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1 Introduction

In this note, we describe the bootstrap methodology implemented in Mplus
for two-level models. We also provide details on this implementation for
multiple group two-level models, two-level models with sampling weights,
and two-level models with complex survey samples (i.e., stratified and cluster
sampling). The methodology is illustrated with several simulation studies,
where we compare alternative methods for bootstrap resampling.

2 Comparison of different bootstrap resam-
pling methods

Van der Leeden et al. (2008) describe the following two alternative resam-
pling methods in two-level models among other methods:

e A. Cluster resampling: A new bootstrap sample is constructed by sam-
pling with replacement entire clusters. The data within each cluster is
exactly the same as it appeared in the original sample. Each bootstrap
sample has exactly the same number of clusters as the original sample.

e B. Cluster resampling followed by resampling of individual observations
within each sampled cluster: A bootstrap sample also draws with re-
placement the same number of clusters as the original sample, but the
drawn clusters are not identical to the original clusters. Instead, within
each cluster, the observations are also bootstrapped (i.e., sampled with
replacement) so that we obtain a cluster of the same size as the original
cluster.



Method A is akin to the method implemented in Mplus for bootstrap
sampling in the presence of complex survey data, specifically cluster sam-
pling. In those situations, entire PSU (primary sampling unit)/clusters are
sampled without alteration, see Asparouhov and Muthén (2010).

With both methods, the bootstrap samples may not have the same total
size as the original sample when the clusters are not of the same size. How-
ever, this is somewhat of an artificial observation. In single-level complex
sample bootstrapping, where the same observation applies, the bootstrap
samples saved by Mplus are of the same size as the original sample. What
changes is the sampling weight assigned to each observation. For exam-
ple, two draws of the same observation is exactly the same as doubling the
sampling weight of that observation. The bootstrap sample can thus be rep-
resented as a sample with the same data as the original sample but with
different sampling weights.

To put this differently, if a bootstrap draw sample size increases dramat-
ically due to unbalanced cluster designs, when we analyze that sample, the
point estimates would generally be similar to those of the original sample,
but the standard errors would be much smaller due to the fact that the boot-
strap draw is much larger. These standard errors, however, are not used in
the bootstrap procedure, and only the point estimates are used. Thus, for
most practical purposes, the fact that the bootstrap draws are of different
sizes is rather unimportant.

We compare methods A and B with a simulation study using a simple two-
level regression model with a random intercept and a single covariate. Such
a systematic comparison has not been reported previously and we consider
this to be the main contribution of this paper. Figure 1 contains the Mplus
input file for the simulation study. Figures 2 and 3 contain the results using
methods A and B respectively.

The results show that method B substantially overestimates the standard
errors on the within level. Typically, the quality of the standard errors for an
estimator is monitored using the coverage column in Mplus, and values close
to 95% indicate proper estimation. However, when the standard errors are
substantially overestimated, the coverage becomes 100%, and the coverage is
not as useful in determining the quality of the standard error estimates.

In such situations, a better approach is to consider the ratio between the
columns “SE average” and “Std. Dev.” The “SE average” is simply the
average of the standard errors across the 100 replications in the simulation
study. The column labeled “Std. Dev.” contains the standard deviation



of the point estimates across the 100 replications. Asymptotically, the ratio
between the columns should converge to 1. When the ratio is greater than
1, the standard errors are overestimated, and when it is less than 1, the
standard errors are underestimated.

Because we usually work with moderate sample size and moderate num-
ber of replications, the ratio usually deviates from one but typically by not
more than #+0.1, i.e., standard error underestimation or overestimation in
the single-digit percentages. What we see in our simulation study is that
method B overestimates the standard errors for the two within-level param-
eters by 31% and 28%. For method A, those numbers are 0% and -8%. We
clearly see that method A is superior. The overestimation of the standard
error for method B is consistent across a variety of estimation settings and
does not improve with more bootstrap draws, larger number of Monte Carlo
replications, larger number of clusters, or larger cluster sizes.

Next, we conduct a simulation study using the two-level factor analysis
model given in Figure 4. The results of the simulation study are given in
Figures 5 and 6 for methods A and B respectively. Here again, we see the
same problem with method B. Coverage for all within-level parameters is
nearly 100%, and the average standard error overestimation across the 10
within-level parameters is 37%. For method A, the corresponding number is
1%.

Based on the results of the above simulations, we conclude that method
B is not appropriate for two-level models. Only method A is implemented in
Mplus, and only this method is used and discussed for the remaining portion
of this article.

We should note here that resampling within clusters has its place when
the modeling is multiple group instead of multi-level. In some situations
when the number of clusters is small, such as less than 10, we often prefer
single-level multiple group analysis instead of multilevel. This means that
the cluster variable is treated as a grouping variable in Mplus, and random
effects are replaced by non-random group-specific model parameters.

Two-level analysis is based on the asymptotic assumption that the num-
ber of clusters is sufficiently large. When the number of clusters is small,
it is difficult to rely on the asymptotic theory, and often the ML estimation
will exhibit larger biases in the point estimates. This, of course, has nothing
to do with bootstrap, as the bootstrap method is responsible only for the
standard error estimation.

When Mplus estimates a multiple group single-level model, the resam-



Figure 1: Two-level regression simulation study

montecarlo:
names =y X;
nobs = 2000;
nreps = 100;

ncsizes = 1;
csizes = 100(20);
within=x;

analysis: estimator=ml;
type=twolevel; bootstrap=100;

model population:
%WITHIN%

y*¥1; x*1; y on x*1;
%BETWEEN%

y*1; [y*1];

model:
%BWITHINS

y*1; y on x*1;
%BETWEEN%

y*1; [y*1];



Figure 2: Bootstrap results for two-level regression using method A
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Figure 3: Bootstrap results for two-level regression using method B
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pling is done within each group, and each bootstrap sample preserves the
sizes of the groups. This is akin to method B. With multiple group single-
level bootstrap estimation, however, Mplus does not resample the groups,
i.e., the resampling is only on the lower level.

3 Sample size requirements for two-level boot-
strap

In this section, we illustrate the quality of the bootstrap estimation for sam-
ples with extreme sample designs. The three features we explore here are:
highly unbalanced designs (large variation on the cluster size), small num-
ber of clusters, and small cluster sizes. For all three conditions, we use the
regression model we used in the previous section.

Highly unbalanced designs have been discussed in the context of two-level
bootstrap due to the fact that the bootstrap samples may have substantially
different sizes than the sample size of the original data set. As we discussed in
the previous section, however, this is somewhat irrelevant as the bootstrap
sample can be presented for the purpose of obtaining the bootstrap point
estimates as having the same sample size as the original sample but having
different between-level weights.

In this simulation study, we use a sample design that has clusters with
size 10, 20, 30, ..., 100. There are 10 clusters for each of the 10 different
cluster sizes for a total number of clusters of 100 and a total sample size of
5500. The results of this simulation study are given in Figure 7. The results
show that the bootstrap estimates the standard errors well.

Next, we consider the situation of a small number of clusters. This is
important because we draw clusters as a whole, and if there are only a few
clusters, the amount of variation in the bootstrap draws would be limited. For
example, if there are only 2 clusters, there will be only 3 different bootstrap
draws, and that could potentially cause issues with the estimation.

As we mentioned in the previous section, however, sample designs with
very few clusters should be estimated as multiple group single-level models—
not because of the bootstrap but to improve the point estimates. In this
simulation study, we use 20 clusters of size 100. The results are given in
Figure 8.

The bootstrap procedure works well here too. One of the between-level



Figure 4: Two-level factor analysis simulation study

montecarlo:
names = yl-y5;
nobs = 2000;
nreps = 100;

ncsizes = 1;
csizes = 100(20);

analysis: estimator=ml;
type=twolevel;boot=100;

model population:
%WITHIN%

yl-y5*1;

f by yl-y5*1; f@1;
%BETWEEN%

yl-y5*0.5;

fb by yl-y5%0.8; fb@l;

model:
%BWITHINY

yl-y5*1;

f by yl-y5*1; f@1;
%BETWEEN?

yl-y5%0.5;

fb by yl-y5*%0.8; fb@l;



Figure 5: Bootstrap results for two-level factor analysis using method A

ESTIMATES S. E. M. S. E. 95% % Sig
Population Average Std. Dev. Average Cover Coeff
Within Level
F BY
Y1 1.000 0.9976 0.0300 0.0294 ©.0009 0.950 1.000
Y2 1.000 0.9958 0.0292 0.0305 0.0009 0.940 1.000
Y3 1.000 1.0018 0.0287 0.0301 0.0008 0.980 1.000
Y4 1.000 0.9996 0.0277 0.0299 0.0008 0.980 1.000
Y5 1.000 1.0041 0.0339 0.0306 0.0012 0.940 1.000
Variances
F 1.000 1.0000 0.0000 0.0000 0.0000 1.000 0.000
Residual Variances
Y1 1.000 0.9980 0.0353 0.0399 0.0012 0.980 1.000
Y2 1.000 1.0055 0.0431 0.0406 0.0019 0.900 1.000
Y3 1.000 1.0004 0.0408 0.0406 0.0016 0.940 1.000
Y4 1.000 1.0015 0.0419 0.0412 0.0017 0.930 1.000
Y5 1.000 0.9983 0.0410 0.0404 0.0017 0.940 1.000
Between Level
FB BY
Y1 0.800 0.7834 0.1094 0.1024 0.0121 ©.920 1.000
Y2 0.800 0.7879 0.1075 0.1021 0.0116 0.940 1.000
Y3 0.800 0.7813 0.0970 0.1038 0.0097 0.950 1.000
Y4 0.800 0.7954 0.1096 0.1039 0.0119 0.950 1.000
Y5 0.800 0.7865 0.1038 0.1054 0.0108 0.950 1.000
Intercepts
Y1 0.000 -0.0058 0.1139 0.1100 0.0129 0.890 0.110
Y2 0.000 -0.0098 0.1133 0.1113 0.0128 0.940 0.060
Y3 0.000 0.0111 0.1108 0.1106 0.0123 0.940 0.060
Y4 0.000 -0.0073 0.1116 0.1115 0.0124 0.950 0.050
Y5 0.000 -0.0006 0.1025 0.1119 0.0104 0.940 0.060
Variances
FB 1.000 1.0000 0.0000 0.0000 ©.0000 1.000 0.000
Residual Variances
Y1 0.500 0.4707 0.1041 0.0931 0.0116 ©.890 1.000
Y2 0.500 0.4894 0.1024 0.0952 0.0105 0.890 1.000
Y3 0.500 0.4857 0.0968 0.0933 0.0095 0.890 1.000
Y4 0.500 0.4765 0.0939 0.0929 0.0093 0.920 1.000
Y5 0.500 0.5002 0.0942 0.0969 0.0088 0.960 1.000



Figure 6: Bootstrap results for two-level factor analysis using method B
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Figure 7: Bootstrap results for two-level regression with unbalanced design
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parameters has a drop in coverage to 78%; however, this is mostly due to the
bias in the point estimates (due to small number of clusters). The coverage
for the MLR sandwich estimator in that case is slightly better at 84%. We
conclude that if the number of clusters is small, some underestimation may
exist in the bootstrap standard error on the between level.

We used 100 bootstrap draws for this estimation, and the coverage does
not improve with a larger number of draws. In most cases, we expect that
100 bootstrap samples is sufficient to estimate the standard errors well, and
a larger number of draws is likely unnecessary. The estimates will not change
much by increasing the number of bootstrap draws beyond 100.

Next, we consider the situation of small cluster sizes. This is somewhat
unnecessary, but we include this for completeness. The reason it is not
necessary is that if the cluster sizes are 1, then the two-level bootstrap is
essentially the same as the standard single-level bootstrap, which we know
works well. Nevertheless, we conduct a simulation study with 400 clusters of
size 5. The results are reported in Figure 9. The bootstrap estimation works
well in this case.

4 Bootstrapping for two-level models with com-
plex samples

In this section, we discuss the effects of complex sampling features on the
bootstrap procedure. More specifically, we discuss the effects of stratification,
cluster sampling, and sampling weights.

The most comprehensive sampling structure used in Mplus for two-level
models is as follows. The sample is obtained from a population that consists
of several distinct groups. Within each group, the population is stratified,
i.e., the population is divided into several strata, and each stratum is sam-
pled separately. Within each stratum, primary sampling units (PSUs) are
drawn. These primary sampling units consist of multiple clusters from which
the sample clusters are drawn. Furthermore, the clusters are sampled for
individual observations.

Overall, this gives a 5-stage nested data structure: group / strata / psu
/ cluster / individual. In addition, two weight variables can be assigned to
reflect unequal probability of selection: one that corresponds to the cluster,
specified as BWEIGHT, and one that corresponds to the individual, specified
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Figure 8: Bootstrap results for two-level regression with small number of

clusters
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Figure 9: Bootstrap results for two-level regression with small cluster sizes
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as WEIGHT. The sampling weights are internally scaled (see Asparouhov,
2006; Asparouhov and Muthén, 2008).

Not all of the above features must be present for the methodology to
apply, but every sampling design can be formulated as if it is the full design.
If grouping and stratification are not present, we simply assume that there
is just one group and one stratum. If PSU is not present, the PSU is the
cluster. If sampling weights are not present, we can assume that the sampling
weights are all 1.

The bootstrapping construction is as in Asparouhov and Muthén (2010).
Bootstrap sampling is done separately and independently for each group and
each stratum within each group. Within each stratum, PSUs are bootstrap
sampled with replacement. The number of PSUs sampled in each stratum is
the same as the number of PSUs in the original sample. The sampled PSUs
are identical to the PSUs in the original sample, including the sampling
weights, i.e., no further resampling is done at the cluster or individual levels.

It should be noted here that in Mplus, to analyze complex two-level
sampling data, in the ANALYSIS command, the option TYPE=COMPLEX
TWOLEVEL must be specified. If, however, only sampling weights are used
for the complex sampling, i.e., no stratification or PSU, then the usual set-
ting of TYPE=TWOLEVEL is used. The same methodology applies to both
situations.

Note also that in two-level complex analysis with highly structured data,
it’s fairly likely that the number of PSUs in each stratum is small. As dis-
cussed earlier, this limits the variability in bootstrap draws, which will in-
evitably lead to standard error underestimation. For example, in the extreme
case where each stratum contains precisely one PSU, the bootstrap standard
errors will be zero since each bootstrap draw will be identical to the original
sample. Similarly, if most strata have only one PSU, we can expect under-
estimation of the bootstrap standard errors. In such cases, the bootstrap
methodology would not be appropriate, and the sandwich MLR standard
errors should be used instead. However, if only a few strata have one PSU
while most strata have many PSUs, there will be sufficient variability in the
bootstrap draws, and we can expect the bootstrap standard errors to be
consistent.
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5 Saving the bootstrap draws

It is possible to save all bootstrap samples in separate files and all the point
estimates obtained for each bootstrap sample using the following command:

SAVEDATA: SAVE=BOOTSTRAP; FILE IS breps*.dat; RESULTS = r.dat;

The bootstrap draws will be saved in the files brepsl.dat, breps2.dat, etc.
The parameter estimates obtained with each bootstrap draw are all saved in
the file r.dat. As discussed earlier, there are two ways to save the bootstrap
samples. One way is to directly save the sampled observations. With this
method the bootstrap draws can vary in total sample size under unbalanced
design. The second way is to save the modeled data as it is in the original
sample but to change the between-level weight to reflect how many times a
cluster has been sampled in the bootstrap draw. With this method, the total
sample size remains the same as in the original data, albeit some clusters
will have zero weight and some will have weight greater than 1. For complex
sampling, Mplus uses the second method, while without complex sampling,
the former method is used.
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