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a b s t r a c t

Individuals with Major Depressive Disorder (MDD) vary regarding the rate, magnitude and stability of
symptom changes during antidepressant treatment. Growth mixture modeling (GMM) can be used to
identify patterns of change in symptom severity over time. Quantitative electroencephalographic (QEEG)
cordance within the first week of treatment has been associated with endpoint clinical outcomes but has
not been examined in relation to patterns of symptom change. Ninety-four adults with MDD were ran-
domized to eight weeks of double-blinded treatment with fluoxetine 20 mg or venlafaxine 150 mg
(n = 49) or placebo (n = 45). An exploratory random effect GMM was applied to Hamilton Depression Rat-
ing Scale (Ham-D17) scores over 11 timepoints. Linear mixed models examined 48-h, and 1-week changes
in QEEG midline-and-right-frontal (MRF) cordance for subjects in the GMM trajectory classes. Among
medication subjects an estimated 62% of subjects were classified as responders, 21% as non-responders,
and 17% as symptomatically volatile—i.e., showing a course of alternating improvement and worsening.
MRF cordance showed a significant class-by-time interaction (F(2,41) = 6.82, p = .003); as hypothesized, the
responders showed a significantly greater 1-week decrease in cordance as compared to non-responders
(mean difference = �.76, Std. Error = .34, df = 73, p = .03) but not volatile subjects. Subjects with a volatile
course of symptom change may merit special clinical consideration and, from a research perspective, may
confound the interpretation of typical binary endpoint outcomes. Statistical methods such as GMM are
needed to identify clinically relevant symptom response trajectories.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Treatment with antidepressant medications is associated with
significant improvements in clinical symptoms of Major Depres-
sive Disorder (MDD), as well as improvements in functional status
and quality of life. However there is marked heterogeneity in clin-
ical outcomes and there are no reliable means of predicting such
varied outcomes for the individual patient.

Clinical research in MDD often utilizes a single primary end-
point measure to assess response/non-response. Although this ap-
proach is useful, information is lost regarding variability in
patterns of response. Individuals differ, not only with respect to
magnitude of response, but also time-to-response and stability of
response. For example, although clinically significant symptom
reduction often is not observed until 4–6 weeks after starting an
antidepressant medication (Donovan et al., 1994; Nierenberg
et al., 2000; Quitkin et al., 1996), marked improvement may occur
as early as the first two weeks (Papakostas et al., 2007; Posternak

and Zimmerman, 2005; Stassen et al., 2007) or as late as eight or
more weeks after initiating treatment (Trivedi et al., 2006). Regard-
ing symptom stability, whereas most patients show monotonic
improvement, some experience transient clinical worsening and/
or treatment-emergent adverse events in the first few months of
treatment (Cusin et al., 2007; Perahia et al., 2008). This is an impor-
tant subgroup because of their poorer long-term prognosis (Cusin
et al., 2007; Perahia et al., 2008) increased rates of discontinuation
(Beasley et al., 2000; Chelben et al., 2001; Kaplan, 1997), and the
discomfort and potential danger of exacerbation of symptoms.

Statistical growth modeling offers a formalized approach to
identifying symptom response patterns. Repeated measurement
linear mixed (multilevel) modeling incorporates outcome mea-
sures at all timepoints to estimate a ‘trajectory shape’ response
pattern over time. An advantage of examining whole trajectories
is that the outcome does not rely on a single timepoint that in-
cludes possible day-to-day fluctuation, and instead draws on mea-
sures from several weeks, considering trends. However, the linear
mixed model with its random effects is not sufficient to capture
fundamentally different trajectory shapes. In this regard, growth
mixture modeling (GMM), a multilevel modeling technique that
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incorporates features of cluster analysis, is particularly advanta-
geous for analyses of clinical trials because it allows for different
treatment effects in different trajectory classes (Muthén and Shed-
den, 1999; Muthén and Muthén, 2000; Muthén et al., 2002;
Muthén and Asparouhov, 2008; Muthen et al., 2008; Muthén and
Brown, in press). GMM can be applied to longitudinal data to iden-
tify latent ‘‘classes” or patterns of change in symptom severity over
time. This technique is newly emerging in the literature on treat-
ment outcomes and, although there are several reports utilizing
GMM to examine symptom changes during psychotherapeutic
interventions for MDD (Cuijpers et al., 2005; Stulz et al., 2007;
Stulz and Lutz, 2007), none yet has specifically focused on pharma-
cotherapy outcomes.

Changes in brain function early in the course of antidepressant
treatment have been related to simple endpoint clinical outcomes.
Quantitative electroencephalography (QEEG) imaging measures
within the first week of treatment have been shown to predict
end-of-trial outcomes with over 70% accuracy (Hunter et al.,
2007) but have never before been examined in relation to patterns
of symptom change. Early changes in QEEG cordance, in particular,
have been associated with endpoint response and remission in
double blind placebo-controlled trials (Cook et al., 2002; Leuchter
et al., 2005; Cook et al, in press) and have been found to predict
antidepressant response across independent research institutions
(Bares et al., 2007, 2008). Cordance incorporates both absolute
and relative power and has been shown to have a stronger associ-
ation with cerebral perfusion as measured by Positron Emission
Tomography (PET) than either absolute or relative power alone
(Leuchter et al., 1999).

The motivation to examine symptom change patterns and EEG
characteristics in the same cohort of subjects is that the generation
of response classes based upon symptom trajectories might be val-
idated by evidence of neurophysiologic differences (Muthén,
2004). As such, the objectives of the present study were to: (1)
identify patterns of change in depressive symptoms over the
course of eight-week antidepressant trials for MDD, and (2) to
examine early changes in QEEG cordance for subjects identified
in each symptom trajectory class. We hypothesized that early re-
gional changes in QEEG cordance that previously have distin-
guished endpoint responders vs. non-responders might also
distinguish GMM-identified response trajectories.

2. Method

2.1. Subjects and design

Data were collected from 94 adults with MDD who participated
in one of three placebo-controlled antidepressant trials that in-

cluded QEEG cordance imaging. Recruitment mechanisms as well
as inclusion and exclusion criteria were identical for the three pro-
tocols. Subjects were recruited through outpatient clinics and com-
munity advertisement and met MDD diagnostic criteria using a
structured interview for DSM-IV (First et al., 1995), with a 17-item
Hamilton Depression Rating Scale (Ham-D17; (Hamilton, 1960))
score P16. Subjects were excluded if they previously had failed
to benefit from treatment with the antidepressant being studied,
if they had a history of suicide attempt, or if they suffered from
any medical illness or received any medication known to signifi-
cantly affect brain function. Enrolled subjects included 58 females
and 36 males with a mean age of 41.7 ± 13.3 years, a mean baseline
Ham-D17 score of 22.0 ± 3.7 points, and a mean final Ham-D17

score of 12.1 ± 7.6 points. Table 1 shows clinical and demographic
characteristics of the sample for the three trials. The pooled trials
had a common design except for the active medication used. A
one-week placebo lead-in was followed by eight weeks of dou-
ble-blind randomized treatment with active drug (fluoxetine
20 mg. in Study 1; venlafaxine 150 mg. in Studies 2 and 3) or pla-
cebo (Table 1). Concomitant use of psychotropic medications (e.g.,
sedatives or hypnotics) was prohibited during the trial and all sub-
jects had been free of psychotropic medications for at least two
weeks prior to beginning the study. Ham-D17 scores were obtained
at every visit: baseline, end of placebo lead-in, 48 h after start of
randomized treatment, and weekly throughout eight weeks of ran-
domized treatment. QEEG measures were examined at pretreat-
ment baseline, and at 48-h and 1-week timepoints after
treatment assignment. The UCLA Institutional Review Board re-
viewed and approved the protocols, and, after complete descrip-
tion of the study to the subjects, written informed consent was
obtained.

2.2. QEEG method and cordance calculations

EEG recordings were performed using 35 recording electrodes
positioned with an electrode cap (ElectroCap, Inc., Eaton, OH) using
an extended International 10-20 System (Fig. 1). Recordings were
obtained while subjects rested in the eyes-closed, maximally alert
state in a sound-attenuated room with subdued lighting, using the
QND system (Neurodata, Inc., Pasadena, CA) with a Pz reference
montage. Eye movements were monitored using right infraorbital
and left outer canthus electrodes. Data were digitized online at
256 samples per channel per second with a high-frequency filter
of 70 Hz and a low-frequency filter of 0.3 Hz, and were reformatted
by amplitude subtraction to construct a bipolar electrode pair
montage. An EEG technologist blinded to subject identity and
treatment condition selected for processing the first 20–32 s of
artifact-free data. An independent blinded technologist confirmed

Table 1
Clinical and demographic characteristics of subjects in randomized placebo-controlled trials using fluoxetine or venlafaxine as the active medication; no significant differences
were observed across the three trials.

Study 1 Study 2 Study 3 Test Two-tailed p-value
N=28 N=33 N=33

Active medication Fluoxetine: n = 14 Venlafaxine: n = 17 Venlafaxine: n = 18
Placebo n = 14 n = 16 n = 15
Age (years) 42.4(12.6) 44.7(14.0) 38.1(12.5) F(2,91) = 2.13 .13
Gender ratio
Female:male 19:9 21:12 18:15 Chi-Sq. = 1.33, df = 2 .54

Treatment history
None prior:prior history 16:11 14:19 11:18 Chi-Sq. = 2.84, df = 2 .24
Initial Ham-D17 22.1(4.2) 22.3(3.1) 21.5(3.8) F(2,91) = .51 .60
Final Ham-D17 12.5(8.5) 13.0(6.4) 10.8(8.1) F(2,68) = .58 .56
Ham-D17 Response (50% improvement)
Responder: Non-responder

Medication 6:6 5:6 9:4 Chi-Sq. = 1.59, df = 2 .45
Placebo 6:4 5:9 5:6 Chi-Sq. = 1.39, df = 2 .50
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the selection prior to processing. A fast Fourier transform was used
to calculate absolute power (the intensity of energy in a frequency
band in microvolts squared) in each of four frequency bands (0.5–
4 Hz, 4–8 Hz, 8–12 Hz, and 12–20 Hz).

Cordance values were calculated from conventional QEEG abso-
lute and relative power measures in each of the four frequency
bands for each electrode site. This three-step procedure is de-
scribed elsewhere in greater detail (Leuchter et al., 1999) and has
been employed in a number of prior reports (e.g., Cook et al.,
2002; Leuchter et al., 2008). First, EEG power values were com-
puted using a re-attributional electrode montage because this
montage affords a higher correlation between EEG measures and
PET measures of cerebral perfusion than other montages (Cook
et al., 1998). Second, the absolute and relative power values were
z-transformed to measure deviation from the mean values for each
electrode site s in each frequency band f for that recording, yielding
Anorm(s,f) and Rnorm(s,f), respectively. Third, these z-scores were
summed to yield a cordance ‘‘intensity” value, Z, for each electrode
in each frequency band where Z(s,f) = Anorm(s,f) + Rnorm(s,f). Analyses
for this report focused on changes in theta-band (4–8 Hz) cordance
in as measured from electrodes overlying the midline-and-right-
frontal (MRF) region (electrodes Af2, F4, F8, Fp2, Fpz, Fz). This re-
gional marker was previously associated with brain functional ef-
fects (Leuchter et al., 2008) and clinical effects (Cook et al., in
press; Leuchter et al., 2005) of antidepressant medication.

2.3. Data analysis

2.3.1. GMM
GMM analyses were conducted using Mplus version 5 (Muthén

and Muthén, 1998–2008). We applied a piece-wise GMM (Muthén
and Muthén, 2000) focusing on Ham-D17 scores over 11 timepoints
in separate analyses for subjects randomized to medication versus
placebo. The first piece of the model included Ham-D17 measures
at baseline and at end of placebo lead-in (i.e., visits prior to start
of medication). To capture potential volatility in a flexible way
for the early stages of the trial, the second piece incorporated the
48-h measurement and weeks 1–2, with a third piece correspond-
ing to weeks 3–8. For the first piece, a linear model was used with a
random intercept only, while for the second and third piece a qua-
dratic model was used with random intercepts and slopes. Given
that subjects are randomly equivalent during the first piece, all

94 subjects were used to estimate the parameters of this piece.
For timepoints after start of randomized treatment, data from
medication subjects only (n = 49) were included. A second analysis
was performed for placebo subjects (n = 45), examining the same
3-piece model. The analysis did not specify a priori trajectory
shapes but was exploratory in nature, allowing shapes to be found
using a flexible growth model. The GMM analyses were carried out
using maximum-likelihood estimation (MLE) with the expecta-
tion-maximization (EM) algorithm.

In both analyses, both a 2- and a 3-class GMM were used. This is
based on the notion that both a responder and non-responder tra-
jectory class needs to be represented, as well as a possible further
class with a volatile development. For the analysis involving the
medication subjects the 2-class GMM found a responder class
and a volatile class of 19%. The 3-class solution showed a respon-
der, a non-responder, and a volatile class. The volatile class of the
3-class GMM had very similar trajectory shape and prevalence as
the 2-class GMM. The 3-class GMM was therefore chosen for fur-
ther investigation. It should be noted that the customary statistical
approach of using the Bayesian information criterion (BIC) to aid
the decision on the number of classes does not work well for a
sample of this size (Nylund et al., 2007). For the 3-class analysis
involving the medication subjects, the GMM resulted in a good
classification quality as reflected by entropy of 0.80 (Ramaswamy
et al., 1993). For the 3-class placebo group analysis the classifica-
tion quality was even better with an entropy of 0.89.

2.3.2. Analyses of clinical/demographic variables and brain function
(i.e. QEEG cordance) among GMM outcome classes

Analyses examining clinical/demographic characteristics and
brain functional measures among the GMM classes were con-
ducted using SPSS version 16. Baseline clinical/demographic char-
acteristics and brain function (cordance) were assessed among the
GMM outcome classes using Chi-square for categorical variables
(gender) and ANOVA for continuous variables (illness severity,
MRF cordance). Regarding early changes in brain function, we fo-
cused on changes in MRF theta-band cordance within the first
week of antidepressant treatment. Prior work has shown that de-
creases in MRF cordance at one week reflect neurophysiologic ef-
fects of antidepressant medication (Leuchter et al., 2008) and
predict end-of-trial clinical response (Cook et al., in press; Leuchter
et al., 2005). We examined MRF cordance change using a linear
mixed model (random intercept model) with full MLE with time
as the within-subjects factor (change at 48 h or 1 week) and
GMM class as the between-subjects factor. We were interested in
assessing the potential main effect of trajectory class on cordance
or a potential class-by-time interaction as either of these effects
would suggest differences in the course of early neurophysiologic
change among subjects in the various clinical outcome classes. In
addition, we specifically hypothesized that medication subjects
classified as responders would show a greater decrease in MRF cor-
dance at one week as compared to subjects in a non-responder
class.

3. Results

3.1. End-of-trial outcomes

Of 94 subjects across the three trials, 71 completed through the
primary endpoint (week 8). Using a standard response criterion of
50% improvement on the Ham-D17, 16 of 35 (46%) of placebo sub-
jects responded and 20 of 36 (56%) medication subjects responded;
there was no significant difference in response rates between med-
ication vs. placebo subjects. Table 1 shows 50% improvement re-
sponse rates for medication and placebo across the three trials.

Fig. 1. Extended International 10–20 montage used for recording. Lines between
electrodes indicate nearest-neighbor bipolar electrode pairs that were averaged for
reattributed power calculations (Cook et al., 2002).
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3.2. GMM symptom trajectory shape classes

3.2.1. Medication subjects
Fig. 2a shows estimated Ham-D17 symptom response trajecto-

ries for three classes of medication response. The three outcomes
groups can be described as: ‘responders’ (62%), ‘non-responders’
(21%), and ‘symptomatically volatile’ (17%). The ‘responder’ group
shows a symptom trajectory that would meet typical end-of-trial
response criteria of 50% improvement or final Ham-D17 score
610. The non-responder class shows fairly steady improvement
through week 3 before leveling off at a Ham-D17 score close to
16. This pattern shows partial response but with a high degree of
residual symptom severity. Lastly, the symptomatically volatile
class trajectory shows a fluctuating course of alternating improve-
ment and worsening that can be viewed in four segments: sharp
improvement 48 hours after start of drug, a 4-point worsening be-
tween 48 hours and week 2, improvement from weeks 2 through
week 6 (to achieve the same symptom level as responders), and fi-
nally a 5-point worsening between weeks 5 and 8. Fig. 2b shows
observed individual trajectories of those subjects who were classi-
fied in the symptom volatility class. Fig. 2c summarizes mean
(±standard error of the mean) Ham-D total scores at each time-
point for subjects classified in the three GMM clinical outcome
groups.

3.2.2. Placebo subjects
Estimated symptom response trajectories for placebo subjects

are shown in Fig. 3. The trajectory shape for Class 1 (34.6%) is dis-
tinguished from Class 2 (43.3%) and Class 3 (22.1%) by a higher
estimated Ham-D17 score at baseline. This group shows the steep-
est initial improvement through 48 h after beginning randomized
treatment; however the trajectory is fairly flat from 48 h through
week 8 with scores remaining within a 3 1/2 point spread. Class
2 shows a substantial 6-point improvement through the first week
of randomized treatment before reaching a plateau Ham-D17 score
of about 14. Class 3, shows the slowest initial rate of improvement
through week 3 but then shows a rapid curvilinear decline in
symptom severity reaching an estimated Ham-D17 score of 8 at
week 8. In comparison to the Class 2 response trajectory in medi-
cation subjects, none of the placebo response trajectory shapes ap-
pears to show a similar degree of symptom volatility.

3.2.3. Baseline Clinical/Demographic and QEEG Characteristics of
Medication Subjects among GMM Classes

Medication subjects among the three GMM outcome classes did
not differ significantly with respect to age (F(2,46) = .37, p = .69) or
gender (Chi square = .39, df = 2, p = 83) but did differ with respect
to baseline illness severity (F(2,46) = 18.90, p < .0001). Subjects in
the non-responder group had the highest mean baseline Ham-
D17 score (27.25, SD = 3.06) and this was significantly higher than
the mean score for responders (20.92, SD = 2.47; t(31) = �5.97,
p < .0001) and subjects in the symptom volatility group (20.40,
SD = 2.97, t(11) = �3.97, p < .002).

Fig. 4a illustrates baseline cordance values for subjects classi-
fied according to the three outcome groups. Because outcome
groups did not show baseline differences in the MRF region
(F(2,43) = .80, p = .46), change-from-baseline MRF cordance values
were calculated for each subject at the 48-h and 1-week
timepoints.

3.3. Regional QEEG cordance changes among the GMM classes

Fig. 4b and c show whole head topographic changes in QEEG
cordance for medication subjects at 48 h and at 1 week. Fig. 5 illus-
trates early changes in MRF cordance for the three symptom trajec-
tory classes. Subjects in the responder class showed a decrease in

MRF cordance beginning at 48 h and continuing through week 1.
MRF brain functional changes in the non-responder group and
the symptom volatility group appeared to track closely with each
other; these outcome classes were characterized by large decreases
in cordance at 48 h and a return toward baseline levels at week 1.
The linear mixed model examining MRF cordance changes at 48 h
and at 1 week among the three GMM medication outcome classes
did not find a main effect of group (F(2,45) = .36, p = .70) or time
(F(1,41) = 3.58, p = .07) but did find a significant group-by-time
interaction (F(2,41) = 6.82, p = .003). Based on our model we per-
formed two a priori hypothesis tests to assess whether a greater
decrease in MRF cordance at 1 week would be associated with re-
sponse, first as compared to non-response, and second as com-
pared to volatile response. Tests using a t statistic revealed a
significant difference in MRF cordance change at week 1 between
the responder group and the non-responder group (mean differ-
ence = �.76, Std. Error = .34, df = 73, p = .03), but not between the
responder group and the symptom volatility group (mean differ-
ence = �.33, Std. Error = .35, df = 63, p = .36). As a basis for compar-
ison we also examined the same linear mixed model applied to
subjects randomized to placebo; consistent with our hypotheses,
the model examining MRF cordance changes among the placebo re-
sponse trajectories did not find a significant of effect group or time
or a significant interaction.

3.4. Post Hoc analyses

3.4.1. MRF cordance Co-varying for baseline illness severity
Because we found a significant difference in baseline illness

severity among the three GMM medication outcome classes, we
examined a linear mixed model that included change in MRF cor-
dance and baseline Ham-D17 score as a covariate. As in the model
examining only MRF cordance, the model yielded a significant
group-by-time interaction (F(2,41) = 6.81, p = .003). However, the
difference in MRF cordance change at week 1 between the respon-
der and non-responder class did not reach significance (mean dif-
ference = �.61, Std. Error = .43, df = 61, p = .16) when controlling
for baseline severity indicating that there is some shared variabil-
ity between these predictors.

3.4.2. Overlap between subjects identified as belonging to the symptom
volatility class using GMM, and subjects classified as responders using
endpoint outcome

GMM identified 7 of 49 (14%) medication subjects as belonging
to the symptom volatility class. Of these volatile subjects, six com-
pleted the medication trial through week 8. Using a standard end-
point response criterion of P50% improvement on the Ham-D17,
two of the six volatile completers would be considered responders.

4. Discussion

This study found three distinct patterns of change in symptom
severity over eight weeks of antidepressant treatment for which
there was some evidence of neurophysiologic differences. GMM
analyses identified ‘responder,’ ‘non-responder,’ and ‘symptom
volatility’ trajectory shapes estimated to comprise 62%, 21%, and
17% of subjects, respectively. The responder and non-responder
patterns are consistent with conceptualizations of monotonic
improvement over the course of antidepressant treatment with
greater effectiveness for some patients (responders) and lesser
effectiveness for other (non-responders). In contrast, the symptom
volatility trajectory suggests that a small subgroup of patients
exhibits a highly fluctuating course symptom severity with alter-
nating periods of improvement and worsening. Changes in the
QEEG marker, MRF cordance, were different across 48-h and 1-
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Fig. 2. (a) Estimated Ham-D17 means for three classes of MDD subjects randomized to antidepressant medication (top); (b) Individual trajectories for those subjects classified
as Class 2 (middle); (c) Mean (±standard error of the mean) HamD total scores for medication subjects assigned to each GMM class.
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week timepoints as a function of symptom trajectory class among
subjects randomized to antidepressant medication.

Interestingly, although non-responders were shown to have
significantly greater illness severity at baseline, there was no
difference in baseline Ham-D17 scores between responder and

symptom volatility groups. Thus, at the outset of treatment,
subjects who would later show stable steady improvement ver-
sus an erratic symptom course were indistinguishable in terms
of overall symptom severity as measured the Ham-D17 total
score.

Fig. 3. Estimated Ham-D17 means for three groups of MDD subjects randomized to placebo.

Fig. 4. Brain maps showing baseline (column a) and change-from-baseline theta cordance (columns b and c) for medication subjects classified as responders (62%),
symptomatically volatile (17%), or non-responders (21%).
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The symptom volatility group may be of special clinical interest.
First, this subgroup may represent patients whose depression is
especially difficult to treat and/or monitor. Prior reports have sug-
gested that periods of clinical worsening in the early stages of anti-
depressant treatment may portend poorer long-term outcome
(Cusin et al., 2007; Perahia et al., 2008). Moreover, subjects who
exhibit early worsening are at greater risk for discontinuation of
treatment (Beasley et al., 2000; Chelben et al., 2001; Kaplan,
1997). Second, the cause of symptom volatility in this subgroup
is unknown. One possibility is that the fluctuating symptoms rep-
resent an unstable placebo-like response. This idea would be in
keeping with conceptions put forth by Quitkin and colleagues that
early improvement followed by worsening (i.e., an inverted U pat-
tern of response) reflects placebo effects rather than ‘‘true drug” ef-
fects (Quitkin et al., 1991, 1987, 1984). However, the pattern found
here is polyphasic, and, in the present study, placebo subjects did
not exhibit a similarly volatile pattern. Third, it is possible that this
symptom pattern is detecting heterogeneity in depressive illness. It
is curious that the rapid fluctuation of symptom changes in this
group is similar to the reported reaction of patients with bipolar
disorder (BPD) to antidepressant treatment, namely fluctuation of
symptoms and induction of ‘‘cycling.” Although we have no direct
evidence, one could speculate that some subjects diagnosed with
MDD actually were suffering from a bipolar-spectrum illness (Akis-
kal, 1993), such as BPD type II, which is characterized primarily by
depressive episodes. For these individuals, antidepressant treat-
ment could possibly induce rapidly oscillating symptoms (Ameri-
can Psychiatric Association, 2002; Sachs et al., 2000).

The observation that there may be a subgroup with unstable re-
sponse also has implications for research on markers of antidepres-
sant ‘response/non-response’ or ‘remission/non-remission’ when
those classifications are derived using endpoint outcomes.
Whether outcome is predicted by QEEG or other imaging markers,
genetic markers, or clinical and demographic characteristics, the
ability to accurately predict a dichotomous outcome partly de-
pends upon the stability of that outcome measure. A ‘symptom
volatility’ pattern is clearly an unfavorable clinical outcome yet
use of a single endpoint criterion leaves the dichotomous respon-
der/non-responder classification of symptomatically unstable sub-
jects to chance. Thus any finding based upon unstable symptom
change outcomes introduces a source of variance into the outcome
of clinical trials that may be difficult to detect. If an estimated 17%
of subjects were to fall into this category, it could introduce a size-
able margin of error into any clinical trial. Unless subjects with
unstable symptom changes are identified as non-responders, their
inclusion in endpoint analyses may obscure ability to test both the

effectiveness of treatment and the predictive capability of a bio-
marker for response.

The MRF cordance biomarker, previously associated with anti-
depressant effects and endpoint response or remission, was found
to differ between medication subjects classified according to re-
sponder versus non-responder outcome trajectories. Consistent
with prior observations showing an association between decreases
in MRF theta cordance within the first week of antidepressant
treatment, and end-of-trial clinical improvement in MDD (Cook
et al, in press; Leuchter et al., 2005), the present study found a sig-
nificantly greater week 1 decrease in MRF cordance in GMM
responders as compared to non-responders. This finding provides
support for a neurophysiologic basis underlying these symptom
trajectory patterns. Subjects in the symptom volatility group
showed an intermediate change in MRF cordance at week 1 that
did not statistically separate from responders. One suggestion is
that the cordance marker might simply act as a marker of clinical
severity, or, of improvement regardless of the durability of re-
sponse or the means by which it is attained. However, contrary
to this interpretation, there was no significant association between
the MRF marker and placebo response trajectories. Results of our
analyses indicated that GMM outcome class differences in MRF
cordance changes were moderated by time indicating that the
assessment timepoint is important. Future studies should examine
different timepoints and/or brain regions that could potentially
help demarcate unique neurophysiologic features of subjects who
express symptom volatility.

To our knowledge, this is the first report to relate symptom tra-
jectory outcomes during treatment for MDD to a neurophysiologic
marker. Findings should be interpreted within the limits of this
study. First, this GMM approach should be replicated in an inde-
pendent sample of subjects. Like any model, GMM is based on a
set of assumptions (e.g., the assumption of normality within each
latent class) that may not be completely fulfilled in any given data
set. Second, the cause of any of the symptom trajectory patterns,
including the symptom volatility pattern, cannot be determined
from the present study. Response patterns in the various outcome
classes may or may not be related to medication effects in varying
degrees. For example, it is unknown to what extent fluctuating
symptoms may be due to the natural course of illness and/or ef-
fects of treatment (e.g., medication side effects). Further, patients
may have improvement in some symptoms while experiencing
worsening of other symptoms; additional studies are needed to ad-
dress changes in specific symptoms of interest. Third, subjects
were treated with fluoxetine or venlafaxine; larger trials with ran-
dom assignment to various antidepressants would be needed to as-
sess potential effects of specific medications. Fourth, subjects in
this study were not distinguished in terms of depressive subtypes
(e.g., atypical depression) or comorbid anxiety disorders—clinical
factors that can affect symptom ratings and SSRI response (Fava
et al., 2008). Future studies of better-characterized subjects should
be conducted to examine such clinical characteristics as potential
moderators of response trajectory. Last, we examined QEEG cor-
dance changes only at a single region and at a single timepoint pre-
viously shown to be related to neurophysiological or clinical effects
of medication; it is possible that other groups of electrodes, other
timepoints, or other EEG parameters might differentiate subjects
who express a volatile symptom change outcome pattern.
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