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Dynamic Structural Equation Models

Tihomir Asparouhov,1 Ellen L. Hamaker,2 and Bengt Muthén1
1Muthén & Muthén, Los Angeles, CA

2Utrecht University

This article presents dynamic structural equation modeling (DSEM), which can be used to
study the evolution of observed and latent variables as well as the structural equation models
over time. DSEM is suitable for analyzing intensive longitudinal data where observations from
multiple individuals are collected at many points in time. The modeling framework encom-
passes previously published DSEM models and is a comprehensive attempt to combine time-
series modeling with structural equation modeling. DSEM is estimated with Bayesian methods
using the Markov chain Monte Carlo Gibbs sampler and the Metropolis–Hastings sampler. We
provide a detailed description of the estimation algorithm as implemented in the Mplus
software package. DSEM can be used for longitudinal analysis of any duration and with
any number of observations across time. Simulation studies are used to illustrate the frame-
work and study the performance of the estimation method. Methods for evaluating model fit
are also discussed.

Keywords: Baysian methods, dynamic factor analysis, intensive longitudinal data, time series
analysis

In the last several years intensive longitudinal data (ILD) with
many repeated measurements from a large number of indivi-
duals have become quite common. These data are often
collected using smartphones or other electronic devices and
are referred to as ambulatory assessments (AA), daily diary
data, ecological momentary assessment (EMA) data, or
experience sampling methods (ESM) data (cf. Trull &
Ebner-Priemer, 2014). The accumulation of these types of
data naturally leads to an increasing demand for statistical
methods that allow us to model the dynamics over time as
well as individual differences therein using ILD.

One of the most common methods for longitudinal analy-
sis in the social sciences is growth modeling where an
observed or latent variable is modeled as a function of time,
for example, a linear function of time. The coefficients of the
function, for example, intercept and slope, which determine
the trajectory for the variable, are subject-specific random
effects. Frequently such growth models are expressed as

multivariate models (i.e., in wide format), especially when
the number of observations for each person is small, for
example less than 10. This allows us to introduce additional
autocorrelations, or to add time-specific parameters such as
time-specific residual variances. However, a multivariate
model is not suitable for modeling longer longitudinal analy-
sis such as 30 or more observations across time for several
different reasons. The first reason is that the model can
become computationally intensive for longer longitudinal
data. A univariate model with 30 observations will require
modeling the joint distribution for all 30 observations, which
involves a 30 × 30 variance covariance matrix. A bivariate
model would require a 60 × 60 variance covariance matrix,
and so on. The dimensions of the joint distribution increase
rapidly and can easily become computationally prohibitive.

An alternative specification of a growth model is as a
two-level model (i.e., in long format), where each cluster
consists of all the observations for one individual. Using
cross-classified modeling, this approach can be extended to
allow time-specific random effects in addition to subject-
specific random effects, as described in Asparouhov and
Muthén (2016). Such an approach can accommodate long-
itudinal studies of any duration and number of observations.
However, it does not accommodate autoregressive modeling
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where consecutive observations are directly related, rather
than through subject-specific effects.

The novel modeling framework that we present here is a
direct extension of the cross-classified modeling framework
for ILD, as described in Asparouhov and Muthén (2016):
We simply add to that framework the ability to regress any
variable, observed or latent, not only on other variables at
that same time point, but also on itself and other variables at
previous time points. This extended framework is referred to
as dynamic structural equation modeling (DSEM), and it
combines four different modeling techniques: multilevel
modeling, time-series modeling, structural equation model-
ing (SEM), and time-varying effects modeling (TVEM).
Each of these four techniques addresses different aspects
of the data and is used to model different correlations that
are found in such data. The multilevel modeling is based on
correlations that are due to individual-specific effects. The
time-series modeling is based on correlations due to proxi-
mity of observations. The SEM is based on correlations
between different variables. The TVEM is based on correla-
tions due to the same stage of evolution. The goal of the
DSEM framework is to parse out and model these four types
of correlations and thereby give us a fuller picture of the
dynamics found in ILD.

The DSEM model described here can also be viewed as
the multilevel extension of the dynamic factor models
described in Molenaar (1985), Zhang and Nesselroade
(2007), and Zhang, Hamaker, and Nesselroade (2008).
Time-series models for observed and latent variables date
back to Kalman (1960) and are applied extensively in engi-
neering and econometrics. In most such applications, how-
ever, multivariate time series data of a single case (i.e.,
N = 1) are analyzed. In contrast, the ILD discussed in this
article come from a sample of individuals, with repeated
measures nested in individuals and in time points, and the
DSEM framework discussed here accommodates this more
complex modeling need. Analyzing a random sample of
individuals as usual allows us to make inferences about
individuals who are not in the sample, which is something
that cannot be done when a single individual is analyzed.
Thus, the DSEM framework will allow us to make infer-
ences for individuals outside of the sample as well as for
future observations for individuals in the sample.

The outline of this article is as follows. First we present
the general DSEM model and the model estimation using
Bayesian methods. Next we discuss methods for model fit
evaluation. We then illustrate the framework with multiple
simulation studies and conclude with a summary discussion.

THE GENERAL DSEM MODEL

The general DSEM model consists of three separate models.
The most general model is the cross-classified DSEM model,
which incorporates both individual and time-specific random

effects. The second most general model is the two-level
DSEM model, which incorporates individual-specific random
effects only. This model could actually be the most popular
and useful model, as it is easier to estimate, identify, and
interpret. The third model is the single-level DSEM model for
time-series data from a single individual (cf. Zhang &
Nesselroade, 2007). In the latter model, there are no random
effects. Here we describe the most general cross-classified
DSEM model. The two-level and the single-level DSEM
models are special cases of the cross-classified DSEM model.

Fundamental to the DSEM framework is the decomposi-
tion of the observed scores into three components. Let Yit be
a vector of measurements for individual i at time t, where
the ith individual is observed at times t ¼ 1; 2; :::; Ti. The
cross-classified DSEM model begins with the following
decomposition:

Yit ¼ Y1;it þ Y2;i þ Y3;t; (1)

where Y2;i and Y3;t are individual-specific and time-specific
contributions and Y1;it is the deviation of individual i at time t.
The two-level DSEM model only makes use of the first two
components (i.e., Y3;t is omitted), and the single-level model is
based on simply using Yit ¼ Y1;it. All three components are
latent normally distributed random vectors and are used to
form three sets of structural equation models, one on each level.

Next, we begin by describing the two between-level
models for the individual-specific and the time-specific
components. Subsequently, we describe the within-level
model for Y1;it. Then we discuss how to handle categorical
observations, and how to account for unequal intervals
between the observations. We end this section with some
final remarks about the framework.

The Between-Level Models

From the decomposition just presented, we obtain two
between-level components; that is, the individual-specific
component Y2;i and the time-specific component Y3;t. Their
structural equation models take the usual form of a measure-
ment equation and a structural equation; that is,

Y2;i ¼ ν2 þ Λ2η2;i þ K2X2;i þ ε2;i (2)

η2;i ¼ α2 þ B2η2;i þ Γ2X2;i þ �2;i (3)

Y3;t ¼ ν3 þ Λ3η3;t þ K3X3;i þ ε3;t (4)

η3;t ¼ α3 þ B3η3;t þ Γ3Xt þ �3;t: (5)

The vector X2;i is a vector of individual-specific, time-invar-
iant covariates, and X3;t is a vector of time-specific but
individual-invariant covariates. Similarly, η2;i is a vector of
individual-specific, time-invariant latent variables, and η3;t is
a vector of time-specific, individual-invariant latent variables.
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The variables ε2;i; �2;i; ε3;t; �3;t are zero mean residuals as
usual and the remaining vectors and matrices in this equation
are nonrandom model parameters.

Although the preceding equations do not include regres-
sions among Y components, such regressions are typically
achieved by creating a latent variable equal to the Y variable,
that is, the Y variable would be a perfect error-free indicator
for a latent variable. Once such latent variables are included
in the model, the regression between the Y variables is
specified as a regression between the corresponding latent
variables using the structural equations. This is a simple
way to reduce the number of matrices in these equations
and is somewhat of a tradition in the SEM literature, but it
has no implication for model specification or estimation.

In the preceding specification we did not include
observed dependent variables, but such variables are easy
to accommodate as well. That is, in addition to the latent
decomposition parts of the variables Yit, the vectors Y2;i and
Y3;t can also include observed variables that are subject-
specific or time-specific.

The Within-Level Model

The within-level part of the DSEM model is described by
the following equations, which now include time-series
components:

Y1;it ¼ ν1 þ
XL
l¼0

Λ1;lη1;i;t�l þ
XL
l¼0

RlY1;i;t�l

þ
XL
l¼0

K1;lX1;i;t�l þ ε1;it (6)

η1;it ¼ α1 þ
XL
l¼0

B1;lη1;i;t�l þ
XL
l¼0

QlY1;i;t�l

þ
XL
l¼0

Γ1;lX1;i;t�l þ �1;it: (7)

Here x1;it is a vector of observed covariates for individual i
at time t and η1;it is a vector of latent variables for individual
i at time t.

In the preceding equations the latent variables η, the
dependent variables Y, and the covariates X at times t, t –
1, …, t – L can be used to predict the latent variables η and
the dependent variables Y at time t. Including the lagged
predictors X in the preceding equations is somewhat incon-
sequential, and we do this mostly for completeness. The
covariate X1;i;t�l is not any different from the covariate X1;i;t

because the model does not include distributional assump-
tions about the covariates X and is essentially a model for
the conditional distribution of ½Y jX �. Including the lagged
covariates X1;i;t�l does not involve any special statistical
consideration with one small exception of the initial unob-
served values, which we address later.

Latent centering

The dependent variables Y, on the left and the right
side of the preceding equations are not the actual
observed quantities Yit but rather the within-level com-
ponent Y1;it. These are sometimes referred to as the
centered variables because Y1;it ¼ Yit � Y2;i � Y3;t. The
variables Y2;i and Y3;t can be interpreted as the mean
for individual i and the mean for time t, which are
thus subtracted to form the pure realization for indivi-
dual i at time t excluding any global effects specific for
individual i and time t.

Centering is inconsequential for the variables on the
left side of the equations but is important for the vari-
ables on the right side of the equations and is well
established in the multilevel modeling literature (e.g.,
Raudenbush & Bryk, 2002). In principle, one can use
the corresponding observed sample means instead of the
latent true means Y2;i and Y3;t to center the variables.
However, that will produce biased estimates, because the
sample mean is different from the true mean and has a
sampling error that will be unaccounted for. In multi-
level models this has been documented in Lüdtke et al.
(2008), where the bias is shown to occur for the
between-level regression coefficients. In time-series
models the bias has been documented in Nickell (1981)
and Hamaker and Grasman (2015), where the bias
occurs for the mean of the individual-specific autore-
gressive coefficients. In both cases the bias disappears
as the cluster size increases and the difference between
true mean and sample mean vanishes.

Random slopes and loadings

In addition to the preceding equations, we allow for
random regression, random loading, and random intercept
parameters at the within level that vary across individuals,
over time, or both. A random within-level parameter s can
be decomposed as

s ¼ s2;i þ s3;t; (8)

where s2;i is an individual-specific random effect; that is, an
individual-specific latent variable that is an element of the
vector η2;i modeled in the Level 2 structural model.
Similarly, s3;t is a time-specific random effect; that is, a
time-specific latent variable that is a part of the vector η3;t
modeled in the Level 3 structural model. If we introduce the
indexes i and t for the structural parameters in Equations 6
and 7, we get

Y1;it ¼ ν1 þ
XL
l¼0

Λ1;litη1;i;t�l þ
XL
l¼0

RlitY1;i;t�l

þ
XL
l¼0

K1;litX1;i;t�l þ ε1;it (9)
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η1;it ¼ α1;it þ
XL
l¼0

B1;litη1;i;t�l þ
XL
l¼0

QlitY1;i;t�l

þ
XL
l¼0

Γ1;litX1;i;t�l þ �1;it (10)

with the additional specification that every parameter vary-
ing with i and t is decomposed as in Equation 8.

Random residual variances

In addition to the preceding random effects, we can also
allow residual variances V on the within level to be random
parameters. That is, the model parameters Varðε1;itÞ and
Varð�1;itÞ can be random as follows:

V ¼ Expðs2;i þ s3;tÞ; (11)

where s2;i is an individual-specific normally distributed ran-
dom effect, and s3;t is a time-specific normally distributed
random effect. Again these random effects are elements of
the higher level latent variable vectors η2;i and η3;t.

Note that whereas random structural parameters such as
loadings and slopes have a normal distribution (i.e., these
are normally distributed random effects), random residual
variance parameters have a log-normal distribution. This is
necessary to ensure that the variance parameters remain
positive during the Markov chain Monte Carlo (MCMC)
estimation. Furthermore, this random variance approach
applies only to univariate variance parameters and it does
not include random multivariate variance–covariance
matrices. It is somewhat more difficult to construct random
positive definite variance–covariance matrices, based on
random effects that could also be used in linear models,
such as Equation 3 and Equation 5, and remain positive
definite for any individual and any set of covariates while
being easy to interpret. However, it is possible to construct
random variance–covariance matrices by introducing factors
with random variances (cf. Hamaker, Asparouhov, Brose,
Schmiedek, & Muthén, 2017), or via random loadings
Cholesky decomposition. Both of these approaches are
somewhat more complex, not just in implementation, but
in interpretation as well.

Including moving-average terms

The DSEM model incorporates only the autoregressive
modeling as a time-series feature, but can easily accommo-
date the moving average modeling because it includes latent
variable modeling. Consider, for example the ARMA(1,1)
model

Yt ¼ μþ aYt�1 þ ηt þ bηt�1: (12)

The moving average part of this model is nothing more than a
latent variable and its lagged 1 latent variable predicting the

dependent variable Y. Thus the ARMA models are a special
case of the DSEM model. Similarly accommodating ARIMA
models amounts to fixing the regression coefficients of Yt on

Yt�l to ð�1Þlþ1 m
l

� �
, where m is the degree of integration.

For example, fixing parameter a to 1 in Equation 12 yields
the ARIMA(0,1,1) model.

Starting up the process

One final issue that should be specified in the preceding
model is the fact that the variables Y1;i;t�l, X1;i;t�l, and η1;i;t�l

can have a time index that is zero or negative in the pre-
ceding model. For example when t � l the time index
t � l � 0 appears in Equations 6 and 7. Such variables
never appear in the model as dependent variables and thus
we have to provide a specification of some kind. In this
treatment we have chosen a method that is similar to the one
used in Zhang and Nesselroade (2007). We treat all of these
variables as auxiliary parameters that have their own prior.
Such a prior could be difficult to specify in practical set-
tings, however, and thus we propose the following method,
which estimates the prior during a burn-in phase of the
MCMC estimation. In the first iteration all the variables
with nonpositive time index are set to zero. After each
MCMC iteration during the burn-in phase of the estimation
a new prior is computed as follows. The prior for Y1;it for
t � 0 is set to be the normal prior with mean and variance
the sample mean and variance of Y1;it over all t > 0 values.
Similarly the prior is set for X1;it and η1;it for t � 0. Note that
none of the burn-in iterations are used to construct the final
posterior distribution of the parameters. This is essential to
preserve the integrity of the MCMC sequence. This method
is easy to use and appears to be quite well tuned. It is the
default option in Mplus and is based on 100 burn-in itera-
tions. Note that when the time series model is sufficiently
large with 30 or more observations, it is very unlikely that
the prior specification affects the estimation. The effect of
this prior tends to fade away beyond the first few time
periods. However, when the number of time periods in the
time series is small, such as less than 20, one can expect that
the prior will have some small effect on the estimates. The
burn-in phase prior estimation method we propose here
appears to be working quite well even for short time series.

Categorical Variables

Categorical variables can easily be accommodated in the
preceding model through the probit link function. For each
categorical variable Yijt in the model, j ¼ 1; :::; p, taking the
values from 1 to mj, we assume that there is a normally
distributed latent variable Y �

ijt and threshold parameters
τ1j; :::; τmj�1j such that

Yijt ¼ m , τm�1j � Y �
ijt<τmj; (13)
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where τ0j ¼ �1 and τmjj ¼ 1. The preceding definition
essentially converts a categorical variable Yijt into an unob-
served continuous variable Y �

ijt . The model is then defined
using Y �

ijt instead of Yijt in Equation 1. Note that the τ
parameters are nonrandom parameters and the random inter-
cept parameters Y2;ij and Y3;jt provide a random and uniform
shift for these threshold parameters; that is, a certain degree
of uniformity is assumed when the variable is ordered
polytomous. Such an assumption does not exist for binary
variables and when the variable is binary, depending on the
structural model at hand, the single threshold parameter can
be replaced by a mean parameter for Y �

ijt. This kind of
parametrization yields a more efficient estimation by avoid-
ing the slow mixing of Cowles (1996) algorithm for sam-
pling thresholds (see also Asparouhov and Muthén 2010).
This is also the reason why sometimes models with binary
variables tend to be easier to estimate as compared to
models with ordered polytomous variables with more than
one category, despite the fact that ordered polytomous vari-
ables carry more information in the analysis and more
information generally means better model identification
and more precise estimation.

Note that whereas the categorical variable modeling
given in Equation 13 relies on the underlying continuous
variable Y �

ijt , the actual model application does not require
such an interpretation. The variables Y �

ijt are just a conve-
nience for formulating the model. The model can equiva-
lently be formulated without the underlying continuous
variables Y �

ijt and directly on the model-implied discrete
probabilities PðYijt ¼ mÞ using the model-implied probit
regression. Thus even when the underlying continuous vari-
able is deemed an unacceptable concept from a substantive
point of view, this model is applicable.

Continuous Time Dynamic Modeling

The DSEM model as described thus far applies to situations
where the time variable can be scaled so that each person is
observed at times 1; 2; :::; Ti. This assumption is reasonable,
for example, in daily diary applications where each subject
is observed once a day. However, it is unrealistic in other
applications where multiple observations are taken per day
or in situations where observations are so dispersed that a
daily scale is unrealistic. In many cases individual observa-
tions are taken at uneven time intervals or at random. The
times of observations could be considered real values rather
than integer values that would call for continuous time
modeling.

We can resolve this problem by resetting the time vari-
able using scaling, shifting, and rounding so that the con-
tinuous times of observations are well approximated by
integer values. In its essence this process amounts to the
following. Using a small value δ we divide the time line
using an equally spaced grid where δ represents the length
of the grid intervals. The times of observations are rounded

to the nearest grid time point, which thereby converts the
continuous times of observations to integer times of obser-
vations. We then fill in the data with missing values for
those integers that were not the nearest for an observed
continuous time point. The complete details of the algorithm
implemented in Mplus are given in Appendix A.
Understanding the process of discretization is also important
for a proper interpretation of the DSEM results.

Final Remarks on the General DSEM Model

For identification purposes, restrictions need to be imposed
on the preceding general model. For example, mean struc-
ture parameters can exist only on one of the levels for most
common situations; that is, νj will be fixed to 0 on two out
of the three levels. Other identifying restrictions need to be
imposed along the lines of standard structural equation
models.

The preceding model is the time-series generalization of
the time-intensive model described in Section 8.3 of
Asparouhov and Muthén (2016). The remarkable and daring
features of this model are that longitudinal data of any
length are allowed, an unlimited number of random effects
can be estimated without a substantial computational bur-
den, and no two observations in the data are truly indepen-
dent of each other, as the time-series and subject-specific
random effects correlate data within each subjects and the
time-specific effects correlate data across subjects.

The DSEM model is a two-level model, but because it is a
multivariate model, it can be used to formulate three-level
DSEM models where the first level is written in a multi-
variate wide format. This is particularly the case when the
first level contains only a small number of observations. One
such example is described in Jahng, Wood, and Trull (2008),
where the three-level structure is as follows: subjects, days,
and observations within days. The number of observations
within a day is typically a number smaller than 10 and thus
can be represented with a 10-dimensional vector. Using this
approach, it is possible to model within-day autocorrelation
structures and between-days autocorrelation structures; that
is, construct three-level DSEM models.

The DSEM model estimation is implemented in Mplus
Version 8, with three notable exceptions that might be
resolved in future Mplus implementations. The three excep-
tions are as follows: (a) the parameters Rl and Ql cannot be
random for when l = 0; (b) the parameters Λ1;l, B1;l and the
parameter in Equation 11 can be random, but cannot include
a time-specific random effect; and (c) for categorical vari-
ables the lagged variables Y �

ij;t�l are not a part of the model;
that is, for categorical variables time-series models can be
built only through latent variables ηit, or other continuous
dependent or independent variables.

In conclusion, the cross-classified DSEM model presented
earlier allows us to study the evolution across time not just of
the observed and latent variables, but also of the structural
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model as well. The two-level DSEM model is a special case
of the cross-classified DSEM model and eliminates Y3;t, X3;t,
and η3;t variables from the model as well as Equations 4 and
5. In Equation 1 the component Y3;t is eliminated and thus the
main decomposition is the usual within–between decomposi-
tion that is fundamental to two-level structural equation mod-
els. The structural model is assumed to be time-invariant.
However, this does not imply that the variable distribution
is time invariant: Time-varying covariates, including the time
variable t itself, can still be included in the model, and thus
trends and growth models can be estimated in addition to the
subject-specific time-series models.

Furthermore, the single-level DSEM model is a special
case of the two-level DSEM model and it essentially con-
tains just one cluster and no random effects. Equation 1
reduces to Y1;it ¼ Yit and the variables Y2;i, X2;i, and η2;i are
removed from the model as well as Equations 2 and 3. In
fact, the model is completely specified only by Equations 6
and 7. Because we have just one cluster or individual in the
model, the index i can be removed from the model.

Finally, note that the cross-classified DSEM model
requires the time scale to be aligned across all individuals
so that a time-specific effect s3;t has the same meaning for
all individuals at time t. Not every ILD set is suitable for the
cross-classified DSEM model. Consider, for example, an
observational study in which time t is simply the time
since the first observation was recorded; in this case, no
particular effect might be expected at time t that applies to
every subject in the study. On the other hand, if the study
was on subjects that enrolled in a treatment and time t
represents the time since enrollment in the treatment, it is
natural to expect that time-specific effects at time t can exist
and apply to all subjects in the data; in that case, the cross-
classified DSEM model can be used. Note that the two-level
DSEM model has no particular requirements on the time
scale and is thus suitable for any ILD analysis.

The Residual DSEM Model

The residual DSEM (RDSEM) model is a slight variation of
the DSEM model. In this model we separate the structural
and the autoregressive portion of the within-level model.
Such separation leads to a simplified interpretation of the
structural part of the model, and the autoregressive part of
the model is absorbed in the residuals. Such models are
discussed, for example, in Bolger and Laurenceau (2013).
These models are also of interest when we want to estimate
a cross-sectional model with time-series data, meaning that
all structural effects are for variables observed from the
same time period and no structural effects involve variables
from different periods. By allowing autoregressive relation-
ship for the residuals we account for the nonindependence
of observations that is due to proximity of times of observa-
tions. The RDSEM model is a natural time-series extension

of the two-level long model for time-series data. The exten-
sion is that we add autoregressive relationships for the
residuals. The structural part of the RDSEM model is there-
fore the same as the two-level long model and the inter-
pretation of the structural coefficients is the same as in
standard two-level models.

The precise definition of the RDSEM model is as fol-
lows. On the between level, the RDSEM model is identical
to the DSEM model, whereas the within level consists of
two parts: a structural part and an autoregressive residual
part. The structural part involves only relationships between
variables at lag 0 (i.e., variables observed at the same time
period) and is given by the following two equations:

Y1;it ¼ ν1 þ Λ1;0η1;it þ R0Y1;it þ K1;0X1;it þ Ŷ1;it (14)

η1;it ¼ α1 þ B1;0η1;it þ Q0Y1;it þ Γ1;0X1;it þ η̂1;it: (15)

Here the variables Ŷ1;it and η̂1;it represent the residuals of the
preceding structural models. Note also that the structural
model does not involve any variables from previous periods
and is essentially a standard SEM model for the observed
and latent variables at time t. The second autoregressive part
of the model is for the residual variable Ŷ1;it and η̂1;it and is
given by the following equations:

Ŷ1;it ¼
XL
l¼1

Λ1;lη̂1;i;t�l þ
XL
l¼1

RlŶ1;i;t�l þ ε1;it (16)

η̂1;it ¼
XL
l¼1

B1;lη̂1;i;t�l þ
XL
l¼1

QlŶ1;i;t�l þ �1;it: (17)

Note that in the preceding equations the summation index
begins at l = 1 because all relationships between variables
from the current period (i.e., l = 0) are modeled in Equations
14 and 15.

As an illustration, consider the following single-level
factor analysis RDSEM model suggested to us by Phil
Wood (personal communication, May 1, 2017):

Ypt ¼ νp þ λpηt þ ε̂pt (18)

ηt ¼ r0ηt�1 þ �t: (19)

ε̂pt ¼ rpε̂p;t�1 þ εpt (20)

In this model the factor ηt is modeled as an AR(1) process
as well as the residual for each factor indicator.

Because the structural part of the RDSEM model does
not involve variables across different time periods, the time
interval δ (i.e., the distance between two consecutive obser-
vations) should not affect that model. The autoregressive
part of the RDSEM model will be affected by the choice of
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δ but not the structural part. From a practical point of view,
this property of the RDSEM model can be very appealing,
especially when there is no natural choice for δ.

The RDSEM model can be viewed as a special case of
the DSEM model where the residual variables Ŷ1;it and η̂1;it
are modeled as within-level latent variables. This approach,
however, introduces a new set of residual variables in the
model for Y1;it and η1;it that have zero variances. With
Bayesian MCMC estimation, however, zero-variance vari-
ables typically cause convergence problems and thus the
new set of residual variables must have a small positive
variance. Therefore the RDSEM model can be approxi-
mated by the DSEM model, but this approximation is not
exact. In addition, because of the small variance residuals,
the estimation of the RDSEM model via the DSEM approx-
imation can be quite slow. In the upcoming release of Mplus
Version 8.1, the RDSEM estimation is tackled directly,
avoiding small variance residuals and slow convergence.
This new estimation algorithm is discussed in Appendix C.

MODEL ESTIMATION

The model estimation without the time-series features is
described in Asparouhov and Muthén (2016) and Asparouhov
and Muthén (2010). A substantial portion of that estimation
algorithm also applies directly to the estimation of the DSEM
model. We summarize the general framework briefly and then
we provide details on the estimation that are specific to DSEM.
The details that are not provided here can be found in
Asparouhov and Muthén (2010) and are related to Bayesian
estimation of SEM. Alternatively, these details can be found in
Arminger and Muthen (1998) or Lee (2007).

The estimation is based on the MCMC algorithm via the
Gibbs sampler. All model parameters, latent variables, ran-
dom effects, between-Level 2 components, between-Level 3
components, and missing data are arranged into blocks. Each
of these blocks is updated (new value is being generated)
from the conditional distribution of that block, conditional on
all other remaining blocks and the data. This process is
repeated until a stable posterior distribution for all blocks is
obtained. The goal of the block arrangement is to assure that
each block has an explicit or manageable conditional
distribution. In addition, the blocks are arranged in such a
way that elements that are highly correlated are generated
simultaneously as to improve the quality of the MCMC
mixing. To achieve that, we arrange the blocks to be as
large as possible, keeping the conditional distributions
explicit. Then within each block we arrange the elements
into the smallest possible subblocks that are conditionally
independent and can be generated separately.

The MCMC estimation, unlike maximum likelihood
(ML) estimation, has the ability to absorb new modeling
features easily, meaning that the estimation would not
change dramatically when a new model feature is added.

This is because the MCMC estimation is based on many
conditional distributions rather than one joint distribution.
Thus when a new feature is added to the model, not all
conditional distributions are affected. As an example,
consider the conditional distribution of the underlying Y �

it
for a categorical dependent variable. Computing the
conditional distribution of Y �

it can be done by the same
method we would apply without the time-series features of
the model. Similarly the methodology for updating the
threshold parameters is not changed by the time-series
features of the model.

Let θ represent all nonrandom model parameters. We
split θ into three blocks: intercepts, slope, and loading
parameters θ1; variance, covariance, and correlation para-
meters θ2; and threshold parameters θ3. Priors for each of
these parameters have to be specified. Proper, improper, and
informative conjugate prior specification for the various
parameters are discussed in Asparouhov and Muthén
(2010). Here we generally assume noninformative priors
for all the parameters but informative priors can be facili-
tated as well in the MCMC estimation.

All unknown quantities in the DSEM model are placed in
the following 13 blocks, which are updated one at a time
during the MCMC estimation.

● B1: Y2;i
● B2: All random slopes s2;i
● B3: Y3;t
● B4: All random slopes s3;t
● B5: Other latent variables η2;i and η3;t
● B6: Latent variables η1;it, including initial conditions
where t � 0

● B7: Missing data variables Yit
● B8: Initial conditions Y1;it and X1;it for t � 0
● B9: Threshold parameters for all categorical variables θ3
● B10: Underlying variables Y �

it for all categorical variables
● B11: Nonrandom intercepts, slope, and loadings para-
meters θ1

● B12: Nonrandom variance, covariance, and correlation
parameters θ2

● B13: Random variance parameters

In certain cases, blocks can be combined to improve
mixing quality and the speed of the computation. For exam-
ple, if Rl and Ql are nonrandom parameters, blocks B1 and
B2 can be combined and blocks B3 and B4 can be combined.
That is because the joint conditional distribution of B1 and
B2 is normal. It is not normal if Rl and Ql are random
because Equation 9 will contain the product of elements of
B1 and elements of B2. Similar logic applies to B3 and B4.

To complete the description of the MCMC estimation,
the conditional distribution of each of the preceding blocks,
conditional on all other blocks and the data, should be
specified. The technical details of deriving these conditional
distributions are given in Appendix B.
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MODEL FIT AND MODEL COMPARISON

The easiest method for model comparison in the DSEM
framework is to evaluate significance of individual para-
meters through the credibility intervals produced by the
Bayesian estimation. This is particularly effective when
models are nested and model comparison is essentially a
test of significance of effects. However, in more com-
plicated model comparisons such significance testing is
not available. This section discusses the deviance infor-
mation criterion (DIC) and comparisons of sample and
estimated quantities as methods for evaluating model fit
and model comparison.

DIC

A commonly used criterion for model comparison in
Bayesian analysis is the DIC that was first introduced by
Spiegelhalter, Best, Carlin, and van der Linde, (2002). The
DIC can be computed when all the dependent variables are
continuous using the usual formulas. The deviance is com-
puted as minus two times the log-likelihood

DðθÞ ¼ �2 logðpðY jθÞÞ; (21)

where θ represents all model parameters and Y represents all
observed dependent variables. The effective number of para-
meters pD is computed as follows:

pD ¼ �D� Dð�θÞ; (22)

where �D represents the average deviance across the MCMC
iterations and �θ represents the average model parameters
across the MCMC iterations. The DIC criterion is then
computed as

DIC ¼ pD þ �D: (23)

DIC can be used to compare any number of competing
models, and these could be nested or not. The best model
is the model with the lowest DIC value. The effective
number of parameters pD should generally be close to the
size of the vector θ and is the penalty for model complexity
of this information criterion.

Comparability of the DIC

Despite this seemingly clear definition, there is substantial
variation in how the DIC is actually computed and defined
(cf. Celeux, Forbes, Robert, & Titterington, 2006). The
source of the variation is the definition of θ, and in particular
in depends on whether latent variables are treated as para-
meters or not. If a latent variable is treated as a parameter, it is
a part of the vector θ and the likelihood used in the definition
of the deviance is conditional on that latent variable. If a

latent variable is not treated as a parameter, it is not a part of
the vector θ and the likelihood used in the definition of the
deviance is the marginal likelihood; that is, the latent variable
has to be integrated out (for a similar discussion in the
context of the Akaike’s information criterion, see Vaida &
Blanchard, 2005).

Consider, for example, a one-factor analysis model. If the
factor is treated as a parameter, pðY jθÞ is the likelihood
conditional on the factor where all indicators are indepen-
dent of each other conditional on that factor. If the factor is
not treated as a parameter, pðY jθÞ is computed without
conditioning on the factor and instead using the model-
implied variance–covariance matrix where the indicators
are not independent. These two different ways of computing
the DIC will naturally produce different pD and naturally
will be on a completely different scale and incomparable,
despite the fact that the model is the same. In more compli-
cated models, even more variation can occur as some latent
variables can be included as parameters and some might not.
This phenomenon makes the DIC somewhat trickier to use
in latent variable rich DSEM models, as one has to always
check that the definitions of DIC are comparable.

Consider a different example that consists of three mod-
els. Model 1 is a two-indicator one-factor model example
where we treat the factor as a parameter. Model 2 is the
same as Model 1, but the variance of the factor is fixed to
zero, which is equivalent to the model of two independent
indicator variables. Model 3 is the model of two correlated
indicators without any factors. In this example, the two
different formulations of Model 2 yield the same DIC.
Thus Model 2 DIC is comparable to Model 1 DIC. Model
2 DIC is also comparable to Model 3 DIC. However, Model
1 DIC is not comparable to Model 3 DIC (despite the fact
that they are the same model); that is, model comparability
is not transitive.

Stability of the DIC estimate

An additional complication that arises in the computation of
DIC for the DSEM model is that when latent variables are
treated as parameters, the number of parameters pD becomes
so large and so many parameters have to be integrated through
the MCMC iterations that the DIC precision is difficult to
achieve. It is not unusual that convergence for the model
parameters is easily achieved, but a stable DIC estimate
requires many more iterations, and there might be cases
where it is practically infeasible to obtain a stable DIC esti-
mate. In such cases, the imprecision that remains could be
bigger than the DIC difference in the models we are trying to
compare.

Therefore, we recommend verifying that the DIC esti-
mate has converged by running the MCMC estimation with
different random seeds for the same model, and comparing
the DIC estimates across the different runs to evaluate the
precision of the DIC. Despite all these difficulties, the DIC
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is the most practical way to compare models when simple
parameter significance tests are not enough.

Formal definition of the DIC for the DSEM model

The definition of the DIC consists of the list of latent
variables that are treated as parameters. As in Asparouhov
and Muthén (2016), for DIC with two-level and cross-
classified models all random effect variables such as ran-
dom loadings, random slopes, and random variances, as
well as the random intercept variables Y2;i and Y3;t, are
treated as parameters. In addition, any latent variable on
the within level that is lagged in a time-series model is
treated as a parameter; that is, any latent variable η1;i;t that
is also used on the right side of Equations 6 and 7 in its
lagged version η1;i;t�l is treated as a parameter. Clearly, this
increases the number of parameters pD of the DIC substan-
tially, usually much more so than the between-level ran-
dom effects. A between-level random effect increases pD
by N, whereas a within-level lagged latent variable
increases pD by N � T. Similarly, the missing values for
Yit for every dependent variable that is lagged, meaning it
is used on the right side of Equations 6 and 7 in lagged
form, is also treated as a parameter.

Given that these variables (i.e., latent variables and miss-
ing values) are conditioned, the variables Yit are independent
across time and persons, and the likelihood is computed as
follows:

logðPðY jθÞÞ ¼
X
i;t

logðPðYitjθÞÞ; (24)

where PðYitjθÞ is the likelihood for a single-level SEM model
for individual i at time t. Thus, treating the lagged latent
variables on the within level and the lagged missing data as
model parameters makes the computation of the DIC quite
simple. In principle, it is possible to compute the DIC uncon-
ditional on lagged latent variables and missing data; however,
such a computation would be substantially more complex
than Equation 24, and would require an iterative algorithm
for computing PðYitjYi1; ::Yi;t�1Þ, which in turn might result
in a substantially slower computational algorithm.

To summarize, the DIC can be used to compare two or
more DSEM models if the list of latent variables that are
treated as parameters is the same, and it is provided as
standard output when doing DSEM.

Comparing Sample Statistics and Their Corresponding
Model-Estimated Quantities

Another array of possibilities for evaluating model fit is
to compare sample statistics and their corresponding
model-estimated quantities. This is particularly effective
for the two-level DSEM model. Let μi be the model-
estimated mean for a single dependent variable Y for

subject i. Let Yi� be the sample mean for subject i; that
is, Yi� ¼

PTi
t¼1 Yit=Ti. From these two quantities we can

compute the following statistics of model fit:

R ¼ Corðμi; Yi�Þ (25)

MSE ¼
XN
i¼1

ðμi � Yi�Þ2=N : (26)

Here R is the correlation between estimated and observed
means across the clusters or individuals and MSE is the
mean squared error of the estimated versus observed
mean. If we compare two competing models, we want to
select the model with smaller MSE and higher R, as it will
better represent the data. Note that such model fit evaluation
is useful not just for two-level DSEM models, but also for
general two-level models.

It is important to realize that this comparison is most
reliable under the condition that there is no missing data.
When data are missing and missing at random (MAR) rather
than missing completely at random (MCAR), the sample
quantities Yi� will not necessarily be the mean of Y in cluster
i and the model-estimated μi could be the more accurate
estimate for that mean. Cautious inference in the presence of
missing data can still be made using R and MSE. However,
these statistics are undeniably not as reliable as in the case
of no missing data and discrepancy between model-esti-
mated values and sample values could simply be the result
of MAR and not MCAR missing data.

Note also that R and MSE can be computed for any
observed model variable and statistic. For example,
instead of the mean of Y we can compute the sample
and model-estimated variance of Y. Another example is
the covariance between two dependent variables
CovðY1; Y2Þ; that is, computing the correlation R between
the cluster-specific model-estimated covariance and the
cluster-specific sample covariance. Yet another example
that is particularly of interest for the two-level DSEM
model is to compute the correlation R between the sub-
ject-specific sample autocorrelation for a variable Y and
the subject-specific model estimated autocorrelation of Y
across the subjects.

Because there are many variables and many different
statistics, one can expect that the R and MSE statistics can
potentially disagree about which model represents the
data better. Empirical data applications will yield more
insight on that topic and whether such a disagreement is
common. Note also that the DSEM model offers many
more subject-specific estimated quantities than the stan-
dard two-level SEM model without any random structural
coefficients. For example, in the standard two-level SEM,
estimated variances are not subject-specific so R would be
zero for all models and no model comparison can be
performed that way.
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In Mplus the correlations R can be obtained for the
means and the variance statistics within the Mplus
between-level scatter plots simply by plotting the estimated
against the sample quantities. The MSE is not reported in
those plots but can easily be computed by saving the data of
the plots and computing it in a separate step. In the Mplus
residual output, other estimated statistics, such as covariance
and autocorrelations, can be found as well.

The model-estimated means, variances, and covariances
for the DSEM model are not computed the way they are
computed for the SEM model. The details on this computa-
tion are given in Appendix D.

SIMULATION EXAMPLES

In this section we illustrate the new DSEM framework with
several simulation studies to highlight diverse key aspects in
this context. First, we focus on the core issue of centering
variables per person, and using a latent rather than a sample
mean for this purpose. Second, we discuss the option of
subject-specific variance. Third, we present two related mod-
els: the AR(1) with measurement error and the ARMA(1,1)
model. Fourth, we discuss how to include a time-varying
covariate in autoregressive models. Fifth, we present dynamic
factor analysis, which includes latent variables to capture the
common variance of multiple indicators. Sixth, we discuss
the issue of unequally spaced data, which result from certain
popular sampling schemes that are based on random mea-
surement occasions. Finally, we discuss how time-specific
effects can be studied using the DSEM framework.

Centering

In this first simulation study we show that the DSEM frame-
work can be used to eliminate the dynamic panel bias, also
known as Nickell’s bias (Nickell, 1981). The example we
use for this illustration is inspired by a simulation study
reported in Hamaker and Grasman (2015). The sample
consists of N individuals observed at times t ¼ 1; :::; T .
We focus on the univariate random autoregressive AR(1)
model given by the following equation:

Yit ¼ μi þ ϕiðYi;t�1 � μiÞ þ �it: (27)

The variable �it is assumed to be white noise with mean 0 and
variance σw. The variables μi and ϕi have a bivariate normal
distribution with mean parameters μ and ϕ, variances σ11 and
σ22, and covariance σ12. In the DSEM framework this model
can be estimated directly. The predictor Yi;t�1 � μi in
Equation 27 is centered using a latent variable that represents
the true mean μi; hence, we call this centering the latent
centering.

In contrast to the latent centering model, we also consider
the observed centering model,

Yit ¼ μi þ ϕiðYi;t�1 � Yi�Þ þ �it; (28)

where the predictor is now centered by the sample mean
instead of the true mean for individual i. Equation 28 can be
estimated as a standard two-level regression model.
However, that estimation produces Nickell’s bias for the
parameter ϕ because the model does not account for the
error in the sample mean estimate of the true mean. Nickell
(1981) also produced the following formula that approxi-
mates the bias

� 1þ ϕ
T � 1

: (29)

We conduct a simulation study to evaluate Nickell’s bias,
generating data according to the model in Equation 27 and
using the following parameter values (based on Hamaker &
Grasman, 2015): μ ¼ 0; ϕ ¼ 0:3; σ11 ¼ σw ¼ 3; σ22 ¼ 0:01;
and σ12 ¼ 0. The variance σ22 is small so that the autore-
gressive parameter ϕi remains in the ð�1; 1Þ range, as it is a
correlation parameter. If the parameter ϕi exceeds that range,
VarðYitÞ will increase with time to infinity. To generate
time-series data according to the model in Equation 27, we
need a starting value for the first time point. The standard
way to resolve this ambiguity is to start at 0 but generate
and discard the first few observations. That way the gener-
ated values stabilize and the effect of the original starting
value of 0 is removed. We discard the first 10 values for
each person.

In Table 1 we report the simulation results for various
values of N and T using 100 simulated data sets for each
combination of N and T.

The results show that the DSEM latent centering
approach resolves Nickell’s bias and that the latent cen-
tering is superior to the observed centering. We also see
that the bias is quite small for T � 100. The simulation
study shows also that Nickell’s formula predicts the bias
quite accurately.

It was noted in Hamaker and Grasman (2015) that not
centering the covariate also produces very good results for
Nickell’s bias; that is, we can replace Equation 28 with

Yit ¼ ci þ ϕiYi;t�1 þ �it: (30)

We call this model the uncentered model. This model
can also be estimated as a standard two-level regression
model. The uncentered approach resolves Nickell’s bias,
but it produces a random intercept ci that does not
represent an individual’s mean μi, as the lagged predictor
does not have a mean of zero if it is not centered. This
also implies that the variance of this parameter (i.e., the
variance of the random effect) will deviate from the
actual variance of μi. In Table 2 we report the bias for
the variance of the random mean or intercept σ11 using
the uncentered method and the DSEM method.
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Regarding the bias in the DSEM method for estimating
the between-level parameter σ11, we can see that it is
driven by the number of subjects N, and seems to dis-
appear for N � 100. The DSEM bias is guaranteed to
disappear asymptotically as the method is equivalent to
the ML method for large N. It is also known that the
variance of the between-level effect when N < 100 can
be fine-tuned by using proper priors (see Browne &
Draper, 2006). For N < 100 the effect of the prior is not
negligible and selecting a weakly informative prior can
reduce the bias substantially. In this simulation study we
used improper and uninformative priors. We can also
conclude that the uncentered method yields distortion on
the between level and the bias seen in Table 2 does not
disappear asymptotically.

Note also that in the preceding simple AR(1) model, the
uncentered model is a reparameterization of the latent cen-
tering model: ci ¼ μið1� ϕiÞ. Such a reparameterization,
however, does not exist for more complex models. For
example, the uncentered and the latent centering models
are not a reparameterization of each other if we add a
predictor for the random effects.

This simulation uses a very simple DSEM model. The
biases that we illustrated here for the observed centering
method and the uncentered method will be difficult to track
in more complicated models, especially because Nickell’s
bias can interact with the bias described by Lüdtke et al.
(2008). We can also see clearly that the perils of the uncen-
tered method are disadvantageous from an estimation point

of view, as they remain in the model even with large
samples.

Furthermore, the latent centering method used with
DSEM is the only method that accommodates missing
data, whereas both the observed centering and the uncen-
tered method are essentially not available when there are
missing values in the data. The covariate (i.e., the lagged
predictor) cannot be constructed when the data point is
missing and that means that if Yi;t�1 is missing, the equation
containing Yi;t would have to be removed as well. Thus if
the data contain 20% missing data, we might have to
remove another 20% because the lagged predictor is miss-
ing. If the model we estimate is a second-order autoregres-
sive process (i.e., an AR(2)), we might have to remove
another 20%, because the only data points that can be
used for model estimation are the ones for which the pre-
ceding two observations are not missing. This problem
comes in addition to the well-known problems that occur
when listwise deletion is used for dealing with missing data,
particularly when the missing data are not MCAR. In con-
trast, DSEM is not based on listwise deletion, and missing
data in combination with autoregressive relationships do not
result in having to remove additional cases.

Subject-Specific Variance

In regular multilevel analysis the within-level variance is
generally estimated to be a cluster-invariant parameter. Even
if that parameter is not cluster-invariant, the assumption of
invariance generally does not affect the estimation of the
structural parameters. However, for DSEM models that is
not the case. Jongerling, Laurenceau, and Hamaker (2015)
showed that ignoring the subject-specific variance can dis-
tort the structural parameters of the model, particularly when
the subject-specific variance is correlated with other random
effects in the model. In this section we reproduce this
finding in the DSEM framework and discuss the general
implications for DSEM modeling.

Consider the following simulation study based on the
random autoregressive AR(1) model given by the following
equations

Yit ¼ μi þ εit (31)

εit ¼ ϕiεi;t�1 þ �it; (32)

where now we include subject-specific residual variance
through the normally distributed random effect vi

vi ¼ LogðVarð�itÞÞ: (33)

The three random effects ðμi; ϕi; viÞ in this model are assumed
to have an unrestricted multivariate normal distribution with
mean ν ¼ ð2; 0:2; 0Þ and variance–covariance Σ where
σ11 ¼ 0:7, σ22 ¼ 0:05, σ33 ¼ 0:5, σ12 ¼ σ13 ¼ 0. Because
the covariance parameter between ϕi and vi appears to be the

TABLE 1
Nickell’s Bias for ϕ = 0.3

T N

DSEM
(Latent

Centering)
Observed
Centering

Nickell’s
Formula

10 100 0.025 −0.140 −0.144
20 50 0.006 −0.070 −0.068
30 30 0.008 −0.042 −0.045
50 50 0.000 −0.029 −0.027
100 100 −0.001 −0.014 −0.013

Note. DSEM = dynamic structural equation modeling.

TABLE 2
Bias for σ11 ¼ 3

T N
DSEM

(Latent Centering) Uncentered

10 100 −0.015 −1.637
20 50 0.217 −1.483
30 30 0.645 −1.256
50 50 0.378 −1.361
100 100 0.096 −1.508

Note. DSEM = dynamic structural equation modeling.
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most important parameter in this simulation study, we use four
different values for σ23 ¼ 0:15; 0:1; 0:05; and 0. These four
values correspond to the following correlation values: 0.95
(high), 0.63 (medium), 0.31 (small), and 0 (none). In the
simulation we use 100 replications, N = 200 and T = 100 for
each value of σ23. We generate data according to the model in
Equations 31 to 33 and analyze the data with the same model
and with a model based on Equations 31 and 32 but without
random variance (i.e., assuming an invariant variance para-
meter). The results of the simulation are presented in Table 3.

The results show that the DSEM model without the
random variance effect leads to bias and low coverage
rates, whereas the DSEM model with the random variance
effect shows no bias and good coverage rates. Model para-
meter distortions are directly caused by the correlation
between the random autoregressive parameter ϕi and the
random variance parameter vi. The higher that correlation
is, the bigger the distortions.

The random autoregressive parameter and the random resi-
dual variance are directly related via the following equation:

VarðYitjiÞ ¼ ExpðviÞ
1� ϕ2i

: (34)

Because of that strict relationship one can expect in practical
applications that vi and ϕi are fairly highly correlated and
therefore one can expect the DSEM model results with
random variances to differ somewhat from the results with-
out random variances. In that case we can assume that the
DSEM model with random variances will yield the more
accurate results.

The effect of ignoring the random residual variance on
the estimation of the individual autoregressive parameters is
even more dramatic than the effect on the parameters
reported in Table 3. To compare the estimated individual
autoregressive parameters ϕ̂i with their true values, we
compute the square root of the mean squared error; that is,

SMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞ

X
i

ϕ̂i � ϕi
� �2s

(35)

and the correlation between the estimated individual auto-
regressive parameters and the true values; that is,

correlation ¼ Corðϕ̂i; ϕiÞ (36)

These quantities are computed for each of the 100 replica-
tions and the average values are reported in Table 4. The
results show that the distortions in the estimates caused by
ignoring the random variance effect go beyond simple infla-
tion or deflation of the random parameters and the errors
appear to have doubled from what they are for the nonran-
dom parameters. However, the cause of the increase in the
SMSE error is somewhat more complex because it is not
just due to the misspecification of the random variance
effect. Consider, for example, the fact that the DSEM
model with the random variance effect extracted a lot
more information from the data and created vi, which is
essentially a very good predictor for ϕi on the between level.
This will undeniably result in precision improvement for the
ϕi estimates. Such a phenomenon exists, of course, not just
for DSEM models, but for regular two-level models as well;
that is, even when the nonrandom parameter estimates are
not distorted, adding a random variance effect will improve
the estimation of the other random effects particularly when
the random variance effect is correlated with those other
effects.

In multivariate DSEM models we can further consider
modeling not just random variances but also random
covariances and random correlations. The easiest way to
model random covariance in this framework is to model
the covariance through a random variance of a common
factor (cf. Hamaker et al., 2017). However, it is not as
easy to evaluate the effect of random covariance on the
model estimates, because even if the factor covariance is
not random, the correlation between the variables is ran-
dom when the variances are random. Some preliminary
simulation studies, not reported here, indicate that the
effect of random covariances might be more muted than

TABLE 3
Bias (Coverage) for Subject-Specific Variance Simulation

Parameter Covðϕi; viÞ Random Variance Invariant Variance

EðϕiÞ High .001 (.97) .040 (.35)
EðϕiÞ Medium .001 (.98) .028 (.65)
EðϕiÞ Low .001 (.97) .017 (.83)
EðϕiÞ None .001 (.96) .007 (.92)
VarðϕiÞ High .001 (.97) −.012 (.47)
VarðϕiÞ Medium .001 (.93) −.007 (.78)
VarðϕiÞ Low .001 (.93) −.004 (.88)
VarðϕiÞ None .001 (.94) −.001 (.91)

TABLE 4
Square Root of the Mean Squared Error (SMSE) for the Random
Autoregressive Parameters and the Correlation Between True and

Estimated Random Autoregressive Parameters

Covðϕi; viÞ
DSEM Random

Variance
DSEM Invariant

Variance

SMSE High .255 .346
SMSE Medium .293 .329
SMSE Low .300 .316
SMSE None .300 .310
Correlation High .96 .87
Correlation Medium .92 .89
Correlation Low .91 .90
Correlation None .91 .90

Note. DSEM = dynamic structural equation modeling.
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those of random variances and might require much larger
samples to detect. Further simulation studies are needed
on this topic.

The DSEM framework can accommodate seamlessly a
large number of random effects and thus using models with
random variances and covariances in many situations should
be the preferred choice as long as the MCMC convergence
is unhindered. Because of the increase in the number of
random effects, the likelihood of the model with these ran-
dom variances and covariances will be less pronounced and
in some cases the MCMC convergence will be much slower.
This should be taken as an indication that there is not
sufficient information in the data to identify the DSEM
model with random variances and covariances. In such
situations, using cluster-invariant variances and covariances
is not a poor choice by any means and unless these random
variances and covariances are highly correlated with other
random parameters, we see that the effects are somewhat
negligible.

ARMA(1,1) and the Measurement Error AR(1) Model

The ARMA(1,1) time-series model is given by the follow-
ing equation:

Yt ¼ νþ ϕYt�1 þ εt þ θεt�1: (37)

The model has four parameters; that is, ν, ϕ, θ and
σ ¼ VarðεtÞ. The ARMA(1,1) process is stationary and
invertible when the two parameters ϕ and θ are within the
interval ð�1; 1Þ (Greene, 2014), and generally when used in
practical applications we expect these two parameters to be
within that range. The model-implied mean is ν=ð1� ϕÞ and
the model-implied variance is

VarðYtÞ ¼ σ 1þ ðϕþ θÞ2
1� ϕ2

 !
: (38)

The model-implied first autocorrelation is given by

ρð1Þ ¼ ðθ þ ϕÞð1þ θϕÞ
1þ 2θϕþ θ2

(39)

and for lag l > 1 the autocorrelation is given by

ρðlÞ ¼ ϕl�1ρð1Þ: (40)

Granger and Morris (1976) showed that this model is
equivalent to the following measurement error AR(1)
model under certain parameter restrictions:

Yt ¼ μþ ft þ �t (41)

ft ¼ ϕ ft�1 þ εt: (42)

We call this model the measurement error AR(1) model—that
is, MEAR(1)—because the latent variable ft follows an AR(1)
process but is not observed directly; rather, it is measured with
error by the observed variable Yt. Alternatively, this model is
also sometimes referred to as AR(1)+WN (Granger & Morris,
1976), where WN stands for the white noise process represent-
ing the measurement error.

The four parameters in the MEAR(1) model are μ, ϕ,
σ1 ¼ Varð�tÞ, and σ2 ¼ VarðεtÞ. The relationship between
the parameters in the two models is as follows. The mean
parameter μ can be obtained from the first model using the
expression μ ¼ ν=ð1� ϕÞ. The autoregressive parameter ϕ
is the same across the two models. The MEAR(1) para-
meters σ1 (i.e., measurement error variance) and σ2 (i.e.,
innovation variance, also referred to as dynamic error var-
iance) can be derived from the ARMA(1,1) parameters via
the following equations:

σ1 ¼ � θσ
ϕ

(43)

σ2 ¼ ð1þ θ2Þσ þ ð1þ ϕ2Þθσ
ϕ

: (44)

The equivalence of the two models is subject to the parameter
constraints that arise from the inequalities σ1 > 0 and σ2 > 0.
Under the regularity conditions of ϕ and θ being in the
interval (−1, 1) the constraints can be further simplified to

ϕθ < 0 (45)

ϕþ θ > 0: (46)

Every MEAR(1) model can be represented as an ARMA
(1,1) model, and an ARMA(1,1) model can be represented
by a MEAR(1) model when Equations 43 and 44 produce
positive variances, or equivalently when the inequalities in
Equations 45 and 46 hold.

In the most common situation the autoregressive para-
meter ϕ will be positive. Let’s assume for now the case
of ϕ > 0. In that case it is interesting to note for the
MEAR(1,1) model that the autocorrelation parameters
for the latent variable are always larger or equal to
those for the observed variable

Corðft; ft�lÞ � CorðYt; Yt�lÞ: (47)

For the ARMA(1,1) model this is not the case and the
corresponding statement

ϕl > ρðlÞ (48)

is precisely equivalent to θ being negative, which is the
necessary condition for the ARMA(1,1) models to be
equivalent to the MEAR(1) model; that is, these
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constraints are not coincidences and have meaningful
interpretations.

The MEAR(1) model is much easier to interpret than the
ARMA(1,1) model, especially in the social sciences applica-
tions where measurement error is common (cf. Schuurman,
Houtveen, & Hamaker, 2015). In cross-sectional studies it is
not possible to identify the measurement error model when
there is only one measurement, but as the MEAR(1) model
clearly illustrates it is possible to do that in dynamic time-
series models.

The MEAR(1)/ARMA(1,1) model is generally preferred
to the AR(1) model in the econometrics literature, as it offers
more flexible autoregressive representation. The AR(1)
model has an exponential decay of the autocorrelation func-
tion and the ARMA(1,1) autocorrelation decays slower. This
is particularly important if we have to change time scale as is
done with continuous time dynamic modeling. An AR(1)
hourly autocorrelation of 0.75 implies a daily autocorrelation
of 0.001. With reliability of 0.8 the MEAR(1) model hourly
autocorrelation of 0.75 implies a daily autocorrelation of
0.212. Thus, the AR(1) model implies that observations in
two consecutive days would be approximately independent,
whereas the MEAR(1) model implies that some lag relations
will remain across consecutive days, which is a more realistic

assumption. The difference in the decay of the autocorrelation
is illustrated in Figures 1 and 2, which show typical decay for
the autocorrelation for the AR(1) and ARMA(1,1) models.

In practical settings one can compute the sample auto-
correlations and check if the decay is exponential and use
this as the basis to decide if the AR(1) model is sufficient or
that the ARMA(1,1) should be explored. It should be noted,
however, that there are many other possibilities, such as the
AR(2) model, the more general ARMA(p,q) model, or a
MEAR(p) model, which is a special case of the ARMA(p,p)
model (see Granger & Morris, 1976).

We conduct a brief simulation study to evaluate the per-
formance of the estimation of the MEAR(1)/ARMA(1,1)
model and to evaluate the sample size needed to obtain
satisfactory estimates. We use the N = 1 case with T = 100,
200, 300, 500. We use 100 replications in all cases. The
results are presented in Table 5. We use the MEAR(1)
model formulation given in Equations 41 and 42.

We can make the following conclusions from these
results. The estimation of the ARMA(1,1) model is more
difficult than the estimation of the AR(1) model. Good
estimation where the bias is small and the coverage is
near or above 90% needs at least T � 200. The estimates
are biased at T = 100 and coverage dropped to 82%. We

FIGURE 1 AR(1) autocorrelation decay function.

FIGURE 2 AR(1,1) autocorrelation decay function.
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can also conclude that to estimate a two-level ARMA
(1,1) model, with all four of the parameters as random
subject-specific parameters, at least T � 200 is needed
per person. If such a sample size is not available, then
one or two of the four ARMA(1,1) parameters should be
held equal across individuals (i.e., should be nonrandom
parameters). Most suitable are the two variance para-
meters σ1 and σ2, because the bias in Table 3 is smaller
than the bias in Table 5 for T = 100. When parameters
are held equal across individuals, essentially the sample
size used for the estimation changes from T to N � T , and
we can estimate a two-level ARMA(1,1) model with
much fewer observations per person than we need for a
single-level ARMA(1,1) model.

Next, we consider a two-level MEAR(1) model for
categorical data. The DSEM framework has one limita-
tion when it comes to categorical variables. Such vari-
ables cannot be lagged on their own but only through a
factor. The MEAR(1) model essentially resolves this
problem as it includes such a factor already and thus
we can estimate a univariate autoregressive model with
an observed categorical variable. If we attempt to esti-
mate a subject-specific autoregressive model, such as the
one in Equation 27, where the autoregressive parameter
is subject-specific, we will need a substantial sample
size. Simulation studies, not reported here, indicate that
for the N = 1 case the MEAR(1) model needs a sample
size of about 10,000 for the binary case and about 1,000
for an ordered polytomous case with six categories. This
is the kind of sample size we would need per subject if
we want to estimate a subject-specific two-level MEAR
(1) model. Although such sample sizes are sometimes
realized in the case of physiological measurements and
certain observational studies in which ratings are made
continuously, they are less common in self-report studies
using daily diaries or experience sampling.

However, if we estimate a two-level MEAR(1) model
where the autoregressive parameter is not subject-speci-
fic, then the data from the different subjects are com-
bined and many fewer observations will be needed per
subject. Our simulation study uses N = 100 individuals
with T = 300 time points and 100 replications. Because
the autoregressive coefficient is estimated at the

population level, we essentially have 100 × 300 =
30,000 observations to estimate this model, which is
sufficient.

The MEAR(1) model we estimate for the binary variable
is given by

PðYit ¼ 1Þ ¼ Φðμi þ fitÞ (49)

fit ¼ ϕfi;t�1 þ �it (50)

μi,Nðμ; σbÞ; �it,Nð0; σwÞ (51)

The function Φ is the standard normal distribution function.
Note that for identification purposes the residual variance in
Equation 41 is now fixed to 1. The model has four para-
meters: the grand mean μ, the variance of the individual
means σb, the fixed autoregressive parameter ϕ, and the
within-level residual variance σw.

The results of the simulation study are presented in
Table 6. Parameter estimates appear to have no bias, but
some of the parameters have low coverage. This can usually
be resolved by running longer MCMC chains. Here we used
a minimum of 1,000 MCMC iterations and convergence is
determined by the potential scale reduction convergence
criterion (see Asparouhov & Muthén, 2010). Mixing with
categorical variables is somewhat slower than with normally
distributed variables and might require much longer MCMC
chains. The current simulation takes 1 min per replication.

Additionally, we also consider a two-level MEAR(1)
model with ordered polytomous variables. Using ordered
polytomous variables in practical applications is one way
to deal with nonnormally distributed dependent variables.
The model is given by the following equations

TABLE 5
Bias (Coverage) AR(1) Measurement Error Model/ARMA(1,1), N = 1

Parameter True Value T ¼ 100 T ¼ 200 T ¼ 300 T ¼ 500

μ 0 −.09 (.82) −.01 (.89) −.04 (.85) −.02 (.87)
ϕ .8 −.07 (.96) −.04 (.92) −.03 (.87) −.01 (.95)
σ1 1 −.10 (.97) −.09 (.94) −.08 (.88) −.04 (.90)
σ2 1 .25 (.95) .17 (.92) .14 (.91) .08 (.90)

TABLE 6
Two-Level ARMA(1,1) With Binary Variable, N = 100, T = 300

Parameter True Value Estimate (Coverage)

μ 0 0.00 (.95)
ϕ 0.5 0.50 (.78)
σw 1 1.01 (.71)
σb 0.5 0.52 (.94)

TABLE 7
Two-Level ARMA(1,1) With Ordered Polytomous, N = 100, T = 100

Parameter True Value Estimate (Coverage)

τ1 −3 −3.06 (.87)
τ2 −1 −1.02 (.81)
τ3 0 −0.01 (.79)
τ4 1 1.01 (.75)
τ5 3 3.05 (.81)
ϕ 0.5 0.50 (.93)
σw 1 1.09 (.83)
σb 0.5 0.54 (.94)
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PðYit ¼ jÞ ¼ Φðτjþ1 � μi � fitÞ � Φðτj � μi � fitÞ (52)

fit ¼ ϕfi;t�1 þ �it (53)

μi,Nð0; σbÞ; �it,Nð0; σwÞ (54)

The first τ0 ¼ �1 and the last threshold τJ ¼ 1, where J
is the number of categories of the observed variable. We
conduct a simulation study using a six-category variable,
N = 100, T = 100, and 100 replications. The results are
presented in Table 7.

The parameter bias appears to be small and again we see
some standard error underestimation that could potentially be
resolved with running much longer MCMC chains. Each
replication takes 2 min here. Because the outcome is ordered
polytomous, we were able to estimate the model with only T =
100, which is much smaller than what is needed for a binary
outcome. This is due to the fact that the ordered polytomous
variable carries more information than the binary variable.

How to Add a Covariate in the MEAR(1) and AR(1)
Models

The AR(1) model is nested within the MEAR(1) model,
because if we set the parameter Varð�tÞ ¼ 0 in Equation
41 (i.e., if we set the measurement error to zero), the model
becomes equivalent to the AR(1) model. The following
discussion applies to both the AR(1) and the MEAR(1)
models.

There are three ways to add a covariate to the MEAR(1)
model defined in Equations 41 and 42. The covariate can be
used in either of the two equations, but it can also be used in
both equations. When it is included in the measurement
equation, we call it the direct model; that is,

Yt ¼ μþ ft þ β1Xt þ �t (55)

ft ¼ ϕ ft�1 þ εt: (56)

In this model, X has a direct effect on Y, and because Y itself
is not characterized by sequential relationships, each occa-
sional score of X only affects the concurrent Y.

When the covariate is included in the transition equation,
we call it the indirect model; that is,

Yt ¼ μþ ft þ �t (57)

ft ¼ ϕ ft�1 þ β2Xt þ εt: (58)

Here, X has an indirect effect on Y, through the latent
variable f, and because the latter is characterized by an
autoregressive process, preceding X scores also affect cur-
rent and later Y scores.

When the covariate is included in both equations, we call
it the full model; that is,

Yt ¼ μþ ft þ β1Xt þ �t (59)

ft ¼ ϕ ft�1 þ β2Xt þ εt: (60)

The full model has a direct and an indirect effect from X on Y.
The first issue that we have to address is the fact that the

full model is not always identified. When the autoregressive
parameter ϕ ¼ 0, the model is a standard SEM model and
the direct and indirect effects on Y are equivalent and there-
fore the full model, which includes both effects, is not
identified. In fact, if ϕ ¼ 0, the measurement error model
is also not identified, because a one-indicator factor model is
not identified in standard SEM. A second case where the
full model is not identified is the two-level MEAR(1) model
where the covariate is time invariant. If the covariate is time
invariant, then the indirect and the direct model become
equivalent. The specific relationship between their para-
meters is

β2 ¼
β1

1� ϕ
: (61)

This relationship holds because when the covariate is time
invariant it is essentially equivalent to the μ parameter. If the
μ parameter is moved from Equation 59 to Equation 60, it
will also be divided by ð1� ϕÞ. Because the indirect and the
direct models are equivalent, the full model is not identified
under these circumstances.

Another covariate for which the indirect and direct
model become statistically equivalent is when Xt ¼ t;
that is, the linear growth model (see Hamaker, 2005). In
this case, the relationship between the parameters from
the direct and the indirect model as provided in Equation
61 also holds. We formulate this equivalence for the AR
(1) model but the same holds for the MEAR(1) model.
The direct linear growth AR(1) model is formulated as
follows:

Yt ¼ γ0 þ γ1t þ �t (62)

�t ¼ ϕ �t�1 þ εt: (63)

In contrast, the indirect linear growth AR(1) model can be
formulated as follows:

Yt ¼ β0 þ β1t þ ϕYt�1 þ εt: (64)

Simple algebraic manipulations show that the direct and
indirect models are algebraically equivalent and

γ0 ¼
β0

1� ϕ
� ϕβ1
ð1� ϕÞ2 (65)

γ1 ¼
β1

1� ϕ
(66)

374 ASPAROUHOV, HAMAKER, MUTHÉN



and the parameters ϕ and VarðεtÞ remain unchanged. The
difference between the two models is that in the direct
model, the autoregressive structure is imposed on the
residuals variable �t, whereas in the indirect model it is
imposed on the observed variable Yt. This results in a
different parametrization, where the parameters of the
direct model (i.e., γ0 and γ1) have intuitive interpretations
as the intercept and slope of the regression line that
describes the underlying linear trajectory of the time
series over time, whereas the parameters that form the
indirect model (i.e., β0 and β1) have a less intuitive
appeal.

A result of the equivalence between the direct and the
indirect model in case of Xt ¼ t is that the full model is
unidentified. However, the equivalence between the direct
and the indirect linear growth models does not translate
completely in two-level models with subject-specific random
parameters, especially when there are covariates predicting
the random effects βj and ϕ. A linear relationship between a
covariate and subject-specific βj and ϕ will result in a non-
linear relationship of that covariate with γj and vice versa.
Thus the two-level indirect linear growth model is not equiva-
lent to the two-level direct linear growth model, which esti-
mates a linear relationship between the covariate and γj.

The equivalence between the direct and indirect model
can also be shown to hold in case of a quadratic growth
AR(1) model. The direct quadratic growth AR(1) model is

Yt ¼ γ0 þ γ1t þ γ1t
2 þ �t (67)

�t ¼ ϕ�t�1 þ εt: (68)

The indirect quadratic growth AR(1) model is

Yt ¼ β0 þ β1t þ β2t
2 þ ϕYt�1 þ εt: (69)

Simple algebraic manipulations show that

γ0 ¼
β0

1� ϕ
� ϕβ1
ð1� ϕÞ2 þ

β2ϕð1þ ϕÞ
ð1� ϕÞ3 (70)

γ1 ¼
β1

1� ϕ
� 2ϕβ2
ð1� ϕÞ2 (71)

γ2 ¼
β2

1� ϕ
(72)

while the parameters ϕ and VarðεtÞ remain unchanged. In
fact, similar algebraic equivalence can be constructed with
any polynomial growth AR(1) model. Again, as a result of
the equivalence between the direct and the indirect model,
the full model is unidentified when the predictor is a poly-
nomial of t. Another conclusion that we can make is that the
simple relationship given in Equation 61, where one simply

divides the direct effect by 1� ϕ to obtain the equivalent
indirect effect, does not hold except for the two cases of
linear growth model and a between-level covariate (i.e., a
time-invariant predictor). The relationship shown in the
quadratic growth case is more complex and we see that
the relationship does not depend only on the covariate but
also on what other covariates there are in the model. When
Xt ¼ t, the relationship between the direct and the indirect
effect changed after we added another covariate t2.

The fundamental difference between the direct, indirect,
and the full model becomes clear when using the condi-
tional expectation EðYtjX Þ. For the direct model we have

EðYtjX Þ ¼ μþ β1Xt: (73)

This shows that in the direct model the condition expecta-
tion depends only on the current value of Xt. Although this
value of X might depend on the prior values of X, this is not
a part of the model, as we model only the conditional
distribution of Y given X. Hence, regardless of what the Xt

process is, it is clear that the conditional expectation of Yt
depends only on Xt and if there is any dependence on Xt�1 it
is only indirect through the effect of Xt�1 on Xt.

The conditional expectation for the indirect model is

EðYtjX Þ ¼ μþ β2ðXt þ ϕXt�1 þ ϕ2Xt�2 þ ϕ3Xt�3 þ :::Þ:
(74)

Here, there is an accumulation of the effect of all prior
values of X with diminishing influence when the model is
stationary (i.e., ϕj j<1). The power ϕl will converge to 0 as l
increases and so will the effect of Xt�l on Yt.

For the full model we have

EðYtjX Þ ¼ μþ β1Xt þ β2ðXt þ ϕXt�1 þ ϕ2Xt�2

þ ϕ3Xt�3 þ :::Þ: (75)

This shows that there is an accumulated effect of Xt as well
as a special direct effect exceeding the accumulating effect
for the current value Xt. In practical applications we can
determine the type of influence a covariate should have (i.e.,
accumulated vs. direct) by estimating the full model and
considering the significance of the two effects β1 and β2.

To illustrate the performance of the full model, we make
use of a two-level MEAR(1) model, but we stress that the
simulation results using the AR(1) model are similar. The
full two-level MEAR(1) model is given by

Yit ¼ μi þ fit þ β1Xit þ �it (76)

fit ¼ ϕfi;t�1 þ β2Xit þ εit; (77)

where μi is a between-level random effect with mean μ and
variance σb. We generate and analyze 100 samples, where
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each sample consists of N = 200 individuals and T = 100
times. The parameter values we use are β1 ¼ 0:3, β2 ¼ 0:4,
ϕ ¼ 0:5, μ ¼ 0, σb ¼ 0:7, Varð�itÞ ¼ VarðεitÞ ¼ 1. The cov-
ariate Xit is generated from an AR(1) process with
VarðXitÞ ¼ 1 and autoregression ϕx. We use three different
values for ϕx: 0, 0.5, and 0.8.

Table 8 contains the results of the simulation study
for the structural parameters and the various values of
ϕx. The results show that the parameter estimates are
unbiased, the coverage is acceptable, and the model is
well identified.

Next we analyze the same data using the two-level direct
and indirect MEAR(1) models. The results are presented in
Tables 9 and 10. For the effect of the covariate in these
tables we used β1 þ β2 ¼ 0:7. Note, however, that there is

no true value, as the model is misspecified. The results show
that for both the direct and the indirect model, the estimated
effect is not near 0.7, and that it is highly dependent on
autocorrelation parameter ϕx. Furthermore, the estimation of
the autoregressive parameter of Y (i.e., ϕ) is distorted, and
coverage appears insufficient for both the indirect and the
direct model. It appears that the level of distortion in the
model parameters is directly related to how close the indir-
ect or the direct model is to the full model. The further away
these models are from the full model, the bigger the biases.

It is also possible to estimate random direct and indirect
effects in the full two-level MEAR(1) model, in addition to
a random autoregressive effect. Table 11 shows the results
of a small simulation study with 100 replications, with N =
200 and T = 100. Note that we are able to estimate this two-
level random MEAR(1) model only with T = 100 due to the
fact that only two of the four MEAR(1) parameters are
subject-specific, whereas the two variance parameters are
not random. The results show that the parameter estimates
are unbiased, the coverage is acceptable, and the model is
well identified, which implies that the model with a covari-
ate and two random effects does not appear to complicate
the model estimation.

The difference between the direct model (Equations
55–56) and the indirect model (Equations 57–58) can
also be viewed as the difference between the general
RDSEM model and the general DSEM model. The direct
model separates the autoregression and the regression
parts of the model, which is at the core of the RDSEM
model. In the indirect model the autoregression and the
regression are within the same equation as it is in the
general DSEM model. When using the MEAR(1) model,
both the direct and the indirect models fit well within the
DSEM framework. However, when using the AR(1)
model (i.e., the measurement error is fixed to 0) the
direct model fits well in the RDSEM framework and
the indirect model fits well in the DSEM framework.
That is, the direct AR(1) model is most efficiently esti-
mated as an RDSEM model, which avoids specifying
zero measurement error variance.

TABLE 8
Two-Level Full MEAR(1) With Covariate, N = 200, T = 100

Parameter ϕx True Value Estimate (Coverage)

β1 0 .30 .30 (.87)
β1 0.5 .30 .30 (.96)
β1 0.8 .30 .31 (.89)
β2 0 .40 .40 (.87)
β2 0.5 .40 .40 (.93)
β2 0.8 .40 .40 (.90)
ϕ 0 .50 .50 (.88)
ϕ 0.5 .50 .50 (.93)
ϕ 0.8 .50 .50 (.93)

TABLE 9
Two-Level Full MEAR(1) With Covariate Analyzed as Direct Only,

N = 200, T = 100

Parameter ϕx True Value Estimate (Coverage)

β1 0 .70 .65 (.00)
β1 0.5 .70 .74 (.07)
β1 0.8 .70 .88 (.00)
ϕ 0 .50 .50 (.92)
ϕ 0.5 .50 .51 (.85)
ϕ 0.8 .50 .52 (.83)

TABLE 10
Two-Level Full MEAR(1) With Covariate Analyzed as Indirect Only,

N = 200, T = 100

Parameter ϕx True Value Estimate (Coverage)

β2 0 .70 .69 (.92)
β2 0.5 .70 .67 (.21)
β2 0.8 .70 .65 (.07)
ϕ 0 .50 .36 (.00)
ϕ 0.5 .50 .38 (.00)
ϕ 0.8 .50 .41 (.00)

TABLE 11
Two-Level Full MEAR(1) Model With Random Effects, N = 200,

T = 100

Parameter True Value Estimate (Coverage)

Eðβ1iÞ 0.3 .30 (.91)
Eðβ2iÞ 0.4 .40 (.91)
EðϕiÞ 0.2 .20 (.88)
Varðβ1iÞ 0.1 .10 (.94)
Varðβ2iÞ 0.1 .10 (.95)
VarðϕiÞ 0.01 .01 (.94)
Varð�itÞ 1 .98 (.81)
VarðεitÞ 1 1.02 (.82)
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Dynamic Factor Analysis

Most of the dynamic factor analysis models considered
previously have been for the case of N = 1; that is, when
single-subject multivariate time-series data are fitted with a
factor analysis model across time. The DSEM framework
described here includes dynamic factor analysis models for
an entire population rather than a single subject only. The
two most common dynamic factor models are the direct
autoregressive factor score (DAFS) and the white noise
factor score (WNFS) models (see Molenaar, 1985; Zhang &
Nesselroade, 2007).

The DAFS model is given by the following equations:

Yt ¼ νþ Ληt þ εt (78)

ηt ¼
XL
l¼1

Blηt�l þ �t: (79)

The WNFS model is given by the following equation:

Yt ¼ νþ
XL
l¼0

Λlηt�l þ εt: (80)

Comparing these models shows that in the DAFS model
only the current factor affects the observed variables,
whereas in the WNFS model the observed variables are
also affected directly by the preceding factor values. In
addition, the factors in the DAFS model behave as an
autoregressive process of order L, whereas the factors in
the WNFS model are independent across time; that is, they
behave as a white noise process. The implications for the
observed variables are also different. Based on Granger and
Morris (1976), it can be determined that the observed vari-
ables in the WNFS model follow an MA(L) process,
whereas the observed variable in the DAFS model follows
an ARMA(L,L) process. Furthermore, note that the DAFS
model for L = 1 is the MEAR(1) model for each factor
indicator.

In practical applications, the question might arise which
one of these two factor analysis models should be used.
Molenaar (2017) considered a hybrid DAFS + WNFS
model that is nested above both the DAFS and the WNFS
models; that is,

Yt ¼ νþ
XL
l¼0

Λlηt�l þ εt (81)

ηt ¼
XL
l¼1

Blηt�l þ �t: (82)

This model is referred to as a DFM(p,q,L,L,0), where p
refers to the number of observed variables in the factor
model and q refers to the number of factors in the model.
It is interesting to note that the hybrid DAFS + WNFS
model is equivalent to a DAFS model where the factor
follows an ARMA(L,L) process if the loadings Λl are
proportional in the one-factor model, or can be rotated
into the same loadings in the multivariate case. Such a
model would be referred to in Molenaar (2017) terminol-
ogy as a DFM(p,q,0,L,L) model. The hybrid model is also
interesting because it illustrates how DSEM models differ
from SEM models. In SEM models it is not possible to
identify a model where a factor predictor is also a direct
predictor for all indicator variables, whereas in the hybrid
DAFS + WNFS this is possible.

In the following simulation study we illustrate the per-
formance of the estimation method for a two-level hybrid
DAFS + WNFS model. We use an L = 1 model with five
indicators and one factor. We generate and analyze 100
samples with N = 100 and T = 100. The two-level model
also has a between-level factor model and the full model is
given by the following equations:

Yit ¼ Y1;it þ Y2;i (83)

Y1;it ¼ Λ0η1;t þ Λ1η1;t�1 þ ε1;t (84)

η1;t ¼ ϕη1;t�1 þ �t (85)

Y2;i ¼ νþ Λbη2;t þ ε2;t (86)

TABLE 12
Two-Level Hybrid DAFS + WNFS, N = 100, T = 100

Parameter True Value Estimate (Coverage)

λ0;1 1 1.00 (.92)
λ1;1 0.6 0.60 (.93)
θ1;1 1.0 1.00 (.95)
ϕ 0.4 0.40 (.95)
ν1 0 0.00 (.95)
λb;1 0.5 0.51 (.94)
θ2;1 0.2 0.21 (.97)

Note. DAFS = direct autoregressive factor score; WNFS = white noise
factor score.

TABLE 13
DIC Comparison

Model Average DIC Smallest DIC Value

Two-level DAFS 150235 0%
Two-level WNFS 149983 1%
Two-level WNFS + DAFS 149813 99%

Note. DIC = deviance information criterion; DAFS = direct autoregres-
sive factor score; WNFS = white noise factor score.
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We generate the data using the following parameter values
that, for simplicity, are identical across the five indicators. For
j ¼ 1; :::; 5 we set the within-person lag 0 factor loadings
λ0;j ¼ 1, and the lag 1 factor loadings λ1;j ¼ 0:6, the within-
person measurement error variances θ1;j ¼ Varðε1;t;jÞ ¼ 1,
the autoregressive parameter ϕ ¼ 0:4, the innovation variance
ψ1 ¼ Varð�tÞ ¼ 1, the between-person intercepts νj ¼ 0, the
between-person factor loadings λb;j ¼ 0:5, the between-per-
son factor variance ψ2 ¼ Varðη2;tÞ ¼ 1, and the between-
person residual variances Varðε2;t;jÞ ¼ 1.

For identification purposes, we fix the variance ψ1 and
ψ2 to 1. Table 12 contains the results of the simulation study
for a selection of the model parameters. The estimates show
no bias and good coverage is obtained.

Additionally, we illustrate how the DIC criterion can be
used for model selection. We estimate the two-level DAFS
model, the two-level WNFS model, and the two-level
hybrid DAFS + WNFS model, using the same generated
data. In all three models we use the correct one-factor model
on the between level. The average DIC values across 100
replications are given in Table 13. In each replication we
compare the DIC across the three models and select the
model with smallest value. In 99 out of 100 replications
the correct WNFS + DAFS model had the smallest DIC
value; that is, the DIC performed well in identifying the
correct model.

Subject-Specific and Uneven Times of Observations

In this section we illustrate the quality of the estimation
when the timing of observations varies across individuals,
and when the observations are unevenly spaced. To this end,
we conduct two different simulation studies. The first study
is based on a two-level DAFS AR(1) model and the second
is based on a two-level AR(1) model. The estimation algo-
rithm described in Appendix A indicates that the quality of
the estimation depends on the amount of missing data
inserted between the observed values and how accurately
the original times of observations are approximated by the
integer grid that is used in the DSEM estimation. The more
accurate the approximation, the more missing data will be
inserted.

In the first simulation study we want to see how the
percentage of missing data affects the parameter estimates,
convergence rates, and speed of the estimation. We generate
samples with 100 individuals using the same two-level AR
(1) model we used in the previous section with the excep-
tion that we set Λ1 to 0 so that the model is simply a DAFS
AR(1) model rather than a hybrid model. We generate T
observations for each individual and mark m percent of
these observations as MAR. To be more precise, for each
individual, each time point is marked as missing with prob-
ability m, and is removed from the data set. We consider
four different values for m: .80, .85, .90, and .95; that is, the
simulation study will have between 80% and 95% missing
values. We also vary T as a function of m, and we set
T ¼ 60=ð1� mÞ, which implies that on average after the
missing values are removed each individual will have 60
observations taken at various uneven and unequal times. For
each value of m we generate and analyze 20 data sets.

The results of this simulation study are given in Table 14.
We report the average estimates and coverage for the auto-
regressive parameter ϕ for the within-level factor, the conver-
gence rate for the estimation, and the computational time per
replication. The results show that in this model the quality of
the estimation deteriorates as the amount of missing data
reaches 90%. As the amount of missing data increases, the
computational time increases, the number of convergence
problems increases, and the quality of the estimates decreases
in terms of bias and coverage. However, the results are
acceptable for 80% or 85% missing values. Apparently, add-
ing too many missing values between the observed data can
destabilize the MCMC estimation.

In the second simulation study, we use the simpler two-
level AR(1) model

Yit ¼ μi þ ϕðYi;t�1 � μiÞ þ εit (87)

μi,Nðμ; vÞ: (88)

We use μ ¼ 0, v ¼ 0:5, VarðεitÞ ¼ 1, and ϕ ¼ :8 to generate
the data. We again set N = 100 and T ¼ 60=ð1� mÞ, where
m is the percentage of missing data. In this simulation, we
consider only two values for m, 0.80 and 0.95. The missing
data are generated at random, and that generates subject-
specific times of observations; for example, when m = .95, T
= 1,200, and each individual has approximately 60 observa-
tions that occur at times between 1 and 1,200.

In this simulation, we vary the interval δ used in
Appendix A, which determines the grid fineness. This inter-
val is specified in Mplus using the tinterval option. We
estimate the two-level AR(1) model using different values
of δ ¼ 1; 2; 3; 4; 5; 10. The case of δ ¼ 1 is the original time
scale. As δ increases we use a more and more crude time
scale, worsening the time scale approximation. Note also
that we cannot directly compare the models using different
vales of δ. Denote by ϕj the estimated autoregression

TABLE 14
Two-Level DAFS AR(1) With Subject-Specific Times

Percentage
Missing Values

ϕ̂ (Coverage)
ϕ ¼ 0:4

Convergence
Rate

Comp Time Per
Replication in Min

.80 .39 (.95) 100% 1.5

.85 .39 (.90) 95% 2.5

.90 .35 (.46) 55% 10.0

.95 .34 (.55) 55% 18.0

Note. DAFS = direct autoregressive factor score.
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coefficient for δ ¼ j. This is also the autocorrelation at lag j
for the original process, and therefore ϕj ¼ ϕj1. To compare
the models, we use ϕ1=jj , which is the implied estimate for
ϕ1 ¼ ϕ ¼ 0:8. Note here that when we use δ > 1 the data
will be rearranged and a different amount of missing data
will be inserted. We denote these missing data as m2. These
are the missing data that are being used in the analysis. For
each of the values of m we generate 100 data sets and we
analyze those with the various values of δ.

The results are presented in Table 15. In all cases the rate
of convergence is 100%. This means that simpler models
like the two-level AR(1) model can tolerate more missing
data than the more complex models like the DAFS AR(1)
model considered earlier. We can also see from the results
that when using a cruder scale (i.e., a larger δ), the results
are more biased. It is also somewhat clear that it will
be impossible to establish a clear rule of thumb for δ and
the amount of missing data that should be used. These
quantities are probably going to remain specific to the
particular examples. However, the overall trends are clear.
The smaller δ is, the better the estimates are, but if δ is too
small (and the inserted missing data are too big), there might
be convergence problems for the MCMC algorithm.

In practical applications, when estimating an AR(1)
model and we want to verify that a particular value of δ is
sufficiently small, we can simply compare the results for the
autoregressive parameter using δ and δ=2. If ϕδ � ϕ2δ=2 we
can conclude that δ is sufficiently small. If that is not
approximately true, then we should consider this as evi-
dence that δ should be decreased, or that the AR(1) model
does not hold. When using this method with our simulated
data for the case of m = .80, we obtain ϕ1 ¼ 0:8002 and
ϕ20:5 ¼ 0:7998, which confirms that δ ¼ 1 is sufficiently
refined as it yields the same model as the more precise
δ ¼ 0:5. Note here that if the model is a more complicated
time-series model, rather than a simple AR(1) model, the

connection between the time series model for Yt and the
model for Y2t is much more complicated. This problem is
somewhat compounded by the fact that such a question has
not been of interest in the econometric literature, whereas it
is of interest in the social sciences and this DSEM frame-
work particularly for the purpose of addressing subject-
specific and uneven times of observations. In this regard,
the RDSEM model has an advantage over the DSEM model
because it is not as dependent on the time interval δ. In the
RDSEM model the autoregressive equations involve only
the residuals. Thus changing the time scale will affect only
the residual model, and the structural part of the RDSEM
model will remain the same.

Overall, it appears that the optimal amount of inserted
missing data should be somewhere between 80% and 95%,
depending on how complex the model is. This corresponds to
5% to 20% present data and covariance coverage as reported
in the Mplus output. In a practical setting one should, of
course, consider interpretability in the choice of δ. For
instance, if times of observations are recorded in a “days”
metric, choosing δ to represent 1 day is the most natural
choice and it will preserve the interpretability of the model.

It is also worth noting here that when δ values increase
to a sufficiently large value the amount of missing data
converges to 0%, which means that the time scale is com-
pletely ignored and the times of observations are set to
1; 2; :::; that is, they are assumed to be consecutive. In our
example this happened for m = 0.80 and δ ¼ 10. The
estimate of the autocorrelation coefficient is 0.92 which is
ϕ0:110 ; that is, the raw estimate of the autoregression is
ϕ10 ¼ 0:45 � 0:9210. This is the autoregression that one
would get by estimating the data and ignoring the subject-
specific and uneven times of observations. Such an estimate,
of course, is quite different from the true value of 0.8.

There are many other ways to deal with subject-specific
and uneven times of observations. For example, continuous
time modeling can be performed using Brownian motion
theory, or using dynamic models based on differential equa-
tions (e.g., Deboeck & Preacher, 2016; Oravecz, Tuerlinckx,
& Vandekerckhove, 2011; Voelkle & Oud, 2013). Another
possible approach is to use the times between consecutive
observations in the model to reflect the strength of
the relationship between the observations; that is, having
the autoregressive and cross-lagged parameters depend
on the distance between the observations. Yet another
method is to use the same approach of missing data inser-
tion, but to change the algorithm described in Appendix A.
As described there, the algorithm focuses on global time
scale matching. A different algorithm that focuses on match-
ing consecutive time differences could potentially yield
more accurate results. Such alternative algorithms can easily
be studied with Mplus by preprocessing the continuous
times of observations before employing the DSEM analysis.
Clearly, this is a vast research topic and there are many

TABLE 15
Two-Level AR(1) With Subject-Specific Times

m δ ϕ = 0.8 m2

.80 1 .80 (.91) .80

.80 2 .81 (.31) .58

.80 3 .83 (.00) .38

.80 4 .84 (.00) .18

.80 5 .86 (.00) .05

.80 10 .92 (.00) .00

.95 1 .80 (.85) .95

.95 2 .81 (.57) .90

.95 3 .82 (.20) .85

.95 4 .83 (.00) .80

.95 5 .84 (.00) .74

.95 10 .88 (.00) .49

Note. Estimates and coverage for ϕ and amount of missing data m2

during the analysis.
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possibilities for improving the treatment described here. The
main advantages of the method we chose are that it can fit
smoothly in the general framework, it applies to all models,
and it works fairly well, as the preceding simulations show.

Time-Specific Effects

In the models thus far, the parameters were allowed to differ
across individuals, but were assumed to be stable over time.
Here we illustrate the TVEM feature that is implemented in
the DSEM framework. To this end, we consider a MEAR(1)
model with a covariate where the random random intercept
and random slope evolve over time, and is given by

Yit ¼ μt þ Yi þ βtXit þ fit þ εit (89)

fit ¼ ϕ fi;t�1 þ �it (90)

In this model Yi is a subject-specific random effect, and μt
and βt are time-specific random effects. We generate a
single data set with 500 individuals, each observed at
Times 1, 2, …, 50, using the following parameters:
θb ¼ VarðYiÞ ¼ 0:5, θw ¼ VarðεitÞ ¼ 0:5, ϕ ¼ 0:5, and
ψ ¼ Varð�itÞ ¼ 1:2. We generate the covariate Xit from a
standard normal distribution.

The time-specific effects μt and βt are generated from
arbitrary functions of time. In this simulation we use a

logarithmic function for μt and a quadratic function for βt
as follows:

μt ¼ g1ðtÞ ¼ logðtÞ (91)

βt ¼ g2ðtÞ ¼ aþ bt þ ct2 ¼ 0:001 � t � ð50� tÞ: (92)

If we expect parameters to vary over time, but are unsure
of the shape these changes will take on, we can estimate
this model in the DSEM framework assuming that μt and
βt are normally distributed random effects with distribu-
tions Nðμ; vμÞ and Nðβ; vβÞ. This is technically an incor-
rect assumption because the distributions of μt and βt are
not time invariant (i.e., EðμtjtÞ ¼ g1ðtÞ, VarðμtjtÞ ¼ 0,
EðβtjtÞ ¼ g2ðtÞ, and VarðβtjtÞ ¼ 0). Nevertheless, we can

FIGURE 4 Estimated versus true value for βt.

FIGURE 3 Estimated versus true value for μt.

TABLE 16
Exploratory TVEM-DSEM

Parameter True Value Estimate [95% Credibility Interval]

ϕ 0.5 0.523 [0.496, 0.549]
θw 0.5 0.541 [0.462, 0.617]
θb 0.5 0.537 [0.461, 0.628]
ψ 1.2 1.155 [1.060, 1.250]

Note. TVEM = time-varying effects modeling; DSEM = dynamic
structural equation modeling.
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use the DSEM framework to estimate this model as a first
step in an exploratory fashion. Because there are 500
observations at each time point (because there are 500
persons), the prior assumptions, Nðμ; vμÞ and Nðβ; vβÞ, for
these two random effects will have only a minor (if any)
effect on the estimates; that is, the estimates of μt and βt
will be dominated by the data.

Table 16 contains the results for the nonrandom para-
meters of this analysis. The estimates are near the true
values and the credibility intervals contain the true value
for all four parameters. Figures 3 and 4 show the estimated
values of μt and βt compared with the true values given by
g1ðtÞ and g2ðtÞ. It shows that the estimated values trace the
true curves well. In fact, the correlation between the true and
estimated values for μt is 0.993 and for βt it is 0.953. The
SMSE for μt is 0.157 and for βt it is 0.057.

Based on the clear trends that are found in this explora-
tory TVEM-DSEM analysis, the next step of the analysis is
to incorporate these trends in the DSEM model by creating
predictors for μt and βt that account for the trends. The
predictors are essentially smoothing curves for the estimated
values obtained in the exploratory analysis. Such curves can
be constructed through a separate algorithm, using the esti-
mated μt and βt values, or using multiple imputed values for
μt and βt. The smoothing can be done through polynomial
functions or splines as in Buja, Hastie, and Tibshirani

(1989). These smoothed curves can be entered into the
DSEM model as predictors of μt and βt.

Alternatively the smoothing can be performed within the
DSEM framework as follows. We add time-specific predic-
tors of μt and βt based on the shapes of the trends. Given the
estimated values we add logðtÞ as the predictor for μt, and t
and t2 as the predictors of βt so that it is modeled as a
quadratic function. Thus, we augment the model given in

TABLE 17
TVEM-DSEM Accounting for the Trends

Parameter True Value Estimate [95% Credibility Interval]

ϕ 0.5 0.516 [0.482, 0.542]
θw 0.5 0.522 [0.417, 0.600]
θb 0.5 0.540 [0.465, 0.627]
ψ 1.2 1.179 [1.081, 1.307]
a1 0 −0.390 [−0.516, 0.021]
a2 1 1.114 [0.985, 1.148]
a3 0 −0.023 [−0.077, 0.031]
a4 1 1.027 [0.935, 1.126]
a5 −1 −1.005 [−1.099, –0.917]
Varð�1;tÞ 0 0.005 [0.002, 0.014]
Varð�2;tÞ 0 0.001 [0.000, 0.002]

Note. TVEM = time-varying effects modeling; DSEM = dynamic
structural equation modeling.

FIGURE 6 Estimated versus true value for βt accounting for the trends.

FIGURE 5 Estimated versus true value for μt accounting for the trends.

DYNAMIC STRUCTURAL EQUATION MODELS 381



Equations 89 and 90 with the following two equations, with
some added scaling for the predictors,

μt ¼ a1 þ a2logðtÞ þ �1;t (93)

βt ¼ a3 þ a4ð0:05tÞ þ a5ð0:001t2Þ þ �2;t: (94)

The results of this analysis are presented in Table 17. All
parameters are estimated well and the true values are within
the credibility intervals. The only exception is the Varð�1;tÞ
parameter where the lower end of the credibility interval is
0.002, slightly above the true value of 0, but clearly there is
no support for a meaningful nonzero variance. The estimated
random effects for μt and βt are plotted against the true values
in Figures 5 and 6. Clearly the estimates are improved
particularly for the βt values. The correlation between the
true and estimated values for μt is 0.999 and for βt it is 0.997.
The SMSE for μt is 0.133 and for βt it is 0.019.

Given that the time-specific random effects have nearly
zero residual variance, we can remove the random effects
�1;t and �2;t from Equations 93 and 94. If we do so, the
model can be estimated as a two-level DSEM model, rather
than a cross-classified DSEM model, as follows

Yit ¼ a1 þ a2logðtÞ þ Yi þ a3 þ a4ð0:05tÞð
þ a5ð0:001t2Þ

�
Xit þ fit þ εit

(95)

fit ¼ ϕ fi;t�1 þ �it: (96)

The coefficients a4 and a5 are the interaction effects of Xit

with t and t2. The results for this analysis are presented in
Table 18. All parameter estimates are very close to the true
values. Note that in this model the effects μt and βt are now
smooth curves with no error term, which is how we gener-
ated the data. Because the parameter estimates are so close
to the true values, these curves are virtually indistinguish-
able from the true value curves. The correlation for both
estimated effects and their corresponding true values is 1,
and the SMSEs are now further reduced to 0.021 and 0.017.

CONCLUSION

The DSEM framework builds on the econometric litera-
ture and recent advancements in time-series modeling,
single-level dynamic structural modeling, and multilevel
SEM. The DSEM framework allows us to combine time-
series models for a population of subjects. One of the
strengths of the framework is that it allows subject-spe-
cific structural and autoregressive parameters. These para-
meters can be used further for structural modeling on the
population level; that is, they can be predicted by subject-
specific variables, or they can be used as predictors of
other such variables.

Although the multilevel time-series models with ran-
dom effects, which allow for individual differences in the
parameters that describe the dynamics, are appealing to
many researchers, we also want to stress the value of the
opposite here. In the DSEM framework, autoregressive and
structural parameters can also be chosen to be nonrandom
(i.e., invariant across subjects in the population). When the
number of time points is within the midlength range of 10
to 100, which is the most common range in the social
sciences, parameters invariant across subjects are essential
in allowing us to expand the model complexity beyond
what is accessible with single-level DSEM models. The
inclusion of nonrandom parameters gives us the ability to
combine data across the population to obtain more accurate
time-series and structural parameters. Perhaps the real
strength of DSEM, though, is the fact that it seamlessly
can accommodate random and nonrandom parameters at
the same time, not just to improve the quality of the
estimation and the quality of the statistical methodology
effort to match the data and the models, but also to use data
analysis to find answers to real-life questions hidden in the
data.
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APPENDIX A
CONTINUOUS TIME DSEM MODELING

In this appendix we describe the algorithm implemented in Mplus for
approximating a continuous time DSEM model with a discrete time
DSEM model. Every continuous function f ðtÞ can be approximated by a
step function. Let δ be a small number. The function f ðtÞ can be approxi-
mated by a step function f0ðtÞ ¼ fj ¼ f ðj � δÞ when
j � δ� δ=2<t � j � δþ δ=2. The smaller the step interval δ the better the
approximation. Based on this same principle we can approximate a con-
tinuous time DSEM model with a discrete time DSEM model.

Step 1: Rescaling the Time Variable

Suppose that individual i is observed at times tij, for j ¼ 1; :::;Ti. We replace
the value tij with an integer value t̂ij ¼ ½tij=δ�, where ½t� denotes the smallest
integer value not smaller than t; that is, t̂ijis the integer value for which

ð̂tij � 1Þδ < tij � t̂ijδ: (A:1)

Essentially, we first rescale the time variable by multiplying it by 1=δ
and then rounding it up to the nearest integer. Thus for all tij falling in the
interval ð0; δ�, t̂ij ¼ 1, for all tij falling in ðδ; 2δ�, t̂ij ¼ 2and so on. Using this
approach we convert any real time values tij to the integer time values t̂ij. At
that point the standard DSEM modeling can be used. For all integer values
that are not observed, missing data is assumed; that is, for individual i and
integer time value t that is not equal to any of the t̂ij, we assume that the
data are missing or not recorded. This is not really an assumption, but is a
way to properly record the data so that the observations are recorded for
every integer.

If the δ value in the preceding algorithm is not sufficiently small, it is
very likely that two or more tij values for individual i will appear in the
interval ððn� 1Þδ; nδ�. This will result in several values t̂ij being assigned the
value n, which is not an acceptable outcome as we can use just one
observation for time n. To resolve this problem we apply the following
algorithm. For individual i all tij are placed in the intervals ððn� 1Þδ; nδ�
following Equation A.1. Starting with the smallest n for which the interval
ððn� 1Þδ; nδ� contains multiple values, we determine the closest empty
interval to that interval and we shift one of the overflow values toward that
interval, preserving the original order of tij. That means that each interval
from the overflow interval to the empty interval shifts one value in the
direction of the overflow interval. This algorithm approximately minimizes
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X
j

ð̂tij � tij=δÞ2 (A:2)

over integer and unequal values t̂ij in most common situations. In some
situations this algorithm will not quite minimize the preceding objective
function, but it will come fairly close to minimizing it. Full minimization
might be too intricate to accomplish in general because of the discrete
optimization space. This algorithm as implemented in Mplus would report
max t̂ij � tij=δ

�� �� if this quantity is greater than 5, which means that an
observation had to be shifted more than five intervals away from its original
assignment. This would suggest that the discretized grid constructed for that
value of δ is too crude to be considered a good approximation and a smaller
value of δ should be used.

Step 2: Time Shift Transformation

The next step of the time transformation is a time shift transformation.
There is a fundamental difference between the cross-classified DSEM
model and the two-level DSEM model that comes into play here. In
cross-classified DSEM models we estimate time-specific effects and this
can be meaningful only if the time scale is aligned between individuals. In
cross-classified DSEM, time t for individual i = 1 should have the same
meaning as as time t for individual i = 2, for example, the number of days
since an intervention that both individuals received, so that the same time-
specific random effect st;3 applies. Such an alignment of time is not needed
for the two-level DSEM model and this is why the time shift transformation
is different for the two models.

For cross-classified DSEM models we compute T0 ¼ mini;j ð̂tijÞ and we
shift the time so that we start at 1, b̂tij ¼ t̂ij � T0 þ 1. At least one individual
is observed at Time 1 and this is the earliest time an observation was made
in the sample. Missing values are recorded for all individuals and time
points not in the set b̂tij. For each individual, the missing values beyond the
last observed value are not analyzed. This time shift is done differently for
two-level DSEM models. We compute T0i ¼ minj ð̂tijÞ; that is, we find the
first observed value for each individual i and shift each individual by that
value so that every individual starts at 1; that is, b̂tij ¼ t̂ij � T0i þ 1. This
minimizes that amount of missing data that will have to be analyzed and
imputed in the MCMC estimation. Again all missing data after the last
observed value are not analyzed. The difference in the time shift transfor-
mation is that in the cross-classified model we shift the time uniformly
across all individuals, whereas in the two-level model the time scale is
shifted for each individual separately.

How to Choose δ

The transformation is determined by time interval δ. The smaller this value
is, the more precise the approximation. However, the smaller the value is,
the more missing data will be interspersed between the observed data. This
will cause the MCMC sequence to converge slower. It will also cause the
model to lose some precision. Consider, for example, trying to estimate the
daily autocorrelation ϕd by first estimating the hourly autocorrelation ϕh
using an AR(1) model. The relationship between the two is given by
ϕd ¼ ϕ24h . If ϕd ¼ 0:75 then ϕh ¼ 0:988. A small error in the estimation
of ϕh, say 0:987, results in bigger error for ϕd as it will be estimated to 0.73.
Thus model imprecision is amplified for smaller δ.

The selection of δ should be driven by three principles. First is the
interpretability. Using natural δ values such as an hour, a day, a 2-day
interval, a week, or a month would improve the interpretability as opposed
to, say, a time metric such as 1.3 days. The second consideration is the
amount of missing data resulting in this process. The missing data should
be no more than 90% to 95% of the data. More missing data than that will
likely yield a slow converging MCMC estimation that potentially can

produce bigger error in the estimation than the discrete time approximation
for larger δ values. The third consideration should be that δ needs to be
small enough so that the original times are well approximated. Using a large
value of δ will result in b̂tij ¼ j in two-level DSEM models; that is, the
information in the original times tij is completely ignored and all observa-
tions are assumed equally spaced.

There is one further consideration that applies only to the cross-classi-
fied DSEM model. The smaller the δ value is, the more time periods there
will be. Because the DSEM model estimates time-specific random effects
for each interval, it is desirable that each period has at least several
observations, which act as measurements for the time-specific effects. A
simple rule of thumb would be to have at least three observations per
random effect at each time point. Thus the δ value should not be chosen
to be so small as to reduce the number of observations below that level.

APPENDIX B
DSEM MODEL ESTIMATION

Here we describe the conditional distributions for each of the 13 blocks
given in the text. These are used in the MCMC estimation to update each
block. The conditional distributions we are interested in are the conditional
distributions for each block conditional on all other blocks and the data.

Consider the conditional distribution of B1. Given that we condition on
B3, the variables Y3;t are considered known. All other random and nonran-
dom slopes and loadings are also considered known. Let Y1;it 0 ¼ Yit � Y3;t .
Equation 6 can be expressed as

Y 0
1;it � Y2;i ¼ ðI � R0Þ�1ν1 þ

XL
l¼0

ðI � R0Þ�1Λ1;lη1;i;t�l

þ
XL
l¼1

ðI � R0Þ�1RlðY 0
1;i;t�l � Y2;iÞ

þ
XL
l¼0

ðI � R0Þ�1K1;lX1;i;t�l þ ðI � R0Þ�1ε1;it

(B:1)

or equivalently

Y 0
1;it � ðI �

XL
l¼1

ðI � R0Þ�1RlÞY2;i

¼ ðI � R0Þ�1ν1 þ
XL
l¼0

ðI � R0Þ�1Λ1;lη1;i;t�l

þ
XL
l¼1

ðI � R0Þ�1RlY
0
1;i;t�l

þ
XL
l¼0

ðI � R0Þ�1K1;lX1;i;t�l

þ ðI � R0Þ�1ε1;it (B:2)

where I denotes the identity matrix. The conditional distribution of Y2;i is
now determined by the log-likelihood of the preceding equation in con-
junction with Equation 2. Denote FðY2;iÞ

FðY2;iÞ ¼
X
t

LðY 0
1;it �Þ þ LðY2;i
�� ���Þ; (B:3)
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where LðY 0
1;itj�Þ is the log-likelihood expression of Equation B.2 and LðY2;ij�Þ

is the likelihood expression of Equation 2. Because all these equations are for
normal distributions, the conditional distribution of Y2;i is given by

Y2;i,NðF 00�1F 0ð0Þ;F 00�1Þ; (B:4)

where F 0 and F 00 denote the first and the second derivative of the
log-likelihood function F. Note that because F is a quadratic function of
Y2;i the second derivative is a constant matrix that does not depend on the
value of Y2;i: Another way to compute this is as follows. Let

M ¼ ðI �PL
l¼1

ðI � R0Þ�1RlÞ. The conditional distribution of MY2;i can be

computed as follows. The variable MY2;i is the random intercept of a two-
level model where the within-level model is given by Equation B.2 and the
between-level model is given by Equation 2 multiplied by M so that MY2;i
is the dependent variable on the between level as well. The conditional
distribution of the random intercept in a standard two-level model is well
known. If the conditional distribution of MY2;i is Nðm; vÞ then the condi-

tional distribution of Y2;i is NðM�1m;M�1vðM�1ÞT Þ.
The conditional distribution of B2 is similar. Conditional on all

other blocks, Y2;iand Y3;t are considered known, which means that Y1;it
is known, as well as η1;it . The joint conditional distribution of all s2;i
come from Equations 9 and 10 as well as a reformulation of Equation 3
that expresses s2;i as a dependent variable on the left side and other
variables on the right side. Denote again by F the log-likelihood
function

Fðs2;iÞ ¼
X
t

LðY1;itj�Þ þ
X
t

Lðη1;itj�Þ

þ Lðs2;ij�Þ; (B:5)

where LðY1;it j�Þ is the log-likelihood contribution of Equation 9, written directly
as it is expressed in that equation, Lðη1;itj�Þis the log-likelihood contribution of
Equation 10, also written directly as it is expressed in that equation and Lðs2;ij�Þ
is the log-likelihood contribution of Equation 3. All these distributions are
normal and thus the function F is again a quadratic function of s2;i and the
conditional distribution can be obtained as in Equation B.4.

s2;i,NðF 00�1F 0ð0Þ;F 00�1Þ: (B:6)

There is a key assumption in this procedure, which can be viewed
also as a model restriction. Equations 9 and 10 can be used directly to
write the likelihood only under the assumption that there are no
nonrecursive interactions in the model. That is to say that the depen-
dent variables Y1;it cannot appear in a cyclical fashion in these equa-
tions; that is, no two components of that vector, say, Y1;it1and Y1;it2, can
simultaneously be predictors of each other. Also longer cyclical regres-
sions involving three or more variables cannot appear in the model.
Such a restriction is needed to preserve the quadratic form of F and to
preserve the integrity of the likelihood obtained directly from these
equations. If the equations are nonrecursive then F is not quadratic and
those equations cannot be used directly to write the log-likelihood.
When the equations are recursive they can be ordered in such a way
that the ½Y1;it1 Y1;it2; Y1;it3:::�½Y1;it2

�� ��Y1;it3:::�::: conditional distributions are
expressed precisely by Equation 9. The same applies to Equation 10.

The conditional distribution of block B3 is slightly more complicated
than the conditional distribution of block B1. Let Y1;it 0 ¼ Yit � Y2;i.
Equation 6 can be expressed as

Y 0
1;it � Y3;t ¼ ðI � R0Þ�1ν1

þ
XL
l¼0

ðI � R0Þ�1Λ1;lη1;i;t�l

þ
XL
l¼1

ðI � R0Þ�1RlðY 0
1;i;t�l � Y3;t�lÞ

þ
XL
l¼0

ðI � R0Þ�1K1;lX1;i;t�l

þ ðI � R0Þ�1ε1;it (B:7)

or equivalently

Y 0
1;it � ðY3;t �

XL
l¼1

ðI � R0Þ�1RlY3;t�lÞ

¼ ðI � R0Þ�1ν1 þ
XL
l¼0

ðI � R0Þ�1Λ1;lη1;i;t�l

þ
XL
l¼1

ðI � R0Þ�1RlY
0
1;i;t�l

þ
XL
l¼0

ðI � R0Þ�1K1;lX1;i;t�l

þ ðI � R0Þ�1ε1;it (B:8)

It is clear from this equation that the conditional distribution of Y3;t is
determined not just by this equation at time t (i.e., the Level 3 cluster at
time t), but also by the preceding equation at times t þ 1, …, t þ L. It is
also clear that the conditional distribution of Y3;t1 is not independent of the
conditional distribution of Y3;t2 . Therefore computing the joint distribution
of all Y3;t becomes computationally infeasible. We resolve this problem by
breaking down block B3 into separate blocks, one for each time t and we
consider the conditional distribution of Y3;t not just conditioned on all other
blocks but also on all other Y3;t0 where t0�t. Denote by FðY3;tÞ

FðY3;tÞ ¼
XL
l¼0

X
i

LðY 0
1;i;tþl �Þ þ LðY3;t

�� ���Þ; (B:9)

where LðY 0
1;itj�Þ is the log-likelihood expression of Equation B.8 and LðY3;t j�Þ

is the likelihood expression of Equation 4. Because all these equations are for
normal distributions, the conditional distribution of Y3;t is given by

Y3;t,NðF 00�1F 0ð0Þ;F 00�1Þ; (B:10)

where F 0 and F 00 denote the first and the second derivative of the log-
likelihood function F.

Another way to compute this posterior distribution is as follows. Denote
by B0 ¼ I, Bl ¼ �ðI � R0Þ�1Rl . The random intercept of Equation B.8 is

At ¼
PL
l¼0

BlY3;t�l . Suppose that the conditional distribution of that random

intercept At computed from the data in that cluster is Nðmt ; vtÞ, excluding a
between-level model. The conditional distribution of Y3;t , conditional on all
other Y3;t0 where t0�t is given by
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Y3;t,NðDd;DÞ; (B:11)

where

D ¼ ðΣ�1
3 þ

XL
l¼0

BT
l v

�1
tþlBlÞ�1 (B:12)

d ¼ Σ�1
3 μ3 þ

XL
l¼0

BT
l v

�1
tþlðmtþl �

XL
n¼0;n�l

BlY3;tþl�nÞ;

(B:13)

where Nðμ3;Σ3Þ is the implied distribution for Y3;t from Equation 4.
These equations apply for t � T � L where T ¼ maxðTiÞ. When
t > T � L the equations get reduced by L� T þ t because the index of
the equation is greater than the largest t in the model; that is, equations
with time index greater than T do not exist, as no data are observed
beyond time T.

The conditional distributions of block B4 is obtained the same way as
the conditional distribution of block B2. Level 2 and Level 3 simply reverse
roles. The conditional distribution of block B5 is as in Step 1 in Section 2.4
in Asparouhov and Muthén (2010). Conditional on blocks B1 through B4
and the generated values for these variables, the Level 2 and Level 3
models become essentially like multiple groups in single-level modeling.
The two levels are independent of each other, the within-level model, and
the observed data Yit . Therefore the single-level approach in Asparouhov
and Muthén (2010) applies. We reproduce this step here for completeness.
Consider the single-level SEM model

y ¼ νþ Ληþ Kxþ ε (B:14)

η ¼ αþ Bηþ Γxþ ζ: (B:15)

The conditional distribution is given by

½ηj��,NðDd;DÞ; (B:16)

where

D ¼ ðΛTΘ�1Λþ Ψ�1
0 Þ�1 (B:17)

d ¼ ΛTΘ�1ðy� ν� KxÞ þ Ψ�1
0 B�1

0 ðαþ ΓxÞ; (B:18)

where B0 ¼ I � B, I is the identity matrix, Θ ¼ VarðεÞ, and
Ψ0 ¼ B�1

0 VarðζÞðB�1
0 ÞT .

The conditional distribution of block B6 requires some additional
computations. Because η1;it are not independent across time they cannot
be generated simultaneously in an efficient manner, as that will require
computing the large joint conditional distribution of η1;it for all t.
Therefore block B6 is essentially split into separate blocks, one for
each t. Thus we update the within-level latent variable one at a time
starting at η1;i;1�L, η1;i;2�L,…, η1;i;Ti , where Ti is the last observation for
individual i. We need to construct the conditional distribution of η1;it
conditional on all the other blocks and all the other η1;it, for times

different from t. Given all the other blocks, Y1;it is observed. The
conditional distribution of η1;it is somewhat different at the end and
at the beginning of that sequence so first we consider the case where t
is in the middle, more specifically 0<t<Ti � L. The latent variable η1;it
conditional distribution is determined by Equations 6 and 7 at time t,
t þ 1, …, t þ L. In total there are 2L + 2 equations that affect the
conditional distribution. We combine all these equations into one big
model for η1;it that consists of one structural equation: Equation 7 at
time t, and 2L + 1 measurement equations for η1;it : Equation 6 at time t
and Equations 6 and 7 at times t þ 1, …, t þ L. Using this larger model
the conditional distribution is obtained again as in Equation B.16. For
t > Ti � L the conditional distribution is obtained similarly. However,
because there are no observations beyond time Ti there will be only
2ðTi � t þ 1Þ equations in the enlarged model, again one structural
equation and 2ðTi � tÞ þ 1 measurement equations. For t � 0 we also
have fewer equations due to the fact that there are no observations
before t ¼ 1. There are only 2ðLþ tÞ measurement equations in the
model, and the prior specification for η1;it for t � 0 takes the role of the
structural equation.

In block B7 similar considerations are taken into account. Missing
values are imputed one at a time and in a sequential order. Block B8 is
actually done at the same time as block B7 because one can interpret
the initial conditions as missing values; that is, at times t � 0, Y1;itand
X1;it can be viewed as missing values. Note here that conditional on all
other blocks, the missing values of Yit are essentially the missing
values of Y1;it ; that is, once the missing values for Y1;it are imputed,
the values of Yit are obtained by Equation 1 because Y2;i and Y3;t are
known (i.e., are conditioned on). Let’s first consider the missing value
Y1;it in the middle of the sequence 0<t<Ti � L. In non-time-series
analysis we impute the missing value from the univariate conditional
normal distribution obtained from the within-level model (see Section 4
in Asparouhov & Muthén, 2010). Because conditional on X1;it the
multivariate joint distribution of Y1;it and η1;it is normal, then one of
these variables conditional on all other variables has a univariate
normal distribution, and that distribution is used for missing value
imputation. However, in the time-series model we consider here Y1;it
variable is used in 2Lþ 2 Equations 6 and 7 at times t, t þ 1, …, t þ L.
A missing variable in this context is nothing more than an unobserved
latent variable. Therefore the procedure we outlined earlier for condi-
tional distribution for block B6 applies here as well. As in block B6 at
the end of the sequence for t > Ti � L or at the beginning of the
sequence for t � 0, the number of equations used for the computation
decreases and for t � 0 the structural equation, where the missing value
is the dependent variable, is replaced by the prior specification. This
applies both for Y1;it and X1;it when t � 0. Note that the missing data
treatment is likelihood based and thus will guarantee consistent estima-
tion as long as the missing data are MAR.

Blocks B9 through B12 are all implemented as in Asparouhov andMuthén
(2010). Conditional on all latent variables, the DSEM model is essentially a
three-group single-level structural equation model and the procedures for
single-level SEM apply directly. Finally let’s consider block B13. The condi-
tional distribution of the random effects fromEquation 11 is not explicit andwe
use the Metropolis–Hastings algorithm to generate values from that distribu-
tion. Suppose that Y1;it1 has a random residual variance σi ¼ Expðs2;iÞ, where
s2;i is a normally distributed random effect. Suppose that the current value of
that random effect is s0. A new proposed value s1 is drawn from a normal
distribution Nðs0;V Þ where V is referred to as the proposal distribution
variance. We then compute the acceptance ratio as follows:

R ¼
Pðs2;i ¼ s1j�Þ

Q
t
PðY1;it1jσi ¼ Expðs1ÞÞ

Pðs2;i ¼ s0j�Þ
Q
t
PðY1;it1jσi ¼ Expðs0ÞÞ ; (B:19)
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where Pðs2;i ¼ sjj�Þ is the likelihood of s2;i obtained from Equation 3
conditional on all other variables in that equation and
PðY1;it1jσi ¼ ExpðsjÞÞ is the likelihood of Y1;it1 obtained from Equation 6
conditional on all other variables in that equation. The proposed value s1 is
accepted with probability minð1;RÞ. If the value is rejected the old value s0
is retained. The proposal distribution variance V is chosen to be a small
value such as 0.1 and is adjusted during a burn-in stage of the estimation to
obtain optimal mixing; that is, optimal acceptance rate in the Metropolis–
Hastings algorithm. The optimal acceptance rate is considered to be
between .25 and .50. To preserve the integrity of the MCMC chain the
jumping distribution variance is not changed beyond the burn-in iterations
and those iterations are discarded and not used in the posterior distribution.
Under these conditions the preceding Metropolis–Hastings algorithm gen-
erates s2;i from the correct conditional distribution. Random variances for
latent factors are estimated similarly. This concludes the description of the
MCMC estimation of the DSEM model.

What is hidden in the preceding description of the estimation is the
computational times to estimate the model. Depending on the particular
details of the model, the conditional distributions might or might not be
invariant across subject or invariant across time. The more random struc-
tural parameters there are that vary across subject and time, the less
invariance there is in the conditional distributions just described.
Generally speaking, for the two-level DSEM model most of the conditional
distributions are invariant across time. Thus the conditional means and
variances depend only on sufficient statistics of the data and are easily
computed. For the cross-classified DSEM model even when a single struc-
tural parameter varies across time and subject, the structural SEM model
given in Equations 9 and 10 changes for every i and t and a separate
computation is required. This generally results in substantial increase in the
computational time. Paired with the slower convergence, that stems from
the fact that the model is more flexible and the cross-classified DSEM
model can become substantially more computationally intensive than a two-
level DSEM model.

APPENDIX C
RDSEM MODEL ESTIMATION

Here we describe some of the complexities encountered in the estimation of
the RDSEM model. For simplicity let’s consider the single-level AR(1)
RDSEM model:

Yt ¼ BXt þ Ŷt (C:1)

Ŷt ¼ RŶt�1 þ εt: (C:2)

We can assume that the covariance vector Xt includes the constant 1 so that
the intercept of the regression Equation C.1 is also included in this model.
To obtain the conditional distribution of B given all other parameters, note
that

Yt � BXt ¼ RðYt�1 � BXt�1Þ þ εt: (C:3)

This model simplifies to

Zt ¼ Yt � RYt�1 ¼ BXt � RBXt�1 þ εt: (C:4)

From here we can obtain the conditional distribution of B in two steps. First
consider the conditional distribution of B1 and B2 for this model:

Zt ¼ B1Xt þ B2Xt�1 þ εt (C:5)

assuming noninformative prior (i.e., Nð0;1Þ) for B1 and B2. This condi-
tional distribution is NðG00�1G0ð0Þ;G00�1Þ where G is the log-likelihood
function of Zt given by Equation C.5. Using the first and the second
derivatives of G with respect to B1 and B2 we can obtain the first and the
second derivatives of F with respect to B where F is the log-likelihood
function of Equation C.4. Both B1 and B2 are linear functions of B (i.e.,
B1 ¼ B;B2 ¼ �RB), and FðBÞ ¼ GðB1;B2Þ. Thus the chain rule simplifies
as follows. Let β1 and β2 be two parameters of the matrix B and B0 be the
vector of all parameters of the matrices B1 and B2. The first derivative is
computed as follows:

@F

@β1
¼ @G

@B0

@B0

@β1
(C:6)

and the second derivative is computed as follows:

@2F

@β1@β2
¼ @B0

@β1

� �T @2G

ð@B0Þ2
@B0

@β2
: (C:7)

These chain rules and the linear relationship between Bi and B enable us to
obtain the conditional distribution of B from the conditional distribution of
B1 and B2. If the prior of the parameters in B is Nðμ0;Σ0Þ then the
conditional distribution of B is NðDd;DÞ where D ¼ ðF 00 þ Σ�1

0 Þ�1 and
d ¼ F 0ð0Þ þ Σ�1

0 μ0.
Note that in the MCMC estimation of the RDSEM model the

autoregressive parameters R in the residual model for Ŷt and the
regression equation parameters B are updated in two separate steps
(i.e., are in two separate blocks). This is needed because the joint
conditional distribution of B and R is not normal (due to the multi-
plication term RB seen in Equation C.4), and both ½BjR; �� and ½RjB; ��
are conditionally normal distributions. This is in contrast to the estima-
tion of the DSEM model where R and B are updated simultaneously. In
addition to the complications just described for the conditional distri-
bution of B, the RDSEM model estimation requires similar modifica-
tions for the conditional distribution of the latent variables η1;it , the
missing values for the lagged variables Y1;it , and the between-level
random effects. All other conditional distributions are identical to
those described in the DSEM model estimation.

APPENDIX D
COMPUTING THE MODEL-ESTIMATED SUBJECT-

SPECIFIC MEANS AND VARIANCES

In this section we provide details on how model-estimated subject-
specific means and variances can be computed for the DSEM model.
The main assumption in such a computation is the assumption of
stationarity. Any autoregressive process in the model has to be sta-
tionary; that is, over time the distribution of the variables in the
autoregressive process stabilizes.

To compute the subject-specific model-estimated mean and variance
implied by the two-level DSEM model we start with Equation 1 assuming
no time-specific component Y3;t ; that is,

EðYit iÞ ¼ EðY1;it
�� ��iÞ þ Y2;i (D:1)

VarðYit iÞ ¼ VarðY1;it
�� ��iÞ: (D:2)

The estimated subject-specific variance is simply the estimated within-level
subject-specific variance and the estimated subject-specific mean is the sum

DYNAMIC STRUCTURAL EQUATION MODELS 387



of Y2;i, which is estimated within the MCMC estimation, and the within-
level estimated mean. Thus, we can focus on Equations 6 and 7.

Let Z represent the variables in these equations that are involved in
an autoregressive model. Let’s assume the following autoregressive
model for Zt :

Zt ¼ μþ
XL
l¼1

AlZt�l þ ζ; (D:3)

where Σ ¼ VarðζÞ. Assuming stationarity of this model, the mean of Zt is

EðZtÞ ¼ ðI �
XL
l¼1

AlÞ�1μ: (D:4)

Let Γj ¼ CovðZt ;Zt�jÞ. The variance of Zt , Γ0, is computed from the
Yule–Walker equations (see Greene, 2014):

Γ0 ΓT
1 ΓT

2 ::: ΓT
L

Γ1 Γ0 ΓT
1 ::: ΓT

L�1
Γ2 Γ1 Γ0 ::: ΓT

L�2
::: ::: ::: ::: :::
ΓL ΓL�1 ΓL�2 ::: Γ0

266664
377775

I
�AT

1
�AT

2
:::

�AT
L

266664
377775¼

Σ
0
0
:::
0

266664
377775 (D:5)

These equations can been used to compute the model parameters Aj

from the sample autocovariances Γj, however, we do the opposite. As
the model parameters are known, we solve these equations for the
model-implied Γj, which have a total of Lp2 þ pðpþ 1Þ=2 parameters,
where p is the size of the vector Z. This system is overidentified, as it
has ðLþ 1Þp2 equations. To make it just identified we remove the
pðp� 1Þ=2 upper diagonal of the first row. Note that this method yields
not just the model-estimated variance for the dependent and latent
variables, but also the model-estimated autocorrelations of lags 1; :::;L.

In Mplus the Yule–Walker computation is done within the residual
output option. To be more clear, model estimation does not require the
trend to be modeled outside of the autoregressive process. In fact in
some cases, such as linear growth models, modeling the trend within
the autoregressive process or outside of the autoregressive process
makes no difference, and the models are equivalent reparameterizations
of each other. However, the Yule–Walker computation just outlined
does require model trends to be outside of the autoregressive process
and the autoregressive part of the model is assumed stationary. If there
is a trend in the data it should be modeled outside of the autoregressive
part of the model. For example, the direct growth model (Equations
62–63) has the linear trend outside of the autoregressive process,
whereas for the equivalent indirect growth model (Equation 64) the
trend is within the autoregressive part of the model. Therefore the
Yule–Walker computation can be applied for the direct linear growth
model, but should not be used with the indirect linear growth model.
More generally, the RDSEM model has an advantage over the DSEM
model when it comes to checking stationarity of the autoregressive part
of the model. In the RDSEM model, the autoregressive part of the
model includes only residual variables. All regression equations are by
definition outside of the autoregressive part of the model, including any
regressions on nonstationary covariates such as the time variable itself.

Three Mplus output options are based on the Yule–Walker
equations: tech4, residual, and standardization, and therefore are only
valid when the autoregressive part of the model is stationary. In some
cases the Mplus program will automatically detect and report nonsta-
tionarity for some of the subjects in the population simply because the
model-implied subject-specific variance estimates are negative or
the model-implied subject-specific variance–covariance matrices
are not positive definite. Even if the Yule–Walker equations produce
positive definite variance–covariance matrices and the Mplus program
does not produce nonstationarity warnings, the stationarity assumption
might still not hold and that could result in incorrect model-implied
estimates for the means and variances. Thus the stationarity assumption
should be carefully inspected before the model-implied estimates are
used.
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