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Abstract
In recent years, there has been a growing interest among researchers in the use
of latent class and growth mixture modeling techniques for applications in the
social and psychological sciences, in part due to advances in and availability of
computer software designed for this purpose (e.g., Mplus and SAS Proc Traj).
Latent growth modeling approaches, such as latent class growth analysis (LCGA)
and growth mixture modeling (GMM), have been increasingly recognized for
their usefulness for identifying homogeneous subpopulations within the larger
heterogeneous population and for the identification of meaningful groups or
classes of individuals. The purpose of this paper is to provide an overview of LCGA
and GMM, compare the different techniques of latent growth modeling, discuss
current debates and issues, and provide readers with a practical guide for
conducting LCGA and GMM using the Mplus software.

Researchers in the fields of social and psychological sciences are often
interested in modeling the longitudinal developmental trajectories of
individuals, whether for the study of personality development or for
better understanding how social behaviors unfold over time (whether it
be days, months, or years). This usually requires an extensive dataset con-
sisting of longitudinal, repeated measures of variables, sometimes including
multiple cohorts, and analyzing this data using various longitudinal latent
variable modeling techniques such as latent growth curve models (cf.
MacCallum & Austin, 2000). The objective of these approaches is to
capture information about interindividual differences in intraindividual
change over time (Nesselroade, 1991).

However, conventional growth modeling approaches assume that
individuals come from a single population and that a single growth
trajectory can adequately approximate an entire population. Also, it is
assumed that covariates that affect the growth factors influence each
individual in the same way. Yet, theoretical frameworks and existing
studies often categorize individuals into distinct subpopulations (e.g.,
socioeconomic classes, age groups, at-risk populations). For example, in
the field of alcohol research, theoretical literature suggests different classes
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of alcohol use initiation patterns, e.g., ‘early’ versus ‘late’ onsetters (Hill,
White, Chung, Hawkins, & Catalano, 2000). Using growth mixture modeling
(GMM) with five different indices of alcohol use (alcohol use disorder,
alcohol dependence, alcohol consequences, past year alcohol quantity and
frequency, and heavy drinking), Jackson and Sher (2005) identified four
distinct classes for each measure. The results of these studies confirm
theoretical contentions that heterogeneity of growth trajectories exist
within the larger population. In addition, these findings suggest that
describing an entire population using a single growth trajectory estimate
is oversimplifying the complex growth patterns that describe continuity
and change among members of different groups. Instead, a latent class or
growth mixture modeling approach seems to be the most appropriate
method for fully capturing information about interindividual differences
in intraindividual change taking into account unobserved heterogeneity
(different groups) within a larger population.

Person-Centered and Variable-Centered Analyses

A useful framework for beginning to understand latent class analysis and
growth mixture modeling is the distinction between person-centered and
variable-centered approaches (cf. Muthén & Muthén, 2000). Variable-
centered approaches such as regression, factor analysis, and structural
equation modeling focus on describing the relationships among variables.
The goal is to identify significant predictors of outcomes, and describe
how dependent and independent variables are related. Person-centered
approaches, on the other hand, include methods such as cluster analysis,
latent class analysis, and finite mixture modeling. The focus is on the
relationships among individuals, and the goal is to classify individuals into
distinct groups or categories based on individual response patterns so that
individuals within a group are more similar than individuals between
groups.

Growth Mixture Modeling

Given a typical sample of individual growth trajectories (Figure 1, left),
conventional growth modeling approaches give a single average growth
estimate (bold line), a single estimation of variance of the growth parameters,
and assumes a uniform influence of covariates on the variance and growth
parameters. However, there may exist a subset of individuals (Figure 1,
right) whose growth trajectories are significantly different from the overall
estimate. In this example, the figure on the left-hand side represents a
sample of individual adolescent mental health growth trajectories (SCL-90-R
depression, anxiety, and somatic symptoms measures), with an average
positive intercept and slope. The figure on the right-hand side is a
subset of the entire sample, representing adolescent mental health growth
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trajectories that are decreasing in poor mental health symptomology, that
is, improving mental health. Individuals in this ‘recovery’ group have a
higher intercept and a negative slope, characteristics of the growth
parameters that are clearly different from that of the whole sample.

The conventional growth model can be described as a multilevel, random-
effects model (Raudenbush & Bryk, 2002). According to this framework,
intercept and slope vary across individuals and this heterogeneity is captured
by random effects (i.e., continuous latent variables). However, as mentioned
previously, this approach assumes that the growth trajectories of all
individuals can be adequately described using a single estimate of growth
parameters (both the mathematical form and the magnitude). Underlying
this framework is the assumption that all individuals are drawn from a
single population with common parameters. GMM, on the other hand,
relaxes this assumption and allows for differences in growth parameters
across unobserved subpopulations. This is accomplished using latent tra-
jectory classes (i.e., categorical latent variables), which allow for different
groups of individual growth trajectories to vary around different means
(with the same or different forms). The results are separate growth models
for each latent class, each with its unique estimates of variances and
covariate influences. This modeling flexibility is the basis of the GMM
framework (cf. Muthén & Asparaouhov, 2006).

Latent class growth analysis (LCGA) is a special type of GMM, whereby
the variance and covariance estimates for the growth factors within each
class are assumed to be fixed to zero. By this assumption, all individual
growth trajectories within a class are homogeneous. This framework of
growth modeling has been extensively developed by Nagin and colleagues
(cf. Nagin & Land, 1993) and is embodied in the SAS procedure Proc
Traj ( Jones, Nagin, & Roeder, 2001). The benefit of this approach is the
identification of distinct classes prior to conducting GMM. It serves as a
starting point for conducting GMM. In terms of computation, it is easy
to specify in Mplus and the zero constraints on the variance estimates
allow for faster model convergence (cf. Kreuter & Muthén, 2007).

Figure 1 Individual trajectories for adolescent mental health (left) and the recovery class
(right).
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Current Issues and Debate

Much of the current issues and debate surround three main areas: (i) the
determination of latent trajectory classes; (ii) which model fit index to
use; and (iii) the problem of convergence. The first issue is concerned
with the question whether latent classes really exist and if so, how many?
For example, Bauer and Curran (2003a, b) cautioned that the existence of
multiple classes may simply be due to skewed or nonnormally distributed
data.

Assuming there are multiple classes, how does one determine how
many there are? Currently, methods for determining the number of
components in a growth mixture model consists of finding the model
with the smallest Bayesian information criteria (BIC) value and a sig-
nificant Lo, Mendell, and Rubin (2001) likelihood ratio test (LMR-LRT)
statistic. More recently, however, further simulations have demonstrated
that while the BIC performed the best among the information criteria-
based indices, the bootstrap likelihood ratio test (BLRT) proved to a
better indicator of classes across all of the models considered. All of these
fit indices are available in Mplus (see Nylund, Asparouhov, & Muthén,
2007, for a discussion on fit indices). Analogous to determining the
number of factors using exploratory factor analysis, the number of classes
should ultimately be determined by a combination of factors in addition
to fit indices, including one’s research question, parsimony, theoretical
justification, and interpretability (cf. Bauer & Curran, 2003b; Muthén,
2003; Rindskopf, 2003).

A third issue that is often raised is the problem of nonconvergence and
local solutions (cf. Hipp & Bauer, 2006). Trying to mathematically model
a sample distribution that consists of a mixture of many different kinds
of subdistributions (i.e., a finite mixture model) is extremely difficult.
Such attempts are notorious for convergence issues due to likelihood
estimation problems (e.g., local minima and maxima and singularities).
Like other methods such as cluster analysis, latent class analysis, and finite
fixture modeling, growth mixture models are also susceptible to local
solutions. The problem of local solutions is where during curve estimation
a largest value (maximum) or smallest value (minimum) that a function
takes is identified for only a given area on that curve, but that is not
necessarily the largest or smallest value for the entire curve (i.e., the global
minimum or maximum). The problem with local solutions in latent class
analysis has long been known (Goodman, 1974). In mixture modeling,
parameters are estimated by the method of maximum likelihood and are
iterative in nature (e.g., EM algorithm). Ideally, the iteration will result in
successful convergence on the global maximum solution, that is, the
parameter estimates associated with the largest loglikelihood. However,
the algorithm cannot distinguish between a global maximum and a local
maximum. As long as it reaches some maximum, the algorithm will
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terminate. Fortunately, the Mplus software incorporates the use of random
starting values, with sufficient user flexibility, to avoid local solutions in
GMM.

GMM and LCGA in Mplus

This section outlines the basic steps for specifying a simple LCGA and
GMM model in Mplus Version 4.1, briefly explains the different user-
modifiable options, and highlights specific parts of the output that the
beginning user needs to be aware of. Readers are recommended to refer
to Chapter 8 in the Mplus User’s Manual available at www.statmodel.com
for a complete treatment of longitudinal mixture modeling. Examples
of input and output for more complex analyses, with more detailed
instructions are available at www.statmodel.com/examples/penn.shtml.
The general latent variable growth mixture model can be represented as
follows:

The growth mixture model in Figure 2 consists of the following
components: (i) a univariate latent growth curve of observed variable T
with an intercept (I) and slope (S), (ii) a categorical variable for class (C),
and (iii) covariates or predictor variables (X). A distal continuous outcome
variable (Y) or a dichotomous outcome variable (U) can be also added to
the model by regressing Y onto C, but is not shown here. The simple
univariate latent growth curve with latent growth factors, intercept (I)
and slope (S), are formed by the observed variables T1, T2, and T3 that
represent repeated measures across three time points. A fourth repeated
measure (T4) could also be added to the model to estimate a quadratic
growth factor (Q), but for sake of simplicity only the slope factor is

Figure 2 Representation of a growth mixture model with covariates.

www.statmodel.com
www.statmodel.com/examples/penn.shtml
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considered here. As an aside, estimating additional growth factors, for
example, a quadratic term, will add computational burden, so it is not
unusual to see the variance of the quadratic term and other growth factors
in select classes fixed to zero to aid in convergence during GMM.

The categorical latent class variable (C) is related to the covariates (X)
by way of multinomial logistical regression. The Mplus multinomial
regression assigns each individual fractionally to all classes using the
posterior probabilities, obtained through the EM iterations. The first set
of fractional assignments is based on the starting values, and they are then
iteratively improved on until convergence. In the case of a dichotomous
covariate (e.g., 0 = females, 1 = males), the coefficient is the increase in
the log-odds of being in the disengaged versus the normative class for a
one-unit increase in X, for example, when comparing males to females
in this example. Hence, a coefficient of 1.0 implies that the odds of being
in the disengaged class versus the normative class is exp(1) = 2.72 times
higher for males than females. The same odds ratio interpretation applies
to each class when including a dichotomous distal outcome variable (U).
See Muthén (2004, 349) for further detail on multinomial logistic regression
in Mplus.

Step 1: Specify a single-class latent growth curve model

The initial step prior to specifying latent classes is to specify a single-class
growth model. For example, a univariate growth curve model without
covariates may be an initial starting point for beginning users. In Mplus,
a univariate latent growth curve can be specified as follows:

In this dataset, there are six variables and missing values are coded as ‘999’.
For the present analysis, only the three observed variables in the dataset
are needed (USEVAR = T1 – T3). The TYPE = MISSING syntax invokes
the full-information maximum likelihood algorithm for handling missing
data. The MODEL syntax specifies the appropriate factor loadings corre-
sponding to the equidistant time intervals, 0, 1, and 2, for the intercept
(I) and slope (S). The zero time score for the slope growth factor at time 1
defines the intercept growth factor as an initial status factor. The coefficients of

Title: UNIVARIATE GROWTH CURVE
Data: file is ‘C:\My Folder\filename.dat’;
Variable: names are id sex t1 t2 t3 x;

usevar = t1–t3;
missing = all (999);

Analysis: type = missing H1;
Model: i s | t1@0 t2@1 t3@2;
Output: sampstat standardized tech1;
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the intercept growth factor are fixed at one as the default. The user has the
option of freely estimating a factor loading by simply deleting it (e.g., delete
‘@1’ to freely estimate the second time point, T2). Note that the | syntax
is a new option introduced with Mplus Version 3, which replaces the BY
syntax option. The BY option is a general approach to defining latent variables
in Mplus. The new | syntax is used to name and define random effect
variables and is used for specifying growth models. It calls for a different
start value algorithm whereby parameters are perturbed differently as a
function of their standard deviations. This syntax specifies the following
latent univariate growth curve model:

Step 2: Specify an unconditional latent class model without covariates (X) 
or distal outcomes (Y or U)

However, if the covariates have significant direct effects on the growth
factors (I and S) and on class (C), then it is important to keep in mind
that the unconditional model will lead to distorted results since the
observed variables (T1–T3) will be incorrectly related to class (C). This
is analogous to a misspecified regression model, where the slope estimate
will be distorted when important predictors are left out of the equation.
Therefore, it is important to follow-up the unconditional model with
the appropriate conditional model and to compare the results (Muthén,
2004).

At this step, specifying a LCGA model with no within-class variance is
also recommended as an initial exploratory option. As discussed previously,
LCGA is a useful initial modeling step prior to specifying a GMM model.
The main difference is that LCGA assumes no within class variance on the
growth factors, whereas GMM freely estimates the within class variances.
The benefits of fixing the within-class variances to zero are the clearer
identification of classes and also the less computational burden – factors
that are important at this stage in model building. It is also recommended

Figure 3 A latent variable representation of a univariate growth curve model.
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that LCGA be used with the conditioned model before proceeding to
GMM. In Mplus, an unconditional LCGA model can be specified as follows:

The bold portions of the syntax are the parts that add the LCGA
model (C) to the existing univariate growth curve model. The
TYPE = MIXTURE syntax invokes the mixture model algorithm. Here,
a three-class model is being initially examined with the syntax
CLASSES = c(3). After successful convergence, note the model fit using
the BIC value and then proceed to check models with more classes by
replacing the ‘3’ with the appropriate number in the syntax. The best
fitting model will have the smallest BIC value. However, BIC is only one
of the options for determining model fit. In addition to the BIC, the
LMR-LRT and the BLRT tests discussed earlier can also be examined by
including TECH11 or TECH14 syntax, respectively, in the OUTPUT
line. In this example, TECH8 shows the iteration process so that the user
can be aware of iteration progress.

The STARTS and STITERATIONS lines are not required for con-
ducting LCGA since Mplus automatically sets these parameters at default
values. However, adjusting these values may aid in obtaining successful
convergence. The STARTS syntax specifies the number of random sets of
starting values (default = 10) followed by the number of final optimiza-
tions (default = 2), which optimizes the two best sets identified by the
highest loglikelihood values after the initial round of optimizations given
by the syntax STITERATIONS (default = 10). This feature, which can
be user defined, is rare in other software programs and is one of the main
approaches to addressing problems relating to nonconvergence and local
maxima. For a more thorough investigation of multiple solutions, it is
recommended that the user change the default values for the number of
random sets and start iterations to:

Title: LATENT CLASS GROWTH ANALYSIS
Data: file is ‘C:\My Folder\filename.dat’;
Variable: names are id sex t1 t2 t3 x;

usevar = t1–t3;
missing = all (999);
CLASSES = c(3);

Analysis: type = MIXTURE missing;
STARTS = 10 2;
STITERATIONS = 10;

Model: % OVERALL%
i s | t1@0 t2@1 t3@2;
i-s@0;

Output: sampstat standardized tech1 
TECH8 TECH11 TECH14;

PLOT: SERIES = t1–t3 (s);
TYPE = PLOT3;
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Certainly, the user may change the start values to even higher numbers
to ensure successful convergence. However, changing to higher values will
increase computational burden and increase computation time.

The syntax %OVERALL% specifies the same model and free estimates
across all classes. The intercepts and residual variances of the growth
factors are estimated as the default, and the growth factor residual covariance
is estimated as the default because the growth factors do not influence any
variable in the model except their own indicators. The intercepts of the
growth factors are not held equal across classes as the default. However,
the residual variances and residual covariance of the growth factors are
held equal across classes as the default. In this example, the syntax i-s@0
fixes all within-class variances to zero, consistent with the LCGA
approach. Removing this line will set the variances of I and S as equal
across all classes and estimate the variances of the growth parameters. If
separate estimates of the within-class variances are desired for each class, it
is necessary to add the following changes to the MODEL line in the syntax:

These added lines in bold tell Mplus to estimate the unique variances
of intercept and slope for each class. This would be equivalent to a GMM
model where the within-class variances are allowed to be freely estimated
instead of fixed to zero as in LCGA. However, because freely estimating
the variances for all growth factors in each class separately adds considerable
computational burden, the user must choose growth parameter variances
to freely estimate carefully. In general, increasing model complexity by
adding classes, adding covariates, allowing across-class variation in covariance
matrices can add to computation time, convergence problems, improper
solutions, and overall model instability. Hence, it is not unusual to decide
to only estimate intercept and not slope, or limit changes to a particular
class rather than across all classes. These decisions should be made after
successfully running a LCGA, then looking at the graphics using the

STARTS = 100 10;
STITERATIONS = 10;

OR:
STARTS = 500 20;
STITERATIONS = 20;

Model: %OVERALL%
i s | t1@0 t2@1 t3@2;
%c#1%
i s ;
%c#2%
i s;
%c#3%
i s;
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estimated means and observed individual values plot given by the PLOT
syntax [Alt-V or from pull-down menu: Graph → View Graphs] and
determine if any class needs its own class-specific variance. After examining
the variances of the growth factors for each class using the charts, it is
necessary to reanalyze the model with the class-specific variance in line
with the results of the initial LCGA findings.

Step 3: Determine the number of classes

It is important to reiterate the point made earlier that determining the
number of classes depends on a combination of factors in addition to fit
indices, including one’s research question, parsimony, theoretical justification,
and interpretability. Keeping this in mind, fit indices and tests of model
fit should not be the final word in deciding on the number of classes.
However, they are useful in the initial exploratory stages of analyses. At
this point, studies are ongoing and results are not conclusive regarding the
best fit indices. Using simulations, Nylund et al. (2007) has determined
that of all the fit indices and tests available in Mplus, the BLRT per-
formed the best, followed by BIC and then ABIC. However, Nylund
et al. (2007, 33–34) recommends: ‘due to the increased amount of com-
puting time of the BLRT, it may be better to not request the BLRT
in the initial steps of model exploration. Instead, one could use the BIC
and the LMR P-values as guides to get close to possible solutions and
then once a few plausible models have been identified, reanalyze these
model requesting the BLRT’. Following their recommendation, the model
with a low BIC value and a significant LMR P-value comparing the k and
the k – 1 class model should initially guide our analysis. In other words,
comparing the current model against the model with 1 less class than the
current model of choice should give a LMR P-value less than 0.05.

TECHNICAL 11 OUTPUT
VUONG–LO–MENDELL–RUBIN LIKELIHOOD 

RATIO TEST FOR 2 (H0) VERSUS 3 CLASSES
H0 Loglikelihood Value –256.426
Two Times the Loglikelihood Difference 20.216
Difference in the Number of Parameters 3
Mean –10.943
Standard Deviation 29.068
P-value 0.0476

LO–MENDELL–RUBIN ADJUSTED LRT TEST
Value 18.483
P-value 0.0560

TECHNICAL 14 OUTPUT
Random Starts Specification for the k–1 Class Model

Number of initial stage random starts 0
Number of final stage optimizations for the initial stage random starts 0

Random Starts Specification for the k Class Model
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The results of the LMR-LRT and the BLRT can be seen in the output
under the TECHNICAL 11 and TECHNICAL 14 sections, respectively.
Here, the LMR-LRT and the BLRT both show a statistically significant
difference between the two-class versus three-class models. This suggests that
the three-class model gives significant improvement in model fit over the
three-class model. The next step would be to compare the three-class model
to the four-class model, and so on until the tests result in nonsignificance.

Other considerations include successful convergence, high entropy
value (near 1.0), no less than 1% of total count in a class, and high
posterior probabilities (near 1.0). In the output window, one can find the
following information under the TESTS OF MODEL FIT section:

There are no set cut-off criteria for deciding whether the entropy is
reasonably high, however, in the output above, note that the entropy is
near 1.0. Also the proportions for the latent classes are all above .01 or
1%. Finally, the posterior probabilities (diagonal values) are all reasonably
high, near 1.0. Together, these results suggest good model fit for the

Number of initial stage random starts 20
Number of final stage optimizations 5

Number of bootstrap draws requested Varies
PARAMETRIC BOOTSTRAPPED LIKELIHOOD RATIO 

TEST FOR 2 (H0) VERSUS 3 CLASSES
H0 Loglikelihood Value –256.426
Two times the Loglikelihood Difference 20.216
Difference in the Number of Parameters 3
Approximate P-value 0.0000
Successful Bootstrap Draws 20

TESTS OF MODEL FIT
Information Criteria
Number of Free Parameters 14
Akaike (AIC) 4752.782
Bayesian (BIC) 4799.641
Sample-Size Adjusted BIC (n* = (n + 2)/24) 4755.281
Entropy 0.923
FINAL CLASS COUNTS AND PROPORTIONS 

FOR THE LATENT CLASSES
BASED ON THE ESTIMATED MODEL
Latent Classes

1 171.37719 0.81608
2 27.44010 0.13067
3 11.18271 0.05325

Average Latent Class Probabilities For Most Likely Latent Class Membership (Row) 
by Latent Class (Column)

1 2 3
1 0.975 0.012 0.014
2 0.055 0.941 0.003
3 0.030 0.000 0.970
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three-class model. Once the number of classes has been decided, one can
look at the graphs and see the observed and estimated means and trajectories
for each class. In Mplus, selecting Alt-V or from pull-down menu, Graph
→ View Graphs → Estimated Means and Observed Individual Values to obtain
the following graphs:

Step 4: Address convergence issues

As discussed previously, The STARTS syntax, which can be user defined,
is one of the main approaches to addressing problems relating to noncon-
vergence and local maxima. The user can change the default values for
the number of random sets and start iterations to higher values. However,
even with successful convergence, it is necessary to check whether the
solutions are local solutions. To do this, check the estimates in the output
using the OPTSEED syntax on the seed values from the best loglikeli-
hood values. If the estimates are replicated, then most likely you did not
run into local solutions. The best loglikelihood values are ordered from
best to worst for you by Mplus. Alongside these loglikelihood values are
the SEED values in the output:

RANDOM STARTS RESULTS RANKED FROM THE 
BEST TO THE WORST LOGLIKELIHOOD VALUES

Initial stage loglikelihood values, seeds, 
and initial stage start numbers:

–2362.540 939021 8
–2362.677 373505 88
–2363.424 436460 89
–2363.447 76974 16
–2363.507 402224 91
–2363.513 467339 66
–2363.767 364676 27
–2365.631 902278 21
–2366.060 170954 86
–2367.730 830392 35

Figure 4 Estimated means and observed individual growth trajectories for each latent class.
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Mplus rank orders the best loglikelihood values to the worst. The middle
column of numbers consists of the seed values. We need to check the
model parameter estimates using OPTSEED on the seed values from the
best loglikelihood values. If the estimates are replicated, then most likelihood
you did not run into local solutions. A successfully converged model
will have the best loglikelihood values repeated at least twice. In this example,
the first two values are the best loglikelihoods, with seed values 939021 and
373505 respectively. Next, we need to back to our original syntax and add a
syntax line for OPTSEED = 939021; under the ANALYSIS line as follows:

After running this model, run another model using OPTSEED = 373505,
then compare the results of both outputs. We should see our estimates
replicated. If the estimates are replicated then we can trust that we did not
find local solutions.

Step 5: Specify a conditional latent class model with covariates (X)

Next, Steps 2–4 as outlined above need to be repeated using a conditioned
model. As mentioned previously, if the covariates have significant direct
effects on the growth factors (I and S) and on class (C), then the uncon-
ditional model will lead to distorted results since only the observed variables
(T1–T3) will be incorrectly related to class (C). Therefore, it is important
to follow-up the unconditional model with the appropriate conditional
model and to compare the results. The conditioned model can be specified
by adding the following bolded lines to the existing syntax:

Analysis: type = MIXTURE missing;
OPTSEED = 939021;

Title: LATENT CLASS GROWTH ANALYSIS
Data: file is ‘C:\My Folder\filename.dat’;
Variable: names are id sex t1 t2 t3 x;

usevar = t1 – t3;
missing = all (999);
CLASSES = c(3);

Analysis: type = MIXTURE missing;
STARTS = 10 2;
STITERATIONS = 10;

Model: %OVERALL%
i s|t1@0 t2@1 t3@2;
i-s@0;
i s ON x;
c#1 ON x;
c#2 ON x;

Output: sampstat standardized tech1 TECH8 TECH11;
PLOT: SERIES = t1 – t3 (s);

TYPE = PLOT3;
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Up to this point, only the unconditional model was considered for ped-
agogical purposes. Furthermore, one disadvantage of conducting class
analysis with covariates is that Mplus does not give graphs of the estimated
and observed values for each class. Hence, it is wise to conduct initial
exploratory analyses with the unconditioned model to at least see how
the individual growth trajectories and classes are distributed.

The first ON statement regresses the intercept and slope growth factors
onto the time-invariant covariate (X). The second ON statement
describes the multinomial logistic regression of the categorical latent
variable (C) on the time-invariant covariate (X) when comparing class 1
to classes 2 and 3.

One final recommendation is to obtain the predicted class for each
individual by saving the posterior probabilities and class assignments into
an output text file. This option can be specified as follows:

The IDVARIABLE syntax must correspond to the subject identifier
variable in the dataset, here it is simply id. The SAVEDATA line specifies
the location of the folder and filename ‘CLASSoutput’ by which the
output is saved. The output text file can then be simply opened with MS
WordPad and will look like the following:

In this file, the first three columns correspond to the actual observed data
for t1, t2, and t3, respectively. The asterisks correspond to missing values.
The fourth column corresponds to the id variable. There will be many
columns following the id column that contains the posterior probabilities

Title: LATENT CLASS GROWTH ANALYSIS
Data: file is ‘C:\My Folder\filename.dat’;
Variable: names are id sex t1 t2 t3 x;

usevar = t1 – t3;
IDVARIABLE = id;
missing = all (999);
CLASSES = c(3);

SAVEDATA: FILE IS C:\MY FOLDER\CLASSoutput;
save = cprobabilities;

Analysis: type = MIXTURE missing;

45.000 49.000 53.000 501.000  . . . . . . . . . . . . . . . 1.000
50.000 43.000 68.000 502.000  . . . . . . . . . . . . . . . 1.000
87.000 78.000 62.000 503.000  . . . . . . . . . . . . . . . 2.000
38.000* 38.000 504.000  . . . . . . . . . . . . . . . 1.000
54.000 48.000 48.000 505.000  . . . . . . . . . . . . . . . 1.000
68.000 87.000 78.000 506.000  . . . . . . . . . . . . . . . 1.000
95.000 50.000 45.000 507.000  . . . . . . . . . . . . . . . 2.000
52.000* * 508.000  . . . . . . . . . . . . . . . 1.000
44.000 43.000 98.000 509.000  . . . . . . . . . . . . . . . 3.000
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and class probabilities (not shown here). The column of interest is the
very last column at the far right that consists of the latent class number
assigned by Mplus. Here, the values range from one to three since a three-
class model was estimated. One can easily export this class assignment
information back into the original dataset to be used for further analyses,
such as conducting a test of mean differences across the classes on the
covariates using ANOVA, or using class membership as a predictor for
distal outcome. Since Mplus does not give the graphs for each class from
a conditioned latent class model, the user may opt to use these individual
class assignments as the grouping variable for plotting each class separately
using a different software package such as SAS, SPSS, or Excel. These class
information can also be used for other analysis using these software packages.

Summary

Conventional growth model approaches such as the multilevel, random-
effects model, assumes that the growth trajectories of all individuals can be
adequately described using a single estimate of growth parameters. GMM
and LCGA relax this assumption and allow for differences in growth param-
eters across unobserved subpopulations using latent trajectory classes. LCGA
estimates a mean growth curve for each class, but no individual variation
around the mean growth curve is allowed. GMM, on the other hand,
combines the features of the random effects model and LCGA by estimating
both mean growth curves for each class and individual variation around
these growth curves by estimating growth factor variances for each class.
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