towards different peaks.

8.2.2 Label switching within chains

When the sample size is not sufficiently large and the symmetric peaks of the
posterior are connected the MCMC chain will run through all the peaks in
the posterior distribution if it is run long enough. Because the peaks are con-
nected via their tails the MCMC chains will not usually reach these tails very
easily and the actual switches between the peaks may be so unfrequent that
obtaining a satisfactory estimate for the posterior distribution will require
basically a vast number of iterations. Using a convergence criteria such as
PSR will basically lead to non-convergence conclusion due to the fact that it
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will likely compare posteriors from different peaks in some way. The solution
to this problem is to either use parameter inequalities as model constraints
to identify the class ordering uniquely or just monitor the estimation process
very closely and use a section of the posterior that is visibly clear from a
single peak. Note however that when using parameter constraints to iden-
tify the class ordering we need to choose parameters that are truly different
among the classes. If we chose parameters that are not very different among
the classes we could define the 1/k! component very inappropriately. This
means that often some kind of pre-processing will be needed to identify which
parameters could be used for class labelling identification.

Another solution for preventing label switching that is available in Mplus
is to have several observations preassigned with preassigned class member-
ship. If these observations are chosen properly this may prevent label switch-
ing. In Mplus this can be implemented by introducing a perfect latent class
indicator which has missing values for all observations that are not preas-
signed and is observed only for those that are preassigned. A perfect latent
class indicator is such that P (Y = i|C = i) = 1. It is easy to include such
indicator in the model.

Note also that if only point estimates are desired it is safe to use the
multivariate mode as point estimator and simply ignore label switching as
well as the convergence monitoring via PSR.

9 Multilevel Models

Suppose that the observations are not independent but are clustered into
higher level units such as classrooms or cities. The multilevel model we
consider is based on the following decomposition

Y = Yw + Yb

here Yw is the within part of the dependent variable and Yb is the cluster
level dependent variable. Both Yw and Yb are unobserved. Each of these two
variables are assumed to satisfy a structural equation model as described in
(1) and (2).

Estimating such a model with the Bayes estimator amounts to adding an
additional step into the Gibbs sampler that will be able to sample Yb from the
conditional distribution [Yb|∗]. After Yb is sampled, we compute Yw = Y −Yb
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and then the within and the between models are estimated separately using
the same method as for single level models.

The conditional distribution [Yb|∗] is fairly complex, however, it is well
known because it is used in the maximum-likelihood estimation of this model
with the EM algorithm. This can be found among other places in Asparouhov
and Muthén (2003) as well as Bentler and Liang (2003). In particular, As-
parouhov and Muthén (2003) includes this conditional distribution for the
two-level model even when there are random slopes, i.e., any of the coeffi-
cients K and Γ can vary across clusters and can be between level variables
that are included in the structural model on the between level. Thus the
Bayesian estimation of the multilevel model can also easily include random
slopes.

9.1 Random variances and correlations

Starting with Mplus 8.9, the Bayesian estimation of multilevel models also in-
cludes random effects for the residual variance covariance matrix. All entries
in Ψ and Θ on the within level can be cluster specific random effects. This
modeling feature is available only with the Bayes estimation, i.e., not with
the ML estimation of multilevel models. Because variances are restricted
to positive values we use a log-normal distribution for these random effects.
That is, if a within-level variance parameter vw is specified as a random ef-
fect, we assume that ηb = log(vw) has a (conditional) normal distribution
on the between level. This random effect can be used in the between level
structural model just as any other random effect.

To model the within level covariance parameters as cluster-specific we use
a random effect to model the within level correlation. Covariance parame-
ters are subject to various restrictions which are dependent on the variance
parameters and thus it is more appropriate to use the correlation instead
of the covariance for this modeling feature. Suppose that v1,w, v2,w are the
within level residual variance parameters (random or non-random) and the
covariance parameters related to these is cw. The within-level correlation
parameter ρw = cw/

√
v1,wv2,w is restricted to the interval [-1,1] and just as

in the case of the variance parameter, it can not be modeled as a normally
distributed random effect. In this case we use the Fisher-z transformation
(the inverse hyperbolic tangent function)

ηb = tanh-1(ρw) = 0.5 log
(1 + ρw
1− ρw

)
(26)
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or equivalently

ρw = tanh(ηb) =
Exp(2ηb)− 1

Exp(2ηb) + 1
. (27)

This transformation converts the correlation range of [−1, 1] to a normal
distribution range of (−∞,∞). Here again, we model ηb as conditionally
normally distributed random effect which can be used in the between level
structural model. Another useful property of the Fisher-z transformation is
that for smaller values it is approximately the identity transformation. That
is, for |ρw| < 0.5, ρw ≈ ηb.

Note that this random correlation modeling is somewhat of a departure
from established Mplus notation. For non-random parameters Y1 WITH
Y2 refers to the covariance of the two variables. For random parameters, S
| Y1 WITH Y2 refers to the random correlation parameter, where S is the
Fisher-z transformation of the within level correlation.

Both the random variance and the random correlation latent variables
do not have an explicit conditional distribution that can be used with the
MCMC estimation. These random effects are updated one at a time using the
random walk Metropolis-Hastings algorithm based on a zero mean normal
jumping distribution as in (17). The size of the jumps (variance of the
jumping distribution) is adjusted in the burn-in phase to obtain a desirable
range for the accept/reject ratio.

Next we focus on the relationship between the distribution of the random
effect and the distribution of the within-level parameter it corresponds to.
For the random variance case, if ηb ∼ N(µ, σ2), the distribution of the within
level variances has a mean of

Exp(µ+ 0.5σ2)

and a median of
Exp(µ).

For the random correlation case, if ηb ∼ N(µ, σ2), the distribution of the
within level correlations has a median value of

tanh(µ)

but the mean of that distribution does not have an explicit expression. The
density function for this distribution is

1

σ
√
2π(1− ρ2)

Exp
(
− 1

2σ2
(tanh-1(ρ)− µ)2

)
,
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where ρ is the correlation parameter. Several density plots are given in Figure
1.

Random variance and correlation parameters can be used even for within
level latent variables. When the scale of the within level latent variable must
be identified, in the non-random situation, we simply fix the variance v of the
variable to 1. In the random variance case, we can instead fix the median of
the random variance distribution of vj to 1. This is accomplished by fixing
the mean of the corresponding random effect ηb = log(vw) to 0.

Random correlations can be used with categorical observed variables,
thereby yielding random tetrachoric, polychoric and polyserial correlations.

A key issue regarding the estimation of random correlation parameters
is the need to ensure that in the MCMC estimation the variance covariance
remains positive definite in every iteration. This issue arises when we use
random variance/covariance matrices of size bigger than 2. Because we up-
date one random parameter at a time using the Metropolis-Hastings updating
step, this issue is resolved automatically. If a proposed new correlation draw
yields a non-positive definite covariance matrix, the draw is automatically re-
jected, and the current value is preserved. Therefore the variance covariance
matrix remains positive definite during the entire Bayesian estimation.

10 Posterior Predictive Checking

Mplus implements posterior predictive model checking for all single level
models using the classical chi-square fit function as the discrepancy function
as well as some other discrepancy functions. The classical chi-square fit
function is simply the likelihood ratio test (LRT) between the structural
equation model and an unrestricted mean and variance covariance model.

First let’s define the posterior predictive P-value (PPP) for an arbitrary
discrepancy function f. Suppose that θ is the vector of all model parameters.
The discrepancy function uses as arguments the observed data Y and X as
well as model parameters θ, i.e., f = f(Y,X, θ). First assume that small
values of f indicate better fit between the data and the model. This is
precisely the case when the discrepancy function is the classical chi-square
fit function.

At each MCMC iteration t the discrepancy function f(Y,X, θt) is com-
puted with the current parameter estimates and the data. In addition, at
each MCMC iteration t we generate a new data set Ỹt of the same size as
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Figure 1: Density plots for correlation parameter ρ obtained by the Fisher-
z transformation of N(µ, σ2), for µ = 0.5 and σ2 = 0.1(red), 0.05(blue),
0.01(green)
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the original data set from the estimated model (1) and (2) using the current
parameter estimates θt. The discrepancy function f(Ỹt, X, θt) is then com-
puted using the new data set Ỹt. The posterior predictive P-value (PPP) is
then defined as

PPP = P (f(Y,X, θ) < f(Ỹ, X, θ)) ≈ 1

m

m∑
t=1

δt

where δt = 1 if f(Y,X, θt) < f(Ỹ, X, θt) and 0 otherwise. It is important
to reach convergence in the MCMC process before using the iterations for
computing the PPP value. Mplus uses every 10-th iteration for computing
the PPP value to reduce the computational burden. Mplus will use the same
iterations for computing PPP as those used for computing the point estimates
and standard errors etc., with the modification that it will use every 10-th
iteration.

If the discrepancy function is not a measure of fit then much smaller
f(Y,X, θ) values then those obtained from f(Ỹ, X, θ)) also can indicate model
misfit of some kind. Thus the PPP value for a non-fit function is defined as
the smaller of the PPP values for f and −f .

Low PPP value indicates clearly that the model is not appropriate for this
data and that there is some kind of misspecification. The PPP value tests the
model against an unspecified alternative. It can reject the model even in cases
when the structural model is actually an unrestricted variance covariance
matrix. That is because the discrepancy function is not maximized over the
parameter, but rather is computed with the current parameter estimates.
This implies that even for the unrestricted model the discrepancy function is
not 0 and that allows us to detect misspecifications even in the unrestricted
model.

The misspecification in that case can simply be due to non-normality of
the data. In some respects the PPP value is more attractive than a classical
P-value because it takes the variability of the parameters into account. For
example the classical P-value tests the model with the maximum-likelihood
estimates assumed as the actual estimates, ignoring the fact that the esti-
mates are measured with error. The PPP value takes that error into account.
In addition the PPP value does not depend on asymptotic theory.

The discrepancy functions used in Mplus are as follows. The classical
LRT chi-square test of fit function

f = 0.5n(log|Σ|+ Tr(Σ−1(S + (µ−m)(µ−m)))− log|S| − p− q) (28)
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where S is the sample variance covariance, m is the sample mean, Σ is the
model implied variance covariance and µ is the model implied means. This
discrepancy function has been used for example in Scheines et al. (1999).
Covariates X in the above formula are treated the same way as dependent
variable, except that the model is complimented with an unrestricted mean
and variance model for X. This is just an artificial treatment that simplifies
the expressions. An actual conditioning on the covariates leads to exactly the
same chi-square values. When there are categorical variables in the model
we use Y ∗ to evaluate f . For mixture models the fit functions across the
classes are added up. When there are missing values in the original data the
discrepancy function f is computed using the current sampled values. Mplus
will not compute the classical LRT chi-square test of fit function using only
the observed data, because that test is much more computationally intensive
and it requires pattern by pattern computations. Instead Mplus will compute
(28) using the observed Y values as well as the generated Y values for those
values that are missing. Thus in the case of missing data f(Y,X, θ) will vary
not only due to changes in θ but also in Y . This discrepancy function can be
used among other things for the same purpose as the classical chi-square test,
i.e., to evaluate whether or not a factor model accounts for all the correlations
among the factor indicators.

Mplus computes a number of other PPP values using other fit functions
designed specifically for categorical variables. For each categorical variable
Mplus computes the PPP value using as discrepancy function the univariate
log-likelihood for that variable. Multivariate log-likelihood is not possible
because it involves computationally intensive multivariate probit function.
The sum of all univariate likelihoods for all categorical variables is also used
as a discrepancy function. In addition, for each categorical variable and each
category for that variable the observed percentage/frequency of that category
is also used as a double sided discrepancy function.

11 Multiple Imputations

In Mplus Version 6 the MCMC simulation can also be used for multiple
imputation (MI) of missing data. This method was pioneered in Rubin (1987)
and Schafer (1997). The imputed data can be analyzed in Mplus using any
classical estimation methods such a maximum-likelihood and weighted least
squares (WLS). This is particularly of interest for the WLS estimator which
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is biased when the missing data is MAR and the dependent variables affect
the missing data mechanism. Using the MI method in combination with
WLS resolves that problem.

The missing data is imputed after the MCMC sequence has converged.
Mplus runs 100 MCMC iterations and then stores the generated missing data
values. The process is repeated until the desired number of imputations have
been stored. These imputed missing data sets are essentially independent
draws from the missing data posterior. The missing data can be imputed
in Mplus from a single-level or from a two-level model. The data can be
imputed from an unrestricted model (H1 model), which we call H1 impu-
tation, or it can be imputed from any other model that can be estimated
in Mplus with the Bayesian estimator, which we call H0 imputation. Unre-
stricted models are general enough so that model misspecification can not
occur. However, these models have a large number of parameters and con-
vergence is sometimes difficult to achieve, particularly for large multivariate
sets with many variables that include combinations of categorical and con-
tinuous. Unrestricted two-level models can also have convergence problems
because of the large number of parameters estimated on the between level
sometimes using only a limited number of two-level units/clusters. In case
of convergence problems with the H1 imputations, the H0 imputation offers
a viable alternative as long as the estimated model used for the imputation
fits the data well. With H0 imputation some ground breaking opportunities
arise, such as, imputation from LCA models and factor analysis models.

11.1 Unrestricted Imputation Models

Three different unrestricted H1 models have been implemented in Mplus for
the H1 imputation. All three models are defined for the combination of
categorical and continuous variables. Prior to estimating the H1 model all
continuous data is standardized so that the mean is zero and the variance is
1 for each continuous variable. After estimation the continuous variable are
transformed back to their original scale. In the following sections we describe
the three H1 imputation models.

11.1.1 Variance Covariance Model

In this model all variables in the data set are assumed to be dependent
variables. If Y is the vector of all of these dependent variables the model is
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given by
y = ν + ε (29)

where ε is a zero mean vector with variance covariance matrix Θ which is one
full block of unrestricted variance covariance matrix with 1s on the diagonal
for each categorical variable in the model, see (11). In addition the vector ν
has means fixed to 0 for all categorical variables and free for all continuous
variables. For all categorical variables we estimate also all thresholds as
defined in (10).

The two-level version of this model is as follows

y = ν + εw + εb (30)

where εw and εb are zero mean vectors defined on the within and the be-
tween level respectively with variance covariance matrices Θw and Θb. Both
of these matrices are one full block of unrestricted variance covariance. Again
the vector ν has means fixed to 0 for all categorical variables and free for
all continuous variables. For all categorical variables we estimate also all
thresholds again as defined in (10). If a variable is specified as within-only
variable the corresponding component in the εb vector is simply assumed to
be 0, which implies that also the corresponding parameters in the variance
covariance matrix Θb are 0. Similarly if a variable is specified as between-only
variable the corresponding component in the εw vector is simply assumed to
be 0, which implies that also the corresponding parameters in the variance
covariance matrix Θw are 0. For categorical variables for identification pur-
poses again the variance of the variable in Θw is fixed to 1, with the exception
of the case when the categorical variable is between-only. In that case the
variance on the between level in Θb is fixed to 1.

This model is the default imputation model in all cases.

11.1.2 Sequential Regression Model

In this model all variables in the data set are assumed to be dependent
variables as well. The model is defined by the following equations

y1 = ν1 + β12y2 + β13y3 + ...+ β1pyp + ε1 (31)

y2 = ν2 + β23y3 + β24y4 + ...+ β2pyp + ε2 (32)

...
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yp = νp + εp (33)

where ε1,...,εp are independent residuals with variances θ11,...,θpp. Essentially
in this model we have replaced the parameters θij, i < j in the variance covari-
ance model described in the previous section with the regression parameters
βij, i < j. For two-level models this θij to βij conversion is basically applied
to both levels. The identification restrictions needed for categorical variables
are as for the variance covariance model.

The above model was pioneered in Raghunathan et al. (2001). It is
particularly powerful and useful in the case of combination of categorical and
continuous variables when used also in the framework of observed mediators
as defined in Section 7. Note that depending on how the mediator is treated
we actually have two different models for H1 imputation defined here, i.e.,
sequential regression with observed mediators and sequential regression with
latent mediators. The default is the observed mediator model. This model
is the easier to estimate among the two models.

11.1.3 Regression Model

In this model all variables in the data set that have missing data are assumed
to be dependent variables Y and all variables that do not have missing data
are assumed to be covarites X. The model is defined by

y = ν +Kx+ ε (34)

where ν and ε are as in the variance covariance model. The two level general-
ization for this model is also simply a generalization of the two-level variance
covariance model with the addition to the covariates. For two-level models
each covariate is classified as either within-only or between-only, i.e., each
covariate is used on just one of the two levels.

One advantage of this model is that if only a few variables have missing
values the unrestricted model will have much fewer number of parameters
then the previous two models and will likely reach convergence faster.

11.2 Plausible Values

Plausible values are essentially imputed values for latent variables. All latent
variables can essentially be thought of as observed variables that have missing
data for all observations. When imputation is done with an H0 model that
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includes latent variables Mplus can stores the current values for all latent
variables. If the imputations are taken 100 iterations apart we can assume
that these are independent draws from the posterior distribution of the latent
variables. The plausible values can be used in secondary analysis the same
way missing data imputations are used, i.e, by combining the results across
the imputations, see Rubin (1987).

Using a sufficient number of plausible values the posterior distribution for
every latent variable can be constructed. Empirical Bayes analysis, see for
example Carlin (1992), can be conducted using plausible values. For other
applications of plausible values see also Mislevy et al. (1992).

12 Informative and Non-informative Priors

In this section we describe all priors that can be used in Mplus and will
discuss methods for selecting informative an non-informative priors.

The normal distribution prior is specified as N(µ, v) where µ is the mean
parameter and v is the variance parameter. To specify a non-informative
prior you can select N(0, 1010). This prior is numerically equivalent to the
improper prior which has constant density of 1 on the interval (−∞,∞). In
Mplus, the default prior for all intercepts, loadings and slopes for normally
distributed variables is N(0, 1010). The default prior for all intercepts, load-
ings and slopes for categorical variables is N(0, 5). The default prior for all
thresholds is N(0, 1010).

Informative priors can be specified easily with the normal prior and can
be used to accumulate information across different studies, see for example
Yuan and MacKinnon (2009).

The Inverse Gamma distribution is specified as IG(α, β). The density
function defined for x > 0 is

f(x) ∼ x−α−1Exp(−β/x).

The mode of the density is β/(α + 1). The default non-informative prior in
Mplus is IG(−1, 0) which has constant density of 1 on the interval (−∞,∞).
Other popular choices for non-informative priors are IG(0, 0) (which pro-
duces a prior with density proportional to 1/x) or IG(0.001, 0.001), see
Browne and Draper (2006). In some small sample size cases we have found
that IG(1, 2) works quite well in preventing random effect variance collapsing
or exploding.
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The uniform distribution can be specified in Mplus as U(a, b) where this is
the uniform distribution with equal/constant density over the interval (a, b).
To choose a non-informative prior one can choose (−1010, 1010) or (0, 1010)
if the prior is for a variance parameter, see for example Browne and Draper
(2006).

The Gamma distribution is specified as G(α, β). The density function
defined for x > 0 is

f(x) ∼ xα−1Exp(−βx).

The log-normal distribution is specified as LN(µ, v). The density function
is

f(x) ∼ x−1Exp(−(log(x)− µ)2/(2v)).

The Inverse Wishart prior is specified as IW (Ω, d), where Ω is a positive
definite matrix of size p and d is an integer. The density function is

f(Σ) ∼ |Σ|−(d+p+1)/2Exp(−Tr(ΩΣ−1)/2)

The mode of this distribution is Ω/(d+ p+1). To specify a non-informative
prior one can specify IW (0,−p−1), i.e., Ω has all entries 0, and d = −p−1.
This prior is essentially the uniform prior on (−∞,∞) for all Σ parameters.
Other popular non-informative priors are IW (0, 0) and IW (I, p + 1). The
specification IW (I, p+1) produces marginal priors for the correlation param-
eters that is uniform on the interval (−1, 1) and IG(1, 0.5) marginal prior for
the variance parameters. To specify in Mplus an informative prior IW (Ω, d)
for Σ, one has to specify σij ∼ IW (Ωij, d) for i = 1, .., p and j = 1, .., i, where
σij is the corresponding parameter label and Ωij is the (i, j) entry in the Ω
matrix.

The default prior in Mplus for variance covariance matrices for continuous
variables is IW (0,−p − 1). The default for categorical variables or for the
combination of categorical and continuous variables is IW (I, p+ 1).

The Dirichlet distribution with parameters α1, α2, ...,αK has a density

f(x1, x2, ..., xK) = xα1−1
1 xα2−1

2 ...xαK−1
K

under the constraint x1+x2+ ...+xK = 1. In Mplus this distribution is used
as the prior for the class proportions in Mixture models. The common non-
informative prior is given by αi = 1. The Mplus default is however αi = 10
to prevent the formation of small class solutions. Typically classes that are
formed by only a few observations are not of substantive interest. For small
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sample size problems however the Mplus default may be inappropriate. To
specify an informative prior in Mplus one has to specify pi ∼ D(αi, αK) where
i = 1, ....K − 1 and pi is the label of the parameter [C#i].
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