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NEO instruments are widely used to assess Big Five personality factors, but confirmatory factor analyses
(CFAs) conducted at the item level do not support their a priori structure due, in part, to the overly
restrictive CFA assumptions. We demonstrate that exploratory structural equation modeling (ESEM), an
integration of CFA and exploratory factor analysis (EFA), overcomes these problems with responses
(N � 3,390) to the 60-item NEO–Five-Factor Inventory: (a) ESEM fits the data better and results in
substantially more differentiated (less correlated) factors than does CFA; (b) tests of gender invariance
with the 13-model ESEM taxonomy of full measurement invariance of factor loadings, factor variances–
covariances, item uniquenesses, correlated uniquenesses, item intercepts, differential item functioning,
and latent means show that women score higher on all NEO Big Five factors; (c) longitudinal analyses
support measurement invariance over time and the maturity principle (decreases in Neuroticism and
increases in Agreeableness, Openness, and Conscientiousness). Using ESEM, we addressed substantively
important questions with broad applicability to personality research that could not be appropriately
addressed with the traditional approaches of either EFA or CFA.
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Arguably, the most important advance in personality psychol-
ogy in the past half century has been the emerging consensus that
individual differences in adults’ personality characteristics can be

organized in terms of five broad trait domains: Extraversion,
Agreeableness, Conscientiousness, Neuroticism, and Openness.
These Big Five factors now serve as a common language in the
field, facilitating communication and collaboration. Although
there are several Big Five instruments (e.g., Benet-Martinez &
John, 1998; Caprara & Perugini, 1994; Goldberg, 1990; Gosling,
Rentfrow, & Swann, 2003; John & Srivastava, 1999; Paunonen,
2003; Paunonen & Ashton, 2001; Saucier, 1998), the family of
NEO instruments—including the 60-item NEO–Five-Factor In-
ventory (NEO-FFI; Costa & McCrae, 1992; McCrae & Costa,
2004) considered here—appear to be the most widely used instru-
ments and to have received the most attention over recent years
(Boyle, 2008).

Factor analysis has been at the heart of these exciting break-
throughs. Exploratory factor analyses (EFAs) have consistently
identified the Big Five factors, and an impressive body of empir-
ical research supports their stability and predictive validity (see
McCrae & Costa, 1997). However, confirmatory factor analyses
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(CFAs) have failed to provide clear support for the five-factor
model on the basis of standard measures such as the NEO instru-
ments. For example, in a particularly relevant study comparing
EFA and CFA factor structures based on NEO–Personality Inven-
tory (NEO-PI) responses, Vassend and Skrondal (1997) reported
highly discrepant findings, leading them to conclude

(i) that the original NEO-PI model as well as later EFA-based revi-
sions are false or at least unsatisfactory, and (ii) that at present we do
not know how the NEO-PI scales should be modeled with the aim of
obtaining a common, acceptable NEO-PI version. (p. 157)

Problematic results based on CFAs have led some researchers to
question the appropriateness of CFA for Big Five research (see
Borkenau & Ostendorf, 1990; Church & Burke, 1994; McCrae,
Zonderman, Costa, Bond, & Paunonen, 1996; Parker, Bagby, &
Summerfeldt, 1993; Vassend & Skrondal, 1997). However, many
of the methodological and statistical advances in quantitative psy-
chology in the last 2 decades are associated with latent-variable
approaches such as CFA and structural equation models (SEMs).
Hence, failure to embrace these new and evolving methodologies
(throwing the baby out with the bathwater) would have dire
consequences—particularly for a field of research so fundamen-
tally based on factor analysis. Indeed, assumptions of factorial and
measurement invariance (in relation to multiple groups, time,
covariates, and outcomes) that underpin nearly all Big Five studies
cannot be appropriately evaluated with traditional approaches to
EFA and thus have been largely ignored in Big Five EFA research.
Here we outline a new approach to factor analysis—an integration
of EFA and CFA—that has the potential to resolve this dilemma
and has wide applicability to all disciplines of psychology that are
based on the measurement of latent constructs. Thus, our study is
a substantive-methodological synergy (Marsh & Hau, 2007), dem-
onstrating the importance of applying new and evolving method-
ological approaches to substantively important issues.

Methodological Focus: Exploratory Structural
Equation Modeling (ESEM)

EFA Versus CFA

Many measurement instruments used in psychological assess-
ment apparently have well-defined EFA structures but are not
supported by CFAs (Marsh et al., 2009). This concern led McCrae
et al. (1996) to conclude:

In actual analyses of personality data from Borkenau and Ostendorf
(1990) to Holden and Fekken (1994), structures that are known to be
reliable showed poor fits when evaluated by CFA techniques. We
believe this points to serious problems with CFA itself when used to
examine personality structure. (p. 568; also see Costa & McCrae,
1992, 1995; McCrae & Costa, 1997)

Church and Burke (1994) similarly concluded on the basis of their
empirical research that

Poor fits of a priori models highlighted not only the limited specificity
of personality structure theory, but also the limitations of confirmatory
factor analysis for testing personality structure models. (p. 93)

They argued that the independent clusters model (ICM) used in
CFA studies, which requires each indicator to load on only one
factor, is too restrictive for personality research, because indicators
are likely to have secondary loadings unless researchers resort to
using a small number of near-synonyms to infer each factor.

Marsh et al. (2009) claimed that, consistent with these concerns,
many ad hoc strategies used to compensate for the inappropriate-
ness of CFA in psychological research more generally are dubious,
counterproductive, misleading, or simply wrong. Of particular
relevance to the present investigation, the inappropriate imposition
of zero factor loadings usually leads to distorted factors with
positively biased factor correlations that might lead to biased
estimates in SEMs incorporating other constructs (also see Marsh
et al., 2009). In a similar vein, Marsh (2007; Marsh, Hau, &
Grayson, 2005) concluded that many psychological instruments
used in applied research do not even meet minimum criteria of
acceptable fit according to current standards.

Apparently, many applied researchers persist with inappropriate
ICM-CFA models because they believe that EFA approaches are
outdated and that methodological advances associated with CFAs
are not applicable to EFAs. Here we demonstrate how it is possible
to apply EFA rigorously in a way that allows researchers to define
more appropriately the underlying factor structure and to still
apply the advanced statistical methods typically associated with
CFAs and SEMs. This is accomplished with the ESEM procedure
recently implemented in the Mplus statistical package (Version
5.2, Muthén & Muthén, 2008). Within the ESEM framework, the
applied personality researcher has access to typical SEM parame-
ter estimates, standard errors, goodness-of-fit statistics, and statis-
tical advances normally associated with CFA and SEMs (see
Asparouhov & Muthén, 2009; Marsh et al., 2009). Here we apply
ESEM to NEO-FFI responses.

Tests of Factorial and Measurement Invariance

We know of no CFAs carried out at the item level—particularly
for research based on the NEO-FFI instrument used to measure the
Big Five personality factors—that provide acceptable support for
the a priori Big Five factor structure. This is remarkable, given the
widespread acceptance of the Big Five factor structure and the
NEO-FFI. Hence, it is not surprising that research into the Big
Five factor structure on responses to individual items continues to
be based almost entirely on EFA (for exceptions, see Benet-
Martinez & John, 1998; Dolan, Oort, Stoel, & Wichterts, 2009;
Gustavsson, Eriksson, Hilding, Gunnarsson, & Ostensson, 2008;
also see Reise, Smith, & Furr, 2001). We suggest that this failure
to apply CFA models in Big Five research is due in large part to
the inappropriateness of the typical ICM-CFA structure. Although
identification of the appropriate factor structure is important in its
own right, there are many other important advantages to the use of
CFA that cannot be easily incorporated into EFA and thus have
been largely ignored in Big Five personality research. Thus, for
example, studies that use Big Five scale scores (or factor scores
based on EFAs) are not corrected for measurement error. Although
it is possible to correct for a simple form of measurement error
(i.e., the typical correction for attenuation based on reliability
estimates), in many applications the error structure is more com-
plex (e.g., longitudinal studies as considered here), so the typical
correction for attenuation is not sufficient.
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A particularly important application of CFA techniques is to test
the assumptions about the invariance of the Big Five factor struc-
ture over multiple groups or over time (Gustavsson et al., 2008;
Nye, Roberts, Saucier, & Zhou, 2008; Reise et al., 2001). Unless
the underlying factors are measuring the same construct in the
same way and the measurements themselves are operating in the
same way (across groups or over time), mean differences and other
comparisons are likely to be invalid. Although some aspects of
factor similarity can be addressed in part with EFA approaches
(e.g., the similarity of the factor loadings), most cannot. In partic-
ular, an important assumption in the comparison of Big Five
factors over different groups (e.g., men and women) or over time
is the invariance of item intercepts. More specifically, it is impor-
tant to ascertain that mean differences based on latent constructs
(Big Five factors) are reflected in each of the individual items used
to infer the latent constructs. For example, if the apparent level of
gender differences in Extraversion varies substantially from item
to item for different items used to infer this construct, then the
gender differences based on the corresponding latent construct are
idiosyncratic to the particular items used to infer Extraversion.
Similarly, if responses to individual Extraversion items differ
systematically with age (for different respondents) or over time
(for the same respondents), then findings based on comparisons of
scale scores might be invalid. In each case, these results would
suggest that conclusions about differences in Extraversion do not
generalize over even the set of items used in the instrument—let
alone the population of items that could have been used. Hence,
conclusions about differences in Extraversion might be idiosyn-
cratic to the particular set of items and not be generalizable. From
this perspective, it is important to evaluate the invariance of
different aspects of the factor structure at the level of the individual
item. Although issues of noninvariance of item intercepts (hereaf-
ter referred to as differential item functioning) are well known in
evaluating the appropriateness of standardized achievement tests,
these issues have been largely ignored in Big Five research (but
see Jackson et al., 2009; Nye et al., 2008; Reise et al., 2001).

Substantive Focus on Big Five Personality Factors
and the NEO-FFI

Gender Differences in Personality Traits

There is a long history of the search for gender differences in
personality research (e.g., Feingold, 1994; Hall, 1984; Maccoby &
Jacklin, 1974). Noting that Feingold (1994) had organized his
review in part on the basis of the five broad factors and 30 facets
of the NEO-PI, Costa, Terracciano, and McCrae (2001) greatly
expanded the research based on the 30 facets measured by the
NEO-PI-R for responses from 26 countries (N � 23,031). Inter-
estingly, they found that gender differences within the set of six
facets comprising each of the Big Five factors were not entirely
consistent. Women had consistently higher scores across six facets
representing Neuroticism and Agreeableness, whereas gender dif-
ferences were consistently small for Conscientiousness. However,
gender differences were less consistent for Extraversion and Open-
ness; for each of these Big Five factors at least two (of six) facets
favored women and at least two favored men. Hence, the size and
even the direction of gender differences would differ depending on
which facet (or mix of facets) was considered. Thus, even at the

facet level there is apparently differential item (facet) functioning
for some of the Big Five factors that compromises conclusions
based on Big Five measures that are aggregated across facets.
Logically, this implies that there is also likely to be differential
item functioning at the level of individual items in relation to
gender differences for NEO-FFI responses considered here.

Although there is considerable study-to-study variation in ob-
served gender differences that may be a function of age, nation-
ality, and the particular instrument considered, there is clear sup-
port for the conclusions that women tend to score higher than men
in relation to Neuroticism and Agreeableness. Although less con-
sistent, there is also evidence that women score higher on Consci-
entiousness and Extraversion but no clear support for evidence of
gender differences in Openness. There is no evidence that men
score higher than women on any of the Big Five factors as
measured and labeled on the NEO-FFI (although women’s higher
scores on Neuroticism are sometimes summarized as lower scores
on emotional stability). Particularly relevant to the current study
(based on late-adolescent responses by Germans), Schmitt, Realo,
Voracek, and Allik (2008) reported that for their German sample
(N � 790), women scored higher than men did on all Big Five
factors: Neuroticism (d � 0.48), Extraversion (d � 0.12), Agree-
ableness (d � 0.09), Conscientiousness (d � 0.23), and Openness
(d � 0.11). Similarly, Donnellan and Lucas (2008) found that for
the late-adolescent sample (ages 16–19 years) most relevant to the
present investigation, German women consistently scored higher
than German men did: Neuroticism (d � 0.47), Extraversion (d �
0.24), Agreeableness (d � 0.31), Conscientiousness (d � 0.34),
and Openness (d � 0.36).

Longitudinal Invariance: Stability and Change in
Personality Traits

The literature on personality development distinguishes several
types of personality change and continuity (Caspi & Shiner, 2006;
Lüdtke, Trautwein, & Husemann, 2009). Here we distinguish
between correlational (rank-order), mean-level, and structural sta-
bility over time.

For correlational stability, cross-sectional and longitudinal re-
search (Roberts & DelVecchio, 2000; see also Fraley & Roberts,
2005; Klimstra, Hale, Raaijmakers, Branje, & Meeus, 2009;
Lüdtke et al., 2009) shows that correlational stability increases
with age, particularly for the middle-to-late adolescent period that
is the focus of the present investigation.

Studies of mean-level change with respect to life-span changes
in Big Five traits show that most people become more dominant,
agreeable, conscientious, and emotionally stable. Caspi, Roberts,
and Shiner (2005) coined the term maturity principle to describe
these findings of increasing psychological maturity from adoles-
cence to middle age. In their meta-analysis of longitudinal studies,
Roberts, Walton, and Viechtbauer (2006) also found substantial
increases in Openness. For the 18–22 age group most relevant to
the present investigation, Robins, Fraley, Roberts, and Trz-
esniewski (2001) found that, over a 4-year period, Agreeableness
(d � 0.44), Conscientiousness (d � 0.27), and Openness (d �
0.22) increased and Neuroticism (d � –0.49) decreased. No sta-
tistically significant change was found for Extraversion. In sum-
mary, although results from these studies are not entirely consis-
tent, there is general support for the maturity principle of increases
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in all Big Five factors (or decreases in Neuroticism instead of
increases in Emotional Stability) except, perhaps, for Extraversion.

Structural stability assesses the extent to which the same factors
are being assessed in different groups or over time. At least some
level of structural invariance is a prerequisite for assessing either
mean differences between groups or stability over time. If the
nature of the factors changes so that factors are qualitatively
different, then interpretations of stability over time are question-
able. It is most appropriate to evaluate factorial and measurement
invariance on the basis of responses to individual items. However,
personality researchers have been remarkably unsuccessful in ob-
taining acceptable levels of goodness of fit for the a priori Big Five
factor CFA structure when analysis of the structure is based on
responses to individual items in studies of the NEO-FFI instrument
considered here. Indeed, this might be considered the major lim-
itation in Big Five personality research, particularly in relation to
testing assumptions underpinning the valid assessment of stability
over time as well as the valid comparison of latent means across
groups. For this reason some studies have sought to formally test full
measurement invariance based on mean responses averaged across
different items, facet scores (e.g., Gignac, 2009; McCrae et al., 1996;
Saucier, 1998; Small, Hertzog, Hultsch, & Dixon, 2003), parcel
scores (Allemand, Zimprich, & Hendriks, 2008; Allemand, Zimprich,
& Hertzog, 2007; Lüdtke et al., 2009; Marsh, Trautwein, Lüdtke,
Köller, & Baumert, 2006), or scale scores (e.g., Mroczek & Spiro,
2003). Although these analyses are potentially useful, they have
important limitations when conducted without prior verification of
measurement invariance at the item level—an assumption underlying
tests of mean differences (over time or across groups) and differential
item functioning that could compromise the validity of interpretations
based on analyses of aggregated scores (see later discussion for
further elaboration). In the present investigation, we address these
concerns, introducing a new ESEM approach that integrates the logic
of the EFA approach typically used in Big Five personality research
and the CFA approach widely argued to be inappropriate to Big Five
research.

The Present Investigation:
A Substantive-Methodological Synergy

Our study is a substantive-methodological synergy, demonstrat-
ing the power and flexibility of ESEM methods that integrate CFA
and EFA (on the basis of the Mplus statistical package; Muthén &
Muthén, 2008) to address substantively important issues about the
Big Five factor structure on the basis of responses to the 60-item
NEO-FFI instrument. We begin by comparing CFA and ESEM
approaches, testing the assumption that ESEM models fit better
than corresponding CFA models. For both CFA and ESEM mod-
els, we include both freely estimated uniquenesses (reflecting a
combination of measurement-error-specific variances) and a priori
correlated uniquenesses (CUs; covariances between the specific
variance components associated with two different items from the
same Big Five facet). Big Five theory posits that the Big Five
factors should be reasonably orthogonal, but constraining all (non-
target) cross-loadings to be zero in the ICM-CFA model is posited
to systematically inflate and bias estimates of the factor correla-
tions. Hence, support for the prediction that Big Five factors are
reasonably orthogonal is hypothesized to be stronger in ESEM
models than in CFA models.

We then extend ESEM to test a 13-model taxonomy of mea-
surement invariance, testing invariance of factor loadings, factor
variances–covariances, item uniquenesses, CUs, item intercepts,
and latent means—with a specific focus on gender differences in
the latent means of the Big Five factors. Of particular interest are
tests of the invariance of item intercepts that are an implicit
assumption in the comparison of latent (or manifest) group means
but are largely ignored in previous Big Five research (but see
Jackson et al., 2009; Nye et al., 2008; Reise et al., 2001). We
expect, on the basis of previous research, systematic differences,
mostly reflecting higher means for women (particularly for the
late-adolescent German sample considered here). We also predict
that, consistent with previous research, there is differential item
functioning in NEO-FFI responses (noninvariance of item inter-
cepts) that would compromise the interpretation of latent mean
comparisons, but we explore alternatives to circumvent this prob-
lem.

Finally, we apply ESEM to test–retest data, testing a set of
models of measurement invariance over time with the inclusion of
CUs relating responses to the same item on multiple occasions.
Although these (within-group) tests of longitudinal invariance
largely parallel those based on (between-group) tests over gender,
the substantive implications are quite different. Indeed, given that
participants are tested in their final year of high school at Time 1
(T1) and are tested 2 years after graduation at Time 2 (T2), it is
reasonable that there might be systematic changes in Big Five
latent means. We expect to see, based on the maturity principle,
decreases in Neuroticism and increases in Agreeableness, Open-
ness, and Conscientiousness.

Previous research has suggested a problem with the evaluation
of stability over time for NEO-FFI responses that is especially
relevant to the present investigation. NEO-FFI responses consis-
tently have high levels of short-term test–retest stability (.86–.90;
McCrae & Costa, 2004; Robins et al., 2001) and internal consis-
tency (.68–.86; Costa & McCrae, 1992). However, this research
suggests problems associated with a complex error structure in that
test–retest correlations are larger than internal consistency mea-
sures of reliability. In particular, test–retest correlations would be
greater than 1.0 if corrected for (internal consistency) unreliability.
This suggests that observed test–retest correlations are more pos-
itively biased by CUs associated with specific variances of the
same items administered on different occasions than negatively
biased by the failure to control for measurement error in the
factors. Traditional EFA approaches are unable to appropriately
distinguish between measurement error on each occasion, CUs
over time, and true stability of latent traits over time, but these
issues can be addressed by ESEM, as demonstrated in the present
investigation.

Method

Participants

The data come from a large, ongoing German study (Transfor-
mation of the Secondary School System and Academic Careers
[TOSCA]; see Köller, Watermann, Trautwein, & Lüdtke, 2004;
also see Lüdtke et al., 2009; Marsh, Trautwein, et al., 2006). A
random sample of 149 upper secondary schools in a single German
state was selected to be representative of the traditional and voca-
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tional gymnasium school types attended by the college-bound
student population. At T1, the students (N � 3,390; 45% men,
55% women) were in their final year of upper secondary schooling
(M age � 19.51, SD � 0.77). Two trained research assistants
administered materials in each school, and students participated
voluntarily, without any financial incentive. At T1, all students
were asked to provide written consent to be contacted again later
for a second wave of data collection. At T2, 2 years after gradu-
ation from high school, participants completed an extensive ques-
tionnaire taking about 2 hr in exchange for a financial reward of 10
euros (US$13).

For evaluation of longitudinal stability, our analyses are re-
stricted to the responses by the 1,570 (39% men, 61% women)
students who completed the NEO-FFI at both T1 and T2. To test
for attrition effects, we compared continuers, who participated at
both time points, to dropouts, who participated in only the first
wave. Continuers had slightly lower grade point averages (M �
2.3 vs. 2.5) and were more likely to be female. Selectivity effects
exceeding d � 0.10 were found for two of the Big Five scale
scores; continuers had higher Conscientiousness and Agreeable-
ness scores. Although dropouts and continuers differed statistically
significantly in some domains, the magnitude of these differences
was small and indicative of only small selectivity effects. We also
compare, as part of the analysis, factor structures based on all
students at T1 as well as those who completed instruments at both
T1 and T2.

Measures: Big Five Dimensions

The 60-item NEO-FFI (Costa & McCrae, 1992) provides a short
measure of the Big Five personality factors (Costa & McCrae,
1989). For each factor, McCrae and Costa (1989) selected 12 items
from the 180 items of the longer NEO-PI (and the full 240-item
NEO-PI-R), based primarily on correlations between each NEO-PI
item and factor scores (McCrae & Costa, 1989). We measured the
Big Five factors using the German version (Borkenau & Osten-
dorf, 1993) of the NEO-FFI, whose responses have high reliability,
validity, and comparability with responses to the original English-
language version (e.g., Borkenau & Ostendorf, 1993). In our study,
items were rated on a 4-point scale ranging from 1 (strongly
disagree) to 4 (strongly agree). Psychometric analyses of the
4-point response format show that this format has some advantages
over a 5-point scale (Lüdtke, Trautwein, Nagy, & Köller, 2004).
Coefficient alpha reliabilities at T1 and T2, respectively, were .78
and .80 (Extraversion), .72 and .73 (Agreeableness), .83 and .84
(Conscientiousness), .83 and .87 (Neuroticism), and .73 and .74
(Openness). Hence, consistent with previous research (e.g., Church
& Burke, 1994; McCrae et al., 1996), there are small increases in
reliability with increased age during this late-adolescent period.

Statistical Analyses

Analyses were conducted with Mplus (Version 5.2; Muthén &
Muthén, 2008). Preliminary analyses consisted of a traditional
CFA based on the Mplus robust maximum likelihood estimator
(MLR), with standard errors and tests of fit that are robust in
relation to nonnormality and nonindependence of observations
(Muthén & Muthén, 2008). The main focus is on the application of
ESEM to responses to the 60-item NEO Big Five personality

instrument. The ESEM approach differs from the typical CFA
approach in that all factor loadings are estimated, subject to con-
straints so that the model can be identified (for further details of
the ESEM approach and identification issues, see technical appen-
dix, Appendix 1 in the online supplemental materials; also see
Asparouhov & Muthén, 2009). Here we used an oblique geomin
rotation (the default in the Mplus) with an epsilon value of .5 and
the MLR estimation. A critical advantage of the ESEM approach
is the ability to test full measurement invariance for an EFA
solution in relation to multiple groups or occasions.

Factorial and measurement invariance. Marsh et al. (2009)
proposed a 13-model taxonomy of invariance tests that integrated
factor analysis (e.g., Jöreskog & Sörbom, 1988; Marsh, 1994,
2007) and measurement invariance (e.g., Meredith, 1964, 1993;
Meredith & Teresi, 2006) traditions to testing invariance over
multiple groups or occasions. Following the measurement invari-
ance tradition, we use terminology proposed by Meredith (1964,
1993) that has achieved broad acceptance. Although tests of in-
variance are frequently based on covariance matrices emerging
from the factor analysis tradition, tests of full measurement invari-
ance begin with raw data (or mean augmented covariance matri-
ces) and should be done at the item level to evaluate item func-
tioning.

In the Meredith (1964, 1993) tradition, the sequence of invari-
ance testing generally begins with a model with no invariance of
any parameter estimates (i.e., all parameters are freely estimated)
such that only similarity of the overall pattern of parameters is
evaluated (configural invariance). Technically, this model might
not be an invariance model in that it does not require any estimated
parameters to be the same. However, it does provide both a test of
the ability of the a priori model to fit the data in each group (or
occasion) without invariance constraints and a baseline for com-
paring other models that do impose equality constraints on the
parameter estimates across groups or over time. Configural invari-
ance models are followed by tests of weak measurement invari-
ance that are satisfied if factor loadings are invariant over groups
or occasions, although Byrne, Shavelson, and Muthén (1989) also
argued for the usefulness of a less demanding test of partial
invariance in which some parameter estimates are not constrained
to be invariant. Strong measurement invariance is satisfied if the
indicator means (i.e., the intercepts of responses to individual
items) and factor loadings are invariant over groups. If factor
loadings and item intercepts are invariant over groups, then
changes in the latent factor means can reasonably be interpreted as
changes in the latent constructs. Strict measurement invariance is
satisfied if factor loadings, item intercepts, and item uniquenesses
are all invariant across groups or over time. Strict measurement
invariance is required in order to compare Big Five (manifest)
scale scores (or factor scores) over time or across different groups.
As comparisons based on latent constructs are corrected for mea-
surement error, they require only strong measurement invariance.

The taxonomy of 13 partially nested models (Marsh et al., 2009)
expand this measurement invariance tradition; models vary from
the least restrictive model of configural invariance with no invari-
ance constraints to a model of complete invariance that posits strict
invariance as well as the invariance of the latent means and of the
factor variance–covariance matrix (see Table 1; for a more ex-
tended discussion of these issues, see also Marsh et al., 2009). All
models except the configural invariance model (Model 1) assume
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the invariance of factor loadings, but it is possible to test, for
example, the invariance of indicator uniquenesses with or without
the invariance of item intercepts. However, models with freely
estimated indicator intercepts and freely estimated latent means are
not identified. So in models with freely estimated intercepts, the
latent means are fixed to be zero. Then, when the intercepts are
constrained to equality across groups (or occasions), the latent
means are constrained to be zero in one group (or occasion) and
freely estimated in the second group (or occasion). In this manner,
the latent means in the second group (or occasion) and their
statistical significance reflect the differences between the two
groups (or occasions).

Here we demonstrate the application of tests of measurement
invariance over gender and across time on the basis of our taxon-
omy of invariance tests (see Table 1). Such tests have typically
used SEM/CFA. Related multiple-group methods have been pro-
posed for EFA (e.g., Cliff, 1966; Meredith, 1964), but they mainly
focus on the similarity of factor patterns rather than formal tests of
invariance (but also see Dolan et al., 2009). However, the ESEM
model can be extended to multiple groups or longitudinal analyses
such that the ESEM solution is estimated separately for each group
or occasion and parameters can be constrained to be invariant
across groups or over time (Marsh et al., 2009; also see technical
appendix, Appendix 1 in the supplemental materials).

CUs. In general, the use of ex post facto CUs should be
avoided (e.g., Marsh, 2007), but there are some circumstances in
which a priori CUs should be included. When the same items are
used on multiple occasions, there are likely to be correlations
between the unique components of the same item administered on
the different occasions that cannot be explained in terms of cor-
relations between the factors. Indeed, Marsh and Hau (1996;
Marsh, 2007), Jöreskog (1979), and others have argued that the
failure to include these CUs is likely to systematically bias param-
eter estimates such that test–retest correlations among matching
latent factors are systematically inflated, which can then system-
atically bias other parameter estimates (especially in SEMs). In the
extreme, test–retest correlations might be so substantially inflated
that the failure to include appropriate CUs can result in improper
solutions such as a nonpositive definite factor variance–covariance
matrix or estimated test–retest correlations that are greater than 1.0
(e.g., Marsh, Martin, & Debus, 2001; Marsh, Martin, & Hau,
2006). Previous research showed that short-term test–retest corre-
lations for NEO-FFI factors are systematically larger than internal
consistency estimates of reliability so that disattenuated test–retest
correlations would be greater than 1.0 (see earlier discussion). This
suggests that there are likely to be substantial CUs test–retest data
considered here. For this reason, Marsh and Hau argued that CUs
relating responses to the same items on different occasions should
always be included in the a priori model, but it is easy to evaluate
the extent to which the exclusion of these a priori CUs affects the
fit of the model and the nature of parameter estimates (particularly
test–retest stability coefficients) by constraining them to be zero.
Importantly, it is difficult to either test or correct complex struc-
tures of measurement error with EFAs and scale scores typically
used in Big Five research.

As described in more detail by McCrae and Costa (2004), in the
NEO-PI-R (with 240 items), each of the Big Five factors was
represented by six facets, and each facet was represented by
multiple items. However, in the construction of the (short)
NEO-FFI, items were selected to best represent each of the Big
Five factors without reference to the facets. More specifically,
each Big Five factor was represented by a factor score (based on
an EFA with varimax rotation), and items were selected that were
most highly correlated with this factor score. Hence, some facets
are overrepresented (relative to the design of the full NEO-PI-R),
whereas other facets are represented by a single item or not
represented at all. We posited that items that came from the same
facet of a specific Big Five factor would have higher correlations
than would items that came from different facets of the same Big
Five factor—beyond correlations that could be explained in terms
of the common Big Five factor that they represented. Here we
modeled these potentially inflated correlations due to facets as
CUs relating each pair of items from the same facet. Based on the
mapping of NEO-FFI items onto the NEO-PI-R facets (R. McCrae,
personal communication, December 1, 2008; also see Appendix 2
of the supplemental materials), this resulted in an a priori set of 57
CUs inherent to the design of the NEO-FFI. Although we argue
that this set of a priori CUs should be included in all factor
analyses of NEO-FFI responses, we systematically evaluate mod-
els with and without these CUs as well as the invariance of these
CUs over multiple (gender) groups and over time.

Goodness of fit. CFA/SEM research typically focuses on the
ability of a priori models to fit the data as summarized by sample

Table 1
Taxonomy of Invariance Tests for Evaluating Measurement
Invariance of Big Five Responses Across Multiple Groups or
Over Multiple Occasions

Model Parameters constrained to be invariant

1 None (configural invariance)
2 FL [1] (weak factorial/measurement invariance)
3 FL, Uniq [1, 2]
4 FL, FVCV [1, 2]
5 FL, Inter [1, 2] (strong factorial/measurement invariance)
6 FL, Uniq, FVCV [1–4]
7 FL, Uniq, Inter [1–3, 5] (strict factorial/measurement

invariance)
8 FL, FVCV, Inter [1, 2, 4, 5]
9 FL, Uniq, FVCV, Inter [1–8]

10 FL, Inter, LFMn [1, 2, 5] (latent mean invariance)
11 FL, Uniq, Inter, LFMn [1–3, 5, 7, 10] (manifest mean

invariance)
12 FL, FVCV, Inter, LFMn [1, 2, 4–6, 8, 10]
13 FL, Uniq, FVCV, Inter, LFMn [1–12] (complete factorial

invariance)

Note. Models with freely estimated LFMn constrain intercepts to be
invariant across groups, whereas models in which intercepts are free imply
that mean differences are a function of intercept differences. Values in
brackets represent nesting relations in which the estimated parameters of
the less general model are a subset of the parameters estimated in the more
general model under which it is nested. All models are nested under Model
1 (with no invariance constraints), whereas Model 13 (complete invari-
ance) is nested under all other models. FL � factor loadings; Uniq � item
uniquenesses; FVCV � factor variances–covariances; Inter � item inter-
cepts; LFMn � latent factor means. Parts of this table were adapted from
“Exploratory Structural Equation Modeling, Integrating CFA and EFA:
Application to Students’ Evaluations of University Teaching,” by H. W.
Marsh, B. Muthén, T. Asparouhov, O. Lüdtke, A. Robitzsch, A. J. S.
Morin, and U. Trautwein, 2009, Structural Equation Modeling, 16, p. 443,
Table 1. Copyright 2009 by Taylor & Francis.
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size independent indices of fit (e.g., Marsh, 2007; Marsh, Balla, &
Hau, 1996; Marsh, Balla, & McDonald, 1988; Marsh et al., 2005).
Here we consider the root-mean-square error of approximation
(RMSEA), the Tucker–Lewis index (TLI), and the comparative fit
index (CFI), as operationalized in Mplus in association with the
MLR estimator (Muthén & Muthén, 2008). We also considered the
robust chi-square test statistic and evaluation of parameter esti-
mates. For both the TLI and CFI, values greater than .90 and .95,
respectively, typically reflect acceptable and excellent fit to the
data. For the RMSEA, values less than .05 and .08 reflect a close
fit and a reasonable fit to the data, respectively (Marsh, Hau, &
Wen, 2004). However, we emphasize that these cutoff values
constitute only rough guidelines; there is considerable evidence
that realistically large factor structures (e.g., instruments with at
least 50 items and at least five factors) are typically unable to
satisfy even the minimally acceptable standards of fit (Marsh,
2007; Marsh et al., 2005; also see Marsh, Hau, Balla, & Grayson,
1998). However, because there are few applications of ESEM—
and none that fully evaluate the appropriateness of the traditional
CFA indices of fit—it is unclear how relevant these CFA indices
and proposed cutoff values are for ESEM studies (Marsh et al.,
2009).

In CFA studies it is typically more useful to compare the relative
fit of a taxonomy of nested (or partially nested) models designed
a priori to evaluate particular aspects of interest than to compare
that of single models (Marsh, 2007; Marsh et al., 2009). Any two
models are nested so long as the set of parameters estimated in the
more restrictive model is a subset of the parameters estimated in
the less restrictive model. This comparison can be based on a
chi-square difference test, but this test suffers the same problems
as the chi-square test used to test goodness of fit that led to the
development of fit indices (see Marsh et al., 1998). For this reason,
researchers have posited a variety of ad hoc guidelines to evaluate
when differences in fit are sufficiently large to reject a more
parsimonious model (i.e., the more highly constrained model with
fewer estimated parameters) in favor of a more complex model. It
has been suggested that support for the more parsimonious model
requires a change in CFI of less than .01 (Chen, 2007; Cheung &
Rensvold, 2001) or a change in RMSEA of less than .015 (Chen,
2007). Marsh (2007) noted that some indices (e.g., TLI and
RMSEA) incorporate a penalty for parsimony so that the more
parsimonious model can fit the data better than a less parsimonious
model can (i.e., the gain in parsimony is greater than the loss in
fit). Hence, a more conservative guideline is that the more parsi-

monious model is supported if the TLI or RMSEA is as good as or
better than that for the more complex model. Nevertheless, all
these proposals should be considered as rough guidelines or rules
of thumb.

Especially in relation to the taxonomy of invariance tests, sup-
port for the invariance of a set of parameters should be based in
part on the similarity of parameters in models that do not impose
invariance constraints as well as on the goodness of fit in models
that do. Here we focus on both the similarity of the patterns of
parameters and the levels of the parameter estimates. For example,
here we evaluate the similarity of factor loadings on the basis of
various CFA and ESEM models—whether the same item has a
relatively high or low factor loading across different groups (or
occasions)—with a profile similarity index (PSI). To compute the
PSI, we simply construct a column that contains all the factor
loadings for one group and a second column of corresponding
factor loadings for the second group and then correlate the values
from the two columns. Hence the PSI is merely the correlation
between the two sets of factor loadings. To evaluate levels of the
parameter estimates, we compare descriptive statistics for the set
of coefficients in each group. Ultimately, however, an evaluation
of goodness of fit must be based upon a subjective integration of
many sources of information, including fit indices, a detailed
evaluation of parameter estimates in relation to a priori hypotheses,
previous research, and common sense.

Results

Big Five Factor Structure: ESEM Versus CFA

The starting point for the present investigation is to test our a
prior hypothesis that the ESEM model provides a better fit to
NEO-FFI responses than does a traditional ICM-CFA model.
Indeed, as emphasized by Marsh et al. (2009), the ESEM analysis
is predicated on the assumption that ESEM performs noticeably
better than does the ICM-CFA model in terms of goodness of fit
(see Table 2) and the construct validity of the interpretation of the
factor structure.

The ICM-CFA solution does not provide an acceptable fit to the
data (CFI � .685, TLI � .672; see TGCFA1A in Table 2),
consistent with previous research. The next model (TGCFA1B)
incorporates a priori CUs (based on the facet structure of the
NEO-PI-R; see earlier discussion and Appendix 2 of the supple-
mental materials); results are still inadequate, albeit improved

Table 2
Summary of Goodness-of-Fit Statistics for Total Group Models (Time 1 Data)

Model and description �2 df CFI TLI NFParm RMSEA

Total group CFA
TGCFA1A: no CUs; no gender 15,488 1700 .685 .672 190 .049
TGCFA1B: CUs; no gender 12,567 1643 .750 .731 247 .044

Total group ESEM
TGESEM1A: no CUs; no gender 8,013 1480 .851 .821 410 .036
TGESEM1B: CUs; no gender 5,201 1423 .914 .893 467 .028

Note. CFI � comparative fit index; TLI � Tucker–Lewis index; NFParm � number of free parameters; RMSEA � root-mean-square error of
approximation; CFA � confirmatory factor analysis; ESEM � exploratory structural equation modeling; CUs � a priori correlated uniquenesses (based
on the facet design of the instrument).
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(CFI � .750, TLI � .731). The corresponding ESEM solutions fit
the data much better. Although the fit of the total group with no a
priori CUs is still not acceptable (TGESEM1A: CFI � .851,
TLI � .821; see Table 2), the inclusion of CUs results in a
marginally acceptable fit to the data (TGESEM1B: CFI � .914,
TLI � .893, RMSEA � .028).

It is also instructive to compare parameter estimates based on
the ICM-CFA and ESEM solutions (see Appendix 3 of the sup-
plemental materials). In both types of models, the factor loadings
tend to be modest, with few factor loadings greater than .70 and
some factor loadings less than .30. Although CFA factor loadings
(Mdn � .47) are slightly higher than those for the ESEM model
(Mdn � .46), the differences are typically small and the pattern of
factor loadings is similar for the CFA and ESEM solutions. To
quantify this subjective evaluation, we computed a PSI in which
the vector of 60 CFA factor loadings was related to the corre-
sponding vector of 60 EFA target loadings. The PSI (r � .87)
demonstrated that ESEM and CFA factor loadings were highly
related. Consistent with McCrae and Costa (2004), the 14 items
that they noted as potentially weak also had lower factor loadings
than the remaining 56 items did for both ICM-CFA (M � .38 vs.
.49, respectively) and ESEM (M � .32 vs. .48, respectively)
solutions. Although a few of these 14 items performed well here,
we note that these same items also did well in the original McCrae
and Costa study. Importantly, almost all 60 items load more
positively on the ESEM factor that each was designed to measure
and less positively on all other factors.

A detailed evaluation of the factor correlations among the Big
Five factors demonstrates a critical advantage of the ESEM ap-
proach over the ICM-CFA approach. Although patterns of corre-
lations are similar, the CFA factor correlations (–.502 to �.400;
Mdn absolute value � .197) tend to be systematically larger than
the ESEM factor correlations (–.205 to �.140; Mdn absolute
value � .064). Thus, for example, the negative correlation between
Neuroticism and Extraversion is –.502 on the basis of the CFA
solution but only –.205 for the ESEM solution. Similarly, the
correlation between Extraversion and Conscientiousness is �.400
for the CFA results but only �.104 for the ESEM results. In this
respect, the ESEM solution is more consistent with a priori pre-
dictions that the Big Five personality factors are reasonably or-
thogonal.

Clearly the ESEM solution is superior to the CFA solution, in
terms of both fit and distinctiveness of the factors that are consis-
tent with Big Five theory. The comparison of results from these
two models provides the initial and most important test for the
appropriateness of the ESEM model—at least relative to the CFA
model. It is also important to emphasize that the goodness of fit for
the ESEM model is apparently far better than what has ever been
achieved in previous research with the NEO-FFI on the basis of
factor analyses conducted at the item level.

Invariance Over Gender

How stable is the NEO-FFI factor structure over gender? Are there
systematic gender differences in latent means, and are the underlying
assumptions that are needed to justify interpretations of these results
met? To address these questions, we applied our taxonomy of 13
ESEM models (see Table 1). The basic strategy is to apply the set of
13 models designed to test different levels of factorial and measure-

ment invariance, ranging from the least demanding model, which
imposes no invariance constraints (configural invariance), to the most
demanding model, which posits complete gender invariance in rela-
tion to the Big Five factor structure, latent means, and item intercepts.
However, application of this taxonomy of models is complicated by
two features that are partially idiosyncratic to this application: the a
priori CUs and tests of partial invariance of item intercepts (Byrne et
al., 1989). The results already presented on the basis of the total
sample indicate that a priori CUs are necessary to achieve even a
minimally acceptable fit to the data. However, it is also important to
determine the extent to which these a priori CUs are invariant over
gender and how these influence the behavior of the various models.

For all 13 models we begin by evaluating the 57 a priori CUs.
Hence, we first test models with no CUs (e.g., MG1 in Table 3
corresponds to the first model in the invariance taxonomy in Table
1). We then test two additional variations: one in which the a priori
CUs are allowed to vary for men and women (submodels labeled
A in the Description column of Table 3, as in MG1A) and another
in which the CUs are constrained to be invariant over responses by
men and women (submodels labeled B in Table 3, as in MG1B).
Hence, within this set of three submodels there is a systematic
nesting to evaluate the a priori CUs and their invariance over
gender in relation to each of the 13 invariance models described in
Table 1.

For the models that posit gender differences in latent means for
the Big Five factors, we also test several models to evaluate partial
invariance. Submodels labeled C posit partial invariance (i.e., item
intercepts identified in preliminary analyses are freely estimated
and not constrained to be invariant over gender—see subsequent
discussion) but with no CUs. In submodels labeled D the set of
57 a priori CUs is added, and in submodels labeled E these a priori
CUs are constrained to be equal over gender. Hence, within this set
of five submodels there is a systematic nesting that allows evalu-
ation of the CUs and their invariance over gender, partial invari-
ance, and combinations of these constraints.

Model MG1 (see Table 3), with no invariance constraints, does
not provide an acceptable fit to the data (TLI � .823, CFI � .852).
Indeed, these fit statistics are approximately the same as those
based on the total group ESEM model (see TGESEM in Table 2)
with twice the degrees of freedom (2960 vs. 1480) and twice the
number of estimated parameters (820 vs. 410). However, consis-
tent with earlier results, the inclusion of the set of a priori CUs
substantially improves the fit to a marginally acceptable level
(TLI � .891, CFI � .912; see MG1A in Table 3). Importantly,
constraining these a priori CUs to be invariant over gender (see
MG1B in Table 3) resulted in almost no change in fit. For fit
indices that control for parsimony, the fit is essentially unchanged
or slightly better for MG1B than for MG1A, respectively (.891 to
.892 for TLI; .028 to .028 for RMSEA). For the CFI that is
monotonic with parsimony, the change (.912 to .911) is clearly less
than the .01 value typically used to support invariance constraints.
These results are substantively important, demonstrating that the
sizes of the 57 a priori CUs are reasonably invariant over gender.
For each of the 13 models used to test the factorial invariance of
the full mean structure (see Table 1), the inclusion of this set of a
priori CUs substantially improves the goodness of fit to a similar
degree. Furthermore, for each of these tests comparing freely
estimated CUs and constraining CUs to be invariant over gender,
there is support for the invariance of the CUs. The consistency of
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Table 3
Summary of Goodness-of-Fit Statistics for All Gender Invariance (IN) Models (Time 1 Data)

Model and description �2 df CFI TLI NFParm RMSEA

MG1 (configural IN)
MG1: no IN (configural IN) 9,373 2960 .852 .823 820 .036
MG1A: MG1 with CUs (not invariant over sex) 6,654 2846 .912 .891 934 .028
MG1B: MG1A with CUs IN (invariant over sex) 6,743 2903 .911 .892 877 .028

MG2 (FL; weak factorial/measurement IN)
MG2: IN � FL (weak factorial/measurement IN) 9,831 3235 .848 .833 545 .035
MG2A: MG2 with CUs 7,124 3121 .908 .895 659 .028
MG2B: MG2A with CUs IN 7,218 3178 .907 .896 602 .027

MG3 (FL & Uniq)
MG3: IN � FL, Uniq 10,264 3295 .839 .827 485 .035
MG3A: MG3 with CUs 7,513 3181 .900 .889 599 .028
MG3B: MG3A with CUs IN 7,644 3238 .898 .889 542 .028

MG4 (FL & FVCV)
MG4: IN � FL, FVCV 9,908 3250 .846 .833 530 .035
MG4A: MG4 with CUs 7,204 3136 .906 .894 643 .028
MG4B: MG4A with CUs IN 7,296 3193 .905 .895 587 .028

MG5 (FL & Inter; strong factorial/measurement IN)
MG5: IN � FL, Inter (strong factorial/measurement IN) 10,937 3290 .824 .810 490 .037
MG5A: MG5 with CUs 7,982 3176 .889 .876 604 .030
MG5B: MG5A with CUs IN 8,079 3233 .888 .878 547 .033
MG5C: MG5 with P-IN, no CUs 9,951 3267 .846 .833 513 .035
MG5D: MG5C with CUs 7,223 3153 .906 .895 627 .028
MG5E: MG5D with CUs IN 7,316 3210 .905 .895 570 .027

MG6 (FL, FVCV, Uniq)
MG6: IN � FL, FVCV, Uniq 10,346 3310 .838 .826 470 .035
MG6A: MG6 with CUs 7,602 3196 .898 .887 584 .029
MG6B: MG6A with CUs IN 7,731 3253 .897 .888 527 .028

MG7 (FL, Uniq, Inter; strict factorial/measurement IN)
MG7: IN � FL, Uniq, Inter (strict factorial/measurement IN) 11,377 3350 .815 .804 430 .038
MG7A: MG7 with CUs 8,376 3236 .881 .870 544 .031
MG7B: MG7A with CUs IN 8,505 3293 .880 .871 487 .031
MG7C: MG7 with Inter (P-IN), no CUs 10,383 3327 .837 .827 453 .035
MG7D: MG7C with CUs 7,611 3213 .899 .888 567 .028
MG7E: MG7D with CUs IN 7,744 3270 .897 .888 510 .028

MG8 (FL, FVCV, Inter)
MG8: IN � FL, FVCV, Inter 11,012 3305 .822 .809 475 .037
MG8A: MG8 with CUs 8,060 3191 .888 .875 589 .030
MG8B: MG8A with CUs IN 8,156 3248 .887 .877 532 .030
MG8C: MG8 with Inter (P-IN), no CUs 10,029 3282 .844 .832 498 .035
MG8D: MG8C with CUs 7,303 3168 .905 .893 612 .028
MG8E: MG8D with CUs IN 7,397 3225 .904 .894 555 .028

MG9 (FL, Uniq, FVCV, Inter)
MG9: IN � FL, FVCV, Uniq, Inter 11,458 3365 .813 .803 415 .038
MG9A: MG9 with CUs 8,464 3251 .880 .869 529 .031
MG9B: MG9A with CUs IN 8,591 3308 .878 .870 472 .031
MG9C: MG9 with Inter (P-IN), no CUs 10,467 3342 .836 .826 438 .035
MG9D: MG9C with CUs 7,700 3228 .897 .887 552 .029
MG9E: MG9D with CUs IN 7,829 3285 .895 .887 495 .029

MG10 (FL, Inter, LFMn; latent mean IN)
MG10: IN � FL, Inter, LFMn 11,550 3295 .809 .795 485 .039
MG10A: MG10 with CUs 8,625 3181 .874 .860 599 .032
MG10B: MG10A with CUs IN 8,720 3238 .873 .862 542 .032
MG10C: MG10 with Inter (P-IN), no CUs 10,466 3272 .834 .820 508 .036
MG10D: MG10C with CUs 7,749 3158 .894 .881 622 .029
MG10E: MG10D with CUs IN 7,842 3215 .893 .882 565 .029

MG11 (FL, Uniq, Inter, LFMn; manifest mean IN)
MG11: IN � FL, Uniq, Inter, LFMn 11,990 3355 .801 .790 425 .039
MG11A: MG10 with CUs 9,020 3241 .867 .854 539 .032
MG11B: MG10A with CUs IN 9,149 3298 .865 .855 482 .032
MG11C: MG10 with Inter (P-IN), no CUs 10,902 3332 .825 .814 448 .037
MG11D: MG10C with CUs 8,141 3218 .886 .875 562 .030
MG11E: MG10D with CUs IN 8,272 3275 .885 .875 505 .030

(table continues)

479NEW LOOK AT BIG FIVE FACTOR STRUCTURE



this pattern of results over the wide variety of different models is
impressive and provides clear support for the inclusion of these a
priori CUs based on the design of the NEO-FFI. However, in order
to facilitate communication of the results, we will focus primarily
on models in which CUs are included and constrained to be
invariant over gender (e.g., Model MG1B for Model 1).

Descriptive similarity of solutions for men and women. Be-
fore formally testing the invariance of different parameters over
gender, it is useful to evaluate the similarity of solutions when
these parameters are freely estimated for men and women (see
Appendix 4 of the supplemental materials). Of particular impor-
tance are the factor loadings. First we evaluate how similar the
pattern of factor loadings is for men and women based on a PSI
(i.e., the relation between the 300 factor loadings based on re-
sponses by men and those based on responses by women). The
extremely high PSI (r � .97) indicates that the pattern of factor
loadings is similar. Furthermore, the actual values of the factor
loadings are similar across the two groups. Nontarget loadings are
consistently small for both groups (Men: –.33 to �.32, Mdn �
–.01; Women: –.38 to �.32, Mdn � –.01), whereas target loadings
were consistently higher (Men: .05 to .74, Mdn � .46; Women: .10
to .73, Mdn � .46). Although there are apparently a few weak
items, even these items are typically weak across both groups. The
pattern of factor correlations for the two groups is also similar
(PSI � .93), whereas the absolute values of the correlations are
consistently small (Men: .01 to .20, Mdn � .06; Women: .00 to
.25, Mdn � .06). Item uniquenesses are also similar for the two
groups (PSI � .91), as are the values for the two groups (Men: .43
to .99, Mdn � .72; Women: .47 to .99, Mdn � .73).

The invariance of item intercepts is especially important for
subsequent tests of measurement invariance. The pattern of item
intercepts is similar for the two groups (PSI � .94), but intercepts
are somewhat higher for women (2.49 to 6.32, Mdn � 3.46) than
for men (3.52 to 5.95, Mdn � 3.42). A nominal test of the
significance of this difference was statistically significant (M for
men � 3.52, M for women � 3.83), t(59) � 7.15, p � .001
(similar tests of significance on each of the other sets of parameters
were nonsignificant). These differences in intercepts are consistent

with higher mean ratings by women, but more appropriate tests of
this observation require more formal tests of mean structure in-
variance pursued in the next section.

In summary, descriptive summaries of parameter estimates in
Appendix 4 of the supplemental materials suggest that the factor
solutions—with the possible exception of item intercepts—are
similar for the two groups. We now pursue formal tests of this
invariance in relation to the taxonomy of invariance models pre-
sented in Table 1.

Tests of invariance over gender. Weak factorial/measure-
ment invariance tests whether the factor loadings are the same
for men and women. Model MG2B (along with MG2 and
MG2A) tests the invariance of factor loadings over gender. The
critical comparison between the more parsimonious MG2B
(with factor loadings invariant) and less parsimonious MG1B
(with no factor loading invariance) supports the invariance of
factor loadings over gender. Fit indices that control for model
parsimony are as good or better for the more parsimonious
MG2B (TLI � .896 vs. .892; RMSEA � .027 vs. .028), whereas
the difference in CFI (.907 vs. .911) is less than the value of .01
typically used to reject the more parsimonious model.

Strong measurement invariance requires that item inter-
cepts—as well as factor loadings—be invariant over groups. The
critical comparison is thus between Models MG2B and MG5B and
tests whether differences in the 60 intercepts can be explained in
terms of five latent means (i.e., a complete absence of differential
functioning). The change in df � 55 represents the 60 new con-
straints on item intercepts minus the five latent factor means that
are now freely estimated. However, the fit of MG5B (CFI � .888,
TLI � .878) is not acceptable and is worse than the fit of the
corresponding model MG2B (CFI � .907, TLI � .896). Hence,
gender differences at the level of item means cannot be explained
in terms of the factor means, and there is differential item func-
tioning between gender groups.

Because there is strong evidence that item intercepts are not
completely invariant and invariance of item intercepts is so central
to the evaluation of latent mean differences, we pursued alternative
tests of partial invariance of item intercepts (see Models MG5C–

Table 3 (continued)

Model and description �2 df CFI TLI NFParm RMSEA

MG12 (FL, FVCV, Inter, LFMn)
MG12: IN � FL, FVCV, Inter, LFMn 11,638 3310 .808 .794 470 .039
MG12A: MG12 with CUs 8,717 3196 .873 .859 584 .032
MG12B: MG12A with CUs IN 8,812 3253 .872 .860 527 .032
MG12C: MG12 with Inter (P-IN), no CUs 10,552 3287 .832 .819 493 .036
MG12D: MG12C with CUs 7,838 3173 .892 .888 607 .029
MG12E: MG12D with CUs IN 7,931 3230 .892 .881 550 .029

MG13 (FL, Uniq, FVCV, Inter, LFMn; complete factorial IN)
MG13: IN � FL, Inter, Uniq, FVCV, LFMn 12,084 3370 .799 .789 410 .039
MG13A: MG13 with CUs 9,121 3256 .865 .853 524 .033
MG13B: MG13A with CUs IN 9,249 3313 .863 .854 467 .033
MG13C: MG13 Inter (P-IN), no CUs 10,994 3347 .824 .813 433 .037
MG13D: MG13C with CUs 8,240 3233 .884 .873 547 .030
MG13E: MG13D with CUs IN 8,368 3290 .883 .873 490 .030

Note. For multiple-group (MG) IN models, IN refers to the sets of parameters constrained to be invariant across the multiple groups. CFI � comparative
fit index; TLI � Tucker–Lewis index; NFParm � number of free parameters; RMSEA � root-mean-square error of approximation; CUs � correlated
uniquenesses; FL � factor loadings; Uniq � item uniquenesses; FVCV � factor variances–covariances; Inter � item intercepts; P-IN � partial IN;
LFMn � latent factor means.
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MG5E in Table 3). We identified, on the basis of (ex post facto)
modification indices in which we freed parameters one at a time,
23 (of 60) item intercepts that contributed most to the misfit
associated with the complete invariance of item intercepts (see
Appendix 2 of the supplemental materials). The results support
partial invariance of item intercepts. For example, fit indices that
control for parsimony are nearly the same for MG5E compared
with MG2B (.895 vs. .896 for TLI; .027 vs. .027 for RMSEA),
whereas the difference in CFIs (.905 vs. .907) is less than the .01
value that would lead to the rejection of constraints imposed in
MG5E. However, the interpretation of these results is cautioned by
ex post facto modifications (see subsequent discussion about par-
tial invariance).

Strict measurement invariance requires that item uniquenesses,
item intercepts, and factors loadings all be invariant over the
groups. Here, the critical comparison is between Models MG5 and
MG7; the change in df � 60 represents the 60 new constraints for
item uniquenesses. Although Model MG7B does not provide an
adequate goodness of fit to the data, the addition of the ex post
facto partial-invariance strategy for the intercepts substantially
improves the fit. However, the fit of MG7E (CFI � .897, TLI �
.888) is only marginally acceptable and is apparently worse than
the fit of the corresponding model MG5E (CFI � .905, TLI �
.895). However, comparison of all the various pairs of models that
test this invariance of the uniquenesses (MG3B vs. MG2B; MG6B
vs. MG4B; MG7B vs. MG5B; MG7E vs. MG5E; MG9B vs.
MG8B; MG9E vs. MG8E; MG11B vs. MG10B; MG13B vs.
MG12B; MG13E vs. MG12E) consistently results in a change in
CFIs that is slightly less than the .01 value typically used to
support the more parsimonious model with uniquenesses invariant.
Although it would be possible to pursue a strategy of partial
invariance of uniquenesses, we did not do so because the evalua-
tion of latent mean differences that is our main focus does not
depend on the invariance of uniquenesses.

Factor variance–covariance invariance is typically not a focus
of measurement invariance, but it is frequently an important focus
of studies of the invariance of covariance structures—particularly
studies of the discriminant validity of multidimensional constructs
that might subsequently be extended to include relations with other
constructs. Although the comparison of correlations among Big
Five factors across groups is common, these are typically based on
manifest scores that do not control for measurement error and
make implicit invariance assumptions that are rarely tested. Here,
the most basic comparison is between Models MG2 (factor load-
ings invariant) and MG4 (factor loadings and factor variance–
covariance invariant). The change in df � 15 represents the 10
factor covariances and five factor variances. The results provide
reasonable support for the additional invariance constraints, both
in terms of the values for the fit indices and their comparison with
MG2. For example, fit indices that control for parsimony are
nearly the same for MG4B compared with MG2B (.895 vs. .896
for TLI; .028 vs. .027 for RMSEA), whereas the difference in CFIs
(.905 vs. .907) is less than the .01 cutoff value that would lead to
the rejection of constraints imposed in MG4B.

Tests of the invariance of the latent factor variance–covariance
matrix, as is the case with other comparisons, could be based on
any pair of the six models in Table 3 that differ only in relation to
whether the factor variance–covariance matrix is free or not.
Although each of these pairs of models differs by df � 15,

corresponding to the parameters in the variance–covariance ma-
trix, they are not equivalent; support for the invariance of the
variance–covariance matrix could be found in some of those
comparisons but not in others. Although we suggest that the
comparison between Models MG4 and MG2 is the most basic
comparison, valuable information can also be obtained from the
other comparisons as well. Especially if there are systematic,
substantively important differences in the interpretations on the
basis of these different comparisons, further scrutiny would be
warranted in that true differences in the factor variance–
covariance matrix might be “absorbed” into differences in other
parameters that are not constrained to be invariant. Fortunately,
this complication is not evident in the present investigation, be-
cause support for the invariance of factor variance–covariance
matrix is consistent across each of these alternative comparisons.

Finally, we are now in a position to address the issue of the
invariance of the factor means across the two groups. The final
four models (see MG10–MG13 in Table 3) in the taxonomy all
constrain mean differences between men and women to be
zero—in combination with the invariance of other parameters.
Again, there are several models that could be used to test gender
mean invariance; they include (a) MG5 versus MG10, (b) MG7
versus MG11, (c) MG8 versus MG12, and (d) MG9 versus MG13.
However, our earlier inspection of item intercepts suggests that
there are systematic gender differences in latent means. Hence, it
is not surprising that Models 10–13 are also rejected. These results
imply that latent means representing the Big Five factors differ
systematically for men and women. Consistent with a priori pre-
dictions, latent means are systematically higher for women on all
Big Five latent means, although the largest differences are for
Neuroticism and Conscientiousness.

An alternative, pragmatic approach to the comparison of the
means for the different models is to evaluate the extent to which
the pattern of latent mean gender differences vary as a function of
the models considered. Hence, in Table 4 we summarize gender
differences on the basis of each of the 24 models that provide
estimates of gender differences. The set of 276 PSIs among all
possible pairs of the 24 profiles varied from .852 to .999 (mean r �
.957). Therefore, the pattern of gender differences was similar
across the different models. This suggests, at least in this applica-
tion, that gender differences are reasonably robust in relation to
violations of underlying assumptions of gender invariance in the
various models.

Invariance Over Time

With some adaptation, it is possible to apply the same set of 13
models to test the invariance of the Big Five factor structure over
time using the ESEM approach with test–retest data. As with the
tests of invariance over gender, we hypothesized that the same set
of 57 a priori CUs (based on the design of the NEO instrument) are
required. Because there are parallel CUs for T1 and T2 responses,
we can also test the invariance of these CUs over time. However,
we also posit a second a priori set of 60 CUs to account for the
residual associations between matching items at T1 and T2 (see
earlier discussion). Here we distinguish within-wave CUs
(WWCUs) and cross-wave CUs (CWCUs). The WWCUs consist
of 57 WWCUs that are specific to the design of the NEO-FFI
already considered in previous analyses. In the longitudinal models
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considered here, we also posit that the same set of WWCUs affect
responses at T1 and T2, and we test their invariance over time.
CWCUs are the set of 60 CWCUs relating uniquenesses associated
with matching items at T1 and T2. In these longitudinal models,
we evaluate the effect of their inclusion on goodness of fit and on
other parameter estimates in the model—particularly latent test–
retest correlations of the same construct over time.

Longitudinal factor structure of NEO-FFI responses. Con-
figural invariance refers to tests of whether the a priori model fits
the data when no invariance constraints are imposed (see LIM1 in
Table 5). In LIM1, no CUs are posited (neither WWCUs nor
CWCUs) and the fit of LIM1 is poor (CFI � .737, TLI � .712).
In LIM1A, the inclusion of the 60 CWCUs improves the fit
substantially (CFI � .886, TLI � .874,) but is still not acceptable.
In LIM1B, the two sets of 57 WWCUs (but not CWCUs) are added
to Model LIM1 and then constrained to be invariant over time in
LIM1C. Based on goodness of fit, there is a modest increase in fit
associated with the addition of WWCUs and little or no decrement
in fit associated with holding them invariant over the two waves of
data. However, both of these models are technically improper in
that the factor variance–covariance matrix is not positive definite
(suggesting that some single latent variable or combination of
latent variables is a linear combination of some other variable or
some different combination of variables). Clearly this dictates
caution in the interpretation of the results or, perhaps, that this

model should simply be rejected as misspecified. Although these
problems support our contention that CWCUs should be included,
we return to this issue shortly.

In Model LIM1D, all the a priori CUs are included (the two
sets of WWCUs and the one set of CWCUs). Then, in LIM1E,
the two sets of WWCUs are constrained to be invariant over
time. Unlike in the previous two longitudinal models, solutions
based on these models are fully proper, represent a substantial
improvement in goodness of fit over previous models, and are
at least marginally acceptable in terms of goodness of fit (TLIs
and CFIs are greater than .90). Furthermore, Model LIM1E
provides good support for the invariance of the WWCUs over
time (T1 and T2).

It is also instructive to compare the parameter estimates based
on T1 and T2 ESEM solutions (see Appendix 4 of the supplemen-
tal materials). The sizes of the factor loadings tend to be modest,
with few factor loadings greater than .70 and some target factor
loadings less than .30. However, the pattern of loadings is similar
across the two waves (PSI � .98). Although T2 target loadings
(.10 to .72, Mdn � .50) are slightly higher than the T1 target
loadings (.05 to .72, Mdn � .48), the differences are small. For
both waves of data, the average nontarget loading is close to zero
but quite variable (T1: –.43 to .27, Mdn � .00; T2: –.41 to .26,
Mdn � .00). Also, the pattern of correlations among the 10 T1
factor correlations is similar to the matching T2 factor correlations

Table 4
Patterns of Gender Differences on Big Five Latent Mean Factors

Model and description NEUR EXTR OPEN AGRE CONC

MG5 (strong factorial/measurement IN)
MG5: IN � FL, Inter .622 .317 .378 .173 .597
MG5A: MG5 with CUs .647 .330 .363 .156 .660
MG5B: MG5A with CUs IN .646 .330 .361 .157 .660
MG5C: MG5 with P-IN, no CUs .524 .436 .362 .289 .571
MG5D: MG5C with CUs .553 .429 .333 .306 .598
MG5E: MG5D with CUs IN .552 .430 .334 .307 .596

MG7 (strict factorial/measurement IN)
MG7: IN � FL, Uniq, Inter .621 .322 .381 .176 .600
MG7A: MG7 with CUs .642 .338 .365 .159 .667
MG7B: MG7A with CUs IN .643 .337 .364 .158 .667
MG7C: MG7 with P-IN, no CUs .525 .443 .365 .294 .576
MG7D: MG7C with CUs .551 .439 .335 .312 .605
MG7E: MG7D with CUs IN .551 .437 .335 .311 .603

MG8
MG8: IN � FL, FVCV, Inter .680 .285 .374 .163 .579
MG8A: MG8 with CUs .706 .294 .361 .156 .641
MG8B: MG8A with CUs IN .708 .292 .358 .156 .641
MG8C: MG8 with P-IN, no CUs .586 .405 .359 .281 .552
MG8D: MG8C with CUs .614 .398 .332 .302 .577
MG8E: MG8D with CUs IN .614 .398 .332 .302 .576

MG9
MG9: IN � FL, FVCV, Uniq, Inter .680 .287 .374 .164 .577
MG9A: MG9 with CUs .706 .297 .358 .156 .639
MG9B: MG9A with CUs IN .707 .295 .357 .155 .641
MG9C: MG9 with P-IN, no CUs .588 .408 .359 .283 .553
MG9D: MG9C with CUs .615 .401 .331 .305 .578
MG9E: MG9D with CUs IN .614 .400 .330 .304 .578

Note. See Tables 1 and 2 for a description of the models. Each of the 28 models provides estimates of gender differences in the Big Five factors under
different assumptions. The pattern of gender differences across the 28 models is similar, with the correlation varying from .848 to .999 (mean r � .959).
NEUR � Neuroticism; EXTR � Extraversion; OPEN � Openness; AGRE � Agreeableness; CONC � Conscientiousness; MG � multiple group; IN �
invariance (for multiple-group IN models, IN refers to the sets of parameters constrained to be invariant across the MGs); FL � factor loadings; Inter �
item intercepts; CUs � correlated uniquenesses; P-IN � partial IN; Uniq � item uniquenesses.
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(PSI � .954). In each case, the absolute value of correlations is
modest (T1: Mdn r � .096; T2: Mdn r � .088). Finally, the pattern
of intercepts is also similar (PSI � .966), although T1 intercepts
are consistently somewhat lower than those at T2 (T1: Mdn �
3.56, M � 3.75; T2: Mdn � 3.61, M � 3.83). Particularly results for
T1 responses are similar to those considered earlier (see Table 2), but
this is hardly surprising, because the T1 responses considered here are
a subset of the data considered earlier. What is important, however, is
that the factor solution for T1 is highly similar to that based on T2
responses by the same students. Next we pursue more formal tests of
these observations for ESEM models of longitudinal invariance. On
the basis of our initial analyses, primarily submodel E, which includes
CWCUs and invariant WWCUs, is considered.

Invariance of NEO-FFI factor structure over time. Weak
factorial/measurement invariance tests the invariance of factor
loadings over time. Because model LIM2E (with factor loadings
invariant over time) is so much more parsimonious than is LIM1E
(factor loadings free), it is not surprising that the CFI is marginally
better for LIM1E (.912) than for LIM2E (.907; see Table 5).
However, this difference is less than the .01 difference typically
taken as support for the less parsimonious model. Furthermore,
indices that take into account parsimony (TLI and RMSEA) are
nearly identical for the two models. Consistent with this observa-
tion, factor loadings for T1 and T2 when invariance constraints
were not imposed were very similar (see earlier discussion).

Strong measurement invariance requires that item inter-
cepts—as well as factor loadings—be invariant over time, and the
critical comparison is between Models LIM2E (factor loadings
invariance) and LIM5E (factor loadings and item intercepts invari-
ant). The CFI for LIM5E (.899) is marginally lower than those for
LIM2E (�CFI � .008) and particularly LIM1E (�CFI � .013),
and these differences approach or exceed the nominal .01 cutoff.
This difference is also evident in differences in TLIs that control
for parsimony (.893 vs. .901 and .902 for LIM5E, LIM2E, and
LIM1E, respectively). These results indicate that there is only
modest support for invariance of item intercepts and suggest that
there might be differential item functioning over time. Further-
more, this pattern of results is replicated in the comparison of other
models that differ only in terms of intercept invariance (e.g.,
LIM8E vs. LIM4E, LIM9E vs. LIM6E). Because the invariance of
item intercepts is so central to the evaluation of latent mean
differences, we pursued alternative tests of partial invariance of
item intercepts. We identified, on the basis of (ex post facto)
modification indices, 11 (of 60) item intercepts that contributed
most to the misfit associated with the complete invariance of
item intercepts. We conclude, on the basis of submodel LIM5Ep
(the p indicating partial invariance; CFI � .904, TLI � .898),
that there is at least reasonable support for the partial invariance
of item intercepts. Although the improved fit of this submodel
(LIM5Ep) over the corresponding submodel of full intercept
invariance (LIM5E) is not large, for now we focus on models of
partial intercept invariance (based on freeing these 11 item
intercepts) rather than complete intercept invariance (but return
to this issue in subsequent discussion).

Strict measurement invariance requires that item uniquenesses,
as well as item intercepts and factor loadings, be invariant over
time. The critical submodel LIM7Ep tests the invariance of factor
loadings and item uniquenesses and partial invariance of item
intercepts (CFI � .899, TLI � .894). Consistent with interpreta-

tions of previous models, comparison of this submodel LIM7Ep
with model LIM5Ep suggests modest support for the invariance of
item uniquenesses (�CFI � .005, �TLI � .004). Additional com-
parisons of models differing only by the inclusion of invariant
items’ uniquenesses support this conclusion. Although it would be
possible to pursue tests of partial invariance of uniquenesses, we
did not do so as the evaluation of latent mean differences does not
depend on the invariance of uniquenesses.

Tests of the invariance of the latent factor variance–covariance
matrix, as is the case with other comparisons, could be based on
any pair of models in Table 5 that differ only in relation to whether
the factor variance–covariance matrix is free or not. The most
basic comparison (LIM4E vs. LIM2E) suggests good support for
the invariance of the factor variance–covariance matrix (�CFI �
.000, �TLI � .000). Other pairs of models in Table 5 that differ
only in relation to whether the factor variance–covariance matrix
is free or not also show good support for the invariance of the
factor variance–covariance matrix over time (also see related
test–retest correlations in Table 6).

Finally, we are now in a position to address the issue of the
invariance of the latent factor means over time. Submodels
LIM10Ep–LIM13Ep each test the invariance of latent mean dif-
ferences in combination with the invariance of other parameter
estimates. Because there are only five latent mean differences, the
additional parsimony associated with these models is not substan-
tial in comparison with the corresponding models that do not
constrain latent mean differences to be invariant. In each case, the
fit of models positing no latent mean differences is at least mar-
ginally poorer than the corresponding models in which latent mean
differences are freely estimated: Differences in CFI (.005 to .006)
and TLI (.006 to .007) are based on comparisons of submodels
LIM10E and LIM5E, LIM11E and LIM7E, LIM12E and LIM8E,
and LIM13E and LIM9E. However, support for systematic differ-
ences in latent means is only marginal.

Because evaluation of latent means is a central, a priori feature
of these models, we present mean differences for each of the 28
models that result in mean differences (see Table 7) rather than
rely exclusively on indices of fit—especially given that the results
based on the fit indices do not seem conclusive. There is a
remarkably similar pattern to the mean differences. The set of 378
PSIs between all possible pairs of profiles vary from .993 to over
.999 (mean PSI � .998). There are, however, small but systematic
differences in the size of means based on complete and partial
invariance constraints. In each case the absolute value of mean
differences based on complete invariance models is slightly larger
than that based on partial invariance. Thus, for example, the
standardized mean values for Neuroticism decline about .23 over
time for models of complete invariance but only about .20 for
models with partial invariance. For Agreeableness, there is an
increase of about .30 for models of complete invariance but in-
creases of only about .26 for models of partial invariance. There
are smaller increases in Openness and Conscientiousness that are
also slightly larger for models with complete invariance. Only for
measures of Extraversion are the standardized mean differences
consistently close to zero (statistically nonsignificant).

The changes in these latent mean differences over time—
especially the decrease in Neuroticism and the increases in Agree-
ableness, Openness, and Conscientiousness—are consistent with
the maturity principle (Caspi et al., 2005) discussed earlier. Indeed,
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Table 5
Summary of Goodness-of-Fit Statistics for All Longitudinal Invariance (IN) Models (Time 1/Time 2 Data)

Model and description �2 df CFI TLI NFParm RMSEA

LIM1 (configural IN)
LIM1: no IN (configural IN) 22,586 6535 .737 .712 845 .040
LIM1A: LIM1 with 60 CWCUs 13,439 6475 .886 .874 905 .026
LIM1B: LIM1 with 57 WWCUs (free)a 19,608 6421 .784 .760 959 .036
LIM1C: LIM1 with 57 WWCUs (IN)a 19,689 6478 .783 .761 902 .036
LIM1D: LIM1 with 60 CWCUs & 57 WWCUs (free) 11,700 6361 .912 .902 1019 .023
LIM1E: LIM1 with 60 CWCUs & 57 WWCUs (IN) 11,775 6418 .912 .902 962 .023

LIM2 (FL; weak factorial/measurement IN)
LIM2: IN � FL (weak factorial/measurement IN) 23,310 6810 .729 .716 570 .039
LIM2A: LIM2 with 60 CWCUs 14,031 6750 .881 .874 630 .026
LIM2B: LIM2 with 57 WWCUs (free)a 20,277 6696 .777 .763 684 .036
LIM2C: LIM2 with 57 WWCUs (IN)a 20,373 6753 .777 .764 627 .036
LIM2D: LIM2 with 60 CWCUs & 57 WWCUs (free) 12,269 6636 .908 .901 744 .023
LIM2E: LIM2 with 60 CWCUs & 57 WWCUs (IN) 12,363 6693 .907 .901 687 .023

LIM3 (FL & Uniq)
LIM3: IN � FL, Uniq 23,618 6870 .725 .715 510 .039
LIM3A: LIM3 with 60 CWCUs 14,341 6810 .877 .871 570 .027
LIM3B: LIM3 with 57 WWCUs (free)a 20,544 6756 .774 .761 624 .036
LIM3C: LIM3 with 57 WWCUs (IN)a 20,707 6713 .772 .761 567 .036
LIM3D: LIM3 with 60 CWCUs & 57 WWCUs (free) 12,543 6696 .904 .898 684 .024
LIM3E: LIM3 with 60 CWCUs & 57 WWCUs (IN) 12,695 6753 .903 .897 627 .024

LIM4 (FL & FVCV)
LIM4: IN � FL, FVCV 23,351 6825 .729 .717 555 .039
LIM4A: LIM4 with 60 CWCUs 14,069 6765 .880 .874 615 .026
LIM4B: LIM4 with 57 WWCUs (free)a 20,309 6711 .777 .763 684 .036
LIM4C: LIM4 with 57 WWCUs (IN)a 20,407 6768 .776 .764 612 .036
LIM4D: LIM4 with 60 CWCUs & 57 WWCUs (free) 12,298 6651 .907 .901 729 .023
LIM4E: LIM4 with 60 CWCUs & 57 WWCUs (IN) 12,393 6708 .907 .901 672 .023

LIM5 (FL & Inter; strong factorial/measurement IN)
LIM5D: IN � FL, Inter, with 60 CWCUs & 57 WWCUs (free) 12,796 6691 .900 .893 689 .024
LIM5E: LIM5D with 60 CWCUs & 57 WWCUs (IN) 12,888 6748 .899 .893 632 .024
LIM5Dp: LIM5D with Inter (P-IN), 60 CWCUs & 57 WWCUs (free) 12,524 6680 .904 .898 700 .024
LIM5Ep: LIM5D with Inter (P-IN), with 60 CWCUs & 57 WWCUs

(IN) 12,619 6737 .904 .898 643 .024
LIM6 (FL, FVCV, Uniq)

LIM6D: IN � FL, FVCV, Uniq, with 60 CWCUs & 57 WWCUs (free) 12,578 6711 .904 .898 669 .024
LIM6E: LIM6D with 60 CWCUs & 57 WWCUs (IN) 12,729 6768 .901 .897 612 .024

LIM7 (FL, Uniq, Inter; strict factorial/measurement IN)
LIM7D: IN � FL, Uniq, Inter, with 60 CWCUs & 57 WWCUs (free) 13,070 6751 .896 .890 629 .024
LIM7E: LIM7D with 60 CWCUs & 57 WWCUs (IN) 13,222 6808 .895 .890 572 .024
LIM7Dp: LIM7D with Inter (P-IN), with 60 CWCUs & 57 WWCUs

(free) 12,799 6740 .901 .895 640 .024
LIM7Ep: LIM7D with Inter (P-IN), with 60 CWCUs & 57 WWCUs

(IN) 12,950 6797 .899 .894 583 .024
LIM8 (FL, FVCV, Inter)

LIM8D: IN � FL, FVCV, Inter, with 60 CWCUs & 57 WWCUs (free) 12,826 6706 .900 .893 674 .024
LIM8E: LIM8D with 60 CWCUs & 57 WWCUs (IN) 12,919 6763 .899 .893 617 .024
LIM8Dp: LIM8D with Inter (P-IN), with 60 CWCUs & 57 WWCUs

(free) 12,554 6695 .904 .898 685 .024
LIM8Ep: LIM8D with Inter (P-IN), with 60 CWCUs & 57 WWCUs

(IN) 12,649 6752 .903 .898 628 .024
LIM9 (FL, Uniq, FVCV, Inter)

LIM9D: IN � FL, FVCV, Uniq, Inter, with 60 CWCUs & 57 WWCUs
(free) 13,106 6766 .896 .890 614 .024

LIM9E: LIM9D with 60 CWCUs & 57 WWCUs (IN) 13,257 6823 .894 .890 557 .025
LIM9Dp: LIM9D with Inter (P-IN), with 60 CWCUs & 57 WWCUs

(free) 12,834 6755 .900 .895 625 .024
LIM9Ep: LIM9D with Inter (P-IN), with 60 CWCUs & 57 WWCUs

(IN) 12,985 6812 .899 .894 568 .024
LIM10 (FL, Inter, LFMn; latent mean IN)

LIM10D: IN � FL, Inter, LFMn, with 60 CWCUs & 57 WWCUs
(free) 13,166 6696 .894 .887 684 .025

LIM10E: LIM10D with 60 CWCUs & 57 WWCUs (IN) 13,258 6753 .893 .887 627 .025
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given the relatively short interval between the two measures, it
might be surprising that the differences are as large as they are.
However, it is also important to note that these results are based on
responses by the same students in their final year of high school
and again several years later, a period during which changes in
maturity might be expected to be significant.

Discussion

Summary and Implications

The a priori Big Five factors are clearly identified by both
ESEM and ICM-CFA. The pattern and even the sizes of factor
loadings are similar for the two approaches. However, the ESEM
solution fits the data much better than does the ICM-CFA solution
and resulted in substantially less correlated factors (Mdn absolute
r � .06 vs. .20) that are consistent with Big Five theory.

Subsequent ESEM analyses support measurement invariance
over gender and over time—analyses that could not have been
done appropriately with traditional EFA approaches (or ICM-CFA
models that were not able to fit the data). The gender invariance
analysis showed that women scored higher on all five NEO-FFI
factors, whereas the analysis of test–retest data was supportive of
the maturity principle (Caspi et al., 2005). Although consistent
with previous research based on manifest variables, this is appar-
ently the first research to even pursue these issues in relation to
latent Big Five factors and appropriate tests of full measurement
and structural invariance in relation to a detailed taxonomy of
invariance models (e.g., see Table 1). This is critical in that

measurement invariance assumptions are prerequisite to making
valid mean comparisons—particularly the assumption of strong
measurement invariance with full or at least partial invariance of
item intercepts. Whereas we focused on mean differences across
gender and over time, strong measurement invariance require-
ments are equally relevant to all Big Five studies of mean differ-
ences for other groups or relations with other constructs. More
generally, we recommend that subsequent CFA studies routinely
consider ESEM solutions as a viable alternative, even when the fit
of CFA solutions is apparently acceptable.

Strengths, Limitations, and Directions for Further
Research

The size of factor correlations. Big Five factors are posited
to be relatively uncorrelated. This was a key issue in the McCrae
et al. (1996; also see Parker et al., 1993) criticism of CFA, because
they suggested that forcing an ICM-CFA structure would lead to
inflated correlations among the Big Five factors. Our results sup-
port this contention. In an ICM-CFA solution, the relation between
a specific item and a nontarget factor that would be accounted for
by a cross-loading can be represented only through the factor
correlation between the two factors. If there are at least moderate
cross-loadings in the true population model and these are con-
strained to be zero as in the ICM-CFA model, then estimated factor
correlations are likely to be inflated and the differences can be
substantial (e.g., .34 vs. .72; Marsh et al., 2009). This issue is also
relevant to research based on simple scale scores and EFA factor
scores. Correlations based on (a) ICM-CFA latent factors are likely

Table 5 (continued)

Model and description �2 df CFI TLI NFParm RMSEA

LIM10Dp: LIM10D with Inter (P-IN), with 60 CWCUs & 57 WWCUs
(free) 12,765 6685 .900 .894 695 .024

LIM10Ep: LIM10D with Inter (P-IN), 60 CWCUs & 57 WWCUs (IN) 12,859 6742 .900 .894 638 .024
LIM11 (FL, Uniq, Inter, LFMn; manifest mean IN)

LIM11D: IN � FL, Uniq, Inter, LFMn, with 60 CWCUs & 57
WWCUs (free) 13,440 6756 .890 .884 624 .025

LIM11E: LIM11D with 60 CWCUs & 57 WWCUs (IN) 13,593 6813 .889 .883 567 .025
LIM11Dp: LIM11D with Inter (P-IN), 60 CWCUs & 57 WWCUs

(free) 13,039 6745 .897 .891 635 .024
LIM11Ep: LIM11D with Inter (P-IN), 60 CWCUs & 57 WWCUs (IN) 13,191 6802 .895 .890 578 .024

LIM12 (FL, FVCV, Inter, LFMn)
LIM12D: IN � FL, FVCV, Inter, LFMn, with 60 CWCUs & 57

WWCUs (free) 13,196 6711 .894 .887 669 .025
LIM12E: LIM12D with 60 CWCUs & 57 WWCUs (IN) 13,289 6768 .893 .887 612 .025
LIM12Dp: LIM12D with Inter (P-IN), 60 CWCUs & 57 WWCUs

(free) 12,794 6700 .900 .894 680 .024
LIM12Ep: LIM12D with Inter (P-IN), 60 CWCUs & 57 WWCUs (IN) 12,889 6757 .899 .894 623 .025

LIM13 (FL, Uniq, FVCV, Inter, LFMn; complete factorial IN)
LIM13D: IN � FL, Uniq, FVCV, Inter, LFMn, with 60 CWCUs & 57

WWCUs (free) 13,476 6771 .890 .884 609 .025
LIM13E: LIM13D with 60 CWCUs & 57 WWCUs (IN) 13,628 6828 .889 .883 552 .025
LIM13Dp: LIM13D with Inter (P-IN), 60 CWCUs & 57 WWCUs

(free) 13,074 6817 .896 .891 620 .024
LIM13Ep: LIM13D with Inter (P-IN), 60 CWCUs & 57 WWCUs (IN) 13,226 6817 .895 .890 563 .024

Note. For multiple-group IN models, IN refers to the sets of parameters constrained to be invariant across the multiple groups. The p in model names (e.g.,
LIM5Dp) indicates partial IN (P-IN). CFI � comparative fit index; TLI � Tucker–Lewis index; NFParm � number of free parameters; RMSEA �
root-mean-square error of approximation; LIM � longitudinal IN model; CWCUs � cross-wave correlated uniquenesses (CUs); WWCUs � within-wave
CUs; FL � factor loadings; Uniq � item uniquenesses; FVCV � factor variances–covariances; Inter � item intercepts; LFMn � latent factor means.
a Model results in improper solutions and should be interpreted cautiously (or ignored).
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to be inflated as shown here; (b) EFA factor scores are likely to be
attenuated (because they do not correct for unreliability); and (c)
manifest scale scores are likely to be both inflated and attenuated
(although it would be difficult to determine the relative sizes of
these counterbalancing biases). In all ICM-CFA applications, fac-
tor correlations will be at least somewhat inflated unless all non-
target loadings are close to zero. This results in multicollinearity
and undermines discriminant validity in relation to predicting other
outcomes and providing distinct profiles of personality.

Complex measurement error structures. Big Five research
has largely ignored fundamental issues related to complex struc-
tures of measurement error. Although Big Five researchers rou-
tinely report coefficient alpha estimates of reliability, the “state of
the art” has moved well beyond these historically acceptable
measures. Coefficient alpha estimates of reliability provide an
index of one aspect of measurement error, but they largely ignore
other aspects of unreliability and do not correct parameter esti-
mates for unreliability (also see Sijtsma, 2009). Particularly in path
models with many different constructs, the failure to control for
measurement error can have unanticipated results (see discussion
of the phantom effect by Marsh et al., 2010).

For test–retest correlations, there are at least two crucial com-
ponents of measurement error that are typically off-setting at least
to an extent. Measurement error for constructs at each time con-
sidered separately attenuates the sizes of correlations. However,

responses to the same items on two occasions are typically more
positively correlated than can be explained in terms of correlations
between the factors that they represent, and this inflates the cor-
relations. Indeed, typical short-term test–retest correlations in Big
Five studies (.86–.90; McCrae & Costa, 2004) corrected for typ-
ical internal consistency reliability estimates (.68–.86; Costa &
McCrae, 1992) would result in test–retest correlations greater than
1.0. In the present investigation, estimated test–retest correlations
were based on a longer time interval but still approached 1.0 and
resulted in improper solutions. Problems such as these led Marsh
and Hau (1996) to recommend that CUs always be incorporated
into evaluations of test–retest correlations. Here we demonstrated
how this can be done in ESEM models.

In the present investigation, we also evaluated an additional
source of measurement error that is idiosyncratic to the design of
the NEO-FFI. More specifically, we posited that items from the
same facet of the long form of the NEO would be more highly
correlated than would items designed to measure the same factor
but from different facets. There was strong support for this addi-
tional source of measurement error; inclusion of WWCUs contrib-
uted substantially to goodness of fit, and they were reasonably
invariant over responses by men and women and over time for
responses by the same individuals. Although these WWCUs were
idiosyncratic to the design of the NEO-FFI, there are many other
method effects that also distort findings if not controlled. Indeed,

Table 6
Test–Retest Correlations Between Matching Big Five Factors at T1 and T2

Model
T2 NEUR with

T1 NEUR
T2 EXTR with

T1 EXTR
T2 OPEN with

T1 OPEN
T2 AGRE with

T1 AGRE
T2 CONC with

T1 CONC

1
LIM1 .777 .888 .915 .812 .899
LIM1A .749 .812 .849 .767 .810
LIM1Ba .793 .917 .953 .831 .931
LIM1Ca .794 .917 .953 .830 .932
LIM1D .760 .841 .873 .784 .833
LIM1E .760 .842 .874 .783 .835

2
LIM2 .780 .892 .921 .811 .901
LIM2A .750 .813 .850 .767 .811
LIM2Ba .794 .920 .957 .830 .933
LIM2Ca .795 .920 .957 .830 .934
LIM2D .759 .843 .880 .781 .831
LIM2E .760 .843 .879 .780 .832

3
LIM3 .780 .892 .922 .810 .900
LIM3A .748 .818 .850 .764 .814
LIM3Ba .794 .920 .959 .829 .932
LIM3Ca .795 .920 .958 .828 .933
LIM3D .756 .842 .878 .880 .831
LIM3E .757 .843 .879 .881 .832

4
LIM4 .775 .891 .921 .810 .901
LIM4A .744 .817 .850 .764 .814
LIM4Ba .791 .920 .957 .829 .933
LIM4Ca .791 .920 .958 .829 .935
LIM4D .756 .842 .878 .780 .831
LIM4E .756 .842 .878 .783 .831

Note. For a description of the models tested (e.g., LIM1, LIM1A) and their fit to the data, see Table 5. T1 � Time 1; T2 � Time 2; NEUR � Neuroticism;
EXTR � Extraversion; OPEN � Openness; AGRE � Agreeableness; CONC � Conscientiousness; LIM � longitudinal invariance model.
a These models result in improper solutions and should be interpreted cautiously (or ignored).
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the logic underlying these WWCUs is similar to that based on the
CWCUs that are routinely incorporated into longitudinal models.

Taxonomy of measurement invariance models. In psycho-
logical assessment research, there has been an unfortunate schism
between factor analysts, who focus on the invariance of factor
structures over groups or over time, and measurement invariance
researchers, who focus on differential item functioning and as-
sumptions underlying the appropriate comparison of latent or
manifest mean test scores. The taxonomy of invariance models
proposed here (also see Marsh et al., 2009) brings together these
two approaches. The actual models would be equally appropriate
for either ESEM or CFA approaches, although not for traditional
approaches to EFA. Although the taxonomy incorporates a richer
selection of models, it is not meant to be exhaustive. Indeed, here
we expanded the basic taxonomy to include diverse variations of
the models to incorporate a priori CUs and ex post facto partial
invariance. Furthermore, researchers might choose to focus on
some models rather than others in a specific application.

Our taxonomy is more comprehensive than traditional ap-
proaches to measurement invariance, allowing us to integrate
concerns typically not considered in studies of measurement in-
variance. Tests of measurement invariance typically follow a par-
ticular sequence of tests in which the fulfillment of invariance at
each step is dependent upon fulfillment of invariance on the
previous step. However, there is no reason why an applied re-
searcher, for example, should not evaluate the invariance of item
uniquenesses even if there is not support for the invariance of item
intercepts. Indeed, this is routine practice in tests from the factor
analysis perspective that typically do not even consider item-
intercept invariance. Furthermore, tests of measurement invariance

typically do not consider the invariance of variance–covariance
matrices, so that it is unclear where they would fit into a measure-
ment invariance sequence. In addition, tests of measurement in-
variance base critical decisions (e.g., invariance of item intercepts)
on the comparison of one pair of models. In contrast, our approach
provides tests of the invariance of the same set of parameter
estimates based on many different pairs of models. Although this
feature of our taxonomy appears to be potentially valuable, more
research is needed to evaluate this difference. Finally, it is impor-
tant to emphasize that we use terms such as configural invariance,
weak invariance, strong invariance, and strict invariance in pre-
cisely the same way as these terms are traditionally used in tests of
measurement invariance and that we use the same models as used
in tests of measurement invariance.

In summary, we suggest that this taxonomy makes two main
contributions. First, it provides a concrete set of models that
incorporates all or most of the specific models considered by both
factor analysts and measurement invariance researchers and then
identifies an apparent limitation in much personality research.
Second, the application of this taxonomy demonstrates the flexi-
bility of the ESEM approach, which integrates many of the best
features of traditional CFA and EFA approaches.

Goodness of fit. Quantitative psychologists are constantly
seeking universal “golden rules”—guidelines that allow them to
make objective interpretations of their data rather than being
forced to defend subjective interpretations (Marsh et al., 2004).
Marsh et al. (2004) likened this to pursuit of the mythical Golden
Fleece, the Fountain of Youth, and absolute truth and beauty—
appealing, but unlikely to ever be realized. Over time a plethora of
different indices have been proposed; most were substantially

Table 7
Patterns of Mean Differences Over Time for Big Five Factors

Model and description NEUR EXTR OPEN AGRE CONC

LIM5 (FL & Inter; strong factorial/measurement IN)
LIM5D: IN � FL, Inter, with 60 CWCUs & 57 WWCUs (free) �.228 .015 .176 .332 .227
LIM5E: LIM5D with 60 CWCUs & 57 WWCUs (IN) �.226 .016 .175 .331 .226
LIM5Dp: LIM5D with Inter (P-IN), with 60 CWCUs & 57 WWCUs (free) �.202 .032 .127 .260 .194
LIM5Ep: LIM5D with Inter (P-IN), with 60 CWCUs & 57 WWCUs (IN) �.200 .033 .127 .259 .193

LIM7 (FL, Uniq, Inter; strict factorial/measurement IN)
LIM7D: IN � FL, Uniq, Inter, with 60 CWCUs & 57 WWCUs (free) �.227 .015 .178 .336 .226
LIM7E: LIM7D with 60 CWCUs & 57 WWCUs (IN) �.227 .015 .178 .334 .226
LIM7Dp: LIM7D with Inter (P-IN), with 60 CWCUs & 57 WWCUs (free) �.203 .032 .129 .262 .193
LIM7Ep: LIM7D with Inter (P-IN), with 60 CWCUs & 57 WWCUs (IN) �.201 .032 .128 .261 .193

LIM8 (FL, FVCV, Inter)
LIM8D: IN � FL, FVCV, Inter, with 60 CWCUs & 57 WWCUs (free) �.235 .014 .171 .336 .227
LIM8E: LIM8D with 60 CWCUs & 57 WWCUs (IN) �.235 .014 .171 .336 .227
LIM8Dp: LIM8D with Inter (P-IN), with 60 CWCUs & 57 WWCUs (free) �.209 .032 .123 .255 .195
LIM8Ep: LIM8D with Inter (P-IN), with 60 CWCUs & 57 WWCUs (IN) �.208 .032 .123 .255 .195

LIM9 (FL, Uniq, FVCV, Inter)
LIM9D: IN � FL, FVCV, Uniq, Inter, with 60 CWCUs & 57 WWCUs (free) �.234 .014 .171 .337 .226
LIM9E: LIM9D with 60 CWCUs & 57 WWCUs (IN) �.235 .014 .171 .326 .227
LIM9Dp: LIM9D with Inter (P-IN), with 60 CWCUs & 57 WWCUs (free) �.220 .031 .123 .255 .194
LIM9Ep: LIM9D with Inter (P-IN), with 60 CWCUs & 57 WWCUs (IN) �.209 .031 .123 .255 .194

Note. See Tables 1 and 5 for a description of the models. Each of the 16 models provides estimates of latent mean differences over time for the Big Five
factors under different assumptions. The pattern of differences across the 16 models is very similar, with correlations varying from .993 to .999 (mean r �
.9975). The p in model names (e.g., LIM5Dp) indicates partial IN (P-IN). NEUR � Neuroticism; EXTR � Extraversion; OPEN � Openness; AGRE �
Agreeableness; CONC � Conscientiousness; LIM � longitudinal IN model; FL � factor loadings; Inter � item intercepts; IN � invariance (for
multiple-group IN models, IN refers to the sets of parameters constrained to be invariant across the multiple groups); CWCUs � cross-wave correlated
uniquenesses (CUs); WWCUs � within-wave CUs; Uniq � item uniquenesses; FVCV � factor variances–covariances.
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related but had somewhat different properties (e.g., Marsh et al.,
1988). However, there is even less consensus today than in the past
as to what constitutes an acceptable fit; some still treat the indices
and recommended cutoffs as golden rules, others argue that fit
indices should be discarded altogether, a few argue that we should
dispense with multiple indicators altogether and rely solely on
chi-square goodness-of-fit indices, and many (like us) argue that
they should be treated as rough guidelines to be interpreted cau-
tiously in combination with other features of the data (see the
special issue of Personality and Individual Differences [Vernon &
Eysenck, 2007], in which different authors advocate each of these
positions). These problems are not resolved by comparing the fit of
alternative models, because applied researchers are still left with
the task of deciding whether differences in model fit are suffi-
ciently large to be substantively meaningful. Nevertheless, there
are important advantages in using an a priori taxonomy of models
that facilitates communication and allows the researchers to pin-
point sources of misfit.

Given the lack of consensus about the appropriate use of fit
indices, it is not surprising that there is also ambiguity in their
application in ESEM and to the new issues that ESEM raises. For
example, because the number of factor loadings alone in ESEM
applications is the product of the number of items times the
number of factors, the total number of parameter estimates in
ESEM applications can be massively more than in the typical CFA
application. This feature might make problematic any index that
does not control for model parsimony (due to capitalization on
chance) and calls into question the appropriateness of controls for
parsimony in those indices that do. In the present investigation
(with 60 items and five factors) interpretations based on CFI and
TLI in relation to existing standards were reasonably interpretable,
whereas almost all the models considered here were “excellent” in
relation to an RMSEA cutoff of .05. Although changes in RMSEA
values for nested models behaved more reasonably, even here
there was not good differentiation between models for which the
fit was apparently relatively good and those for which it was
relatively poor.

In summary, the introduction of ESEM provides no panacea to
evaluating goodness of fit. Clearly there is need for more re-
search—particularly in relation to applied practice for which
ESEM is likely to be most beneficial. However, given the current
thinking about goodness of fit in CFA applications, unambiguous
cutoff values of acceptable fit—or even differences in fit for
nested models—seem unlikely. In the meantime, we suggest that
applied researchers use an eclectic approach based on a subjective
integration of a variety of different indices, detailed evaluations of
the actual parameter estimates in relation to theory, a priori pre-
dictions, common sense, and a comparison of viable alternative
models specifically designed to evaluate goodness of fit in relation
to key issues. This is consistent with the approach we used here
(and incorporates an emphasis on the careful consideration of
parameter estimates that constitutes best practice in personality
research based on EFAs). In particular, we recommend that cutoff
values for goodness-of-fit indices be interpreted cautiously and not
used mindlessly.

Other alternative approaches based on item aggregates.
Other researchers have used a variety of different strategies that
allowed them to apply CFA approaches to NEO responses (or
other Big Five measures). However, most of these Big Five studies

were not based on analyses at the item level, instead using one of
a variety of aggregate scores based on the mean response to
different items; for example, facet scores (e.g., McCrae et al.,
1996; Saucier, 1998; Small et al., 2003), parcel scores (e.g.,
Allemand et al., 2008, 2007; Lüdtke et al., 2009; Marsh,
Trautwein, et al., 2006), or scale scores (e.g., Mroczek & Spiro,
2003). Although potentially appropriate and useful for some spe-
cific purposes, aggregate scores have important limitations to their
use. Thus, for example, the use of item aggregates instead of
individual items would not allow researchers to evaluate (at the
level of the individual item) differential item functioning, items
with low target factor loadings, or items with substantial nontarget
cross-loadings (or modification indices that are indicative of cross-
loadings). Analyses of item aggregates also mask potential method
effects that are idiosyncratic to specific items.

Particularly when there are substantial cross-loadings at the
individual item level, analyses based on item aggregates that mask
these effects are likely to result in inflated factor correlations in
much the same way as the ICM-CFA models resulted in inflated
factor correlations compared with those calculated with the ESEM
approach. Also, results based on analyses of item aggregates
would not provide unambiguous information on how existing
instruments should be improved by identifying potentially weak
items. Furthermore, it is well known (see Marsh, 2007) that the use
of item parcels typically results in systematically inflated factor
loadings, lower indicator uniquenesses, and inflated goodness-of-
fit indices relative to corresponding analyses at the individual item
level. Thus, results about the quality of the factor solution based on
item aggregates are not comparable to those based on individual
items. Of particular relevance to the present investigation, it is
unlikely that tests of measurement invariance based on our taxon-
omy of invariance models would be valid unless they are based on
responses to individual items.

Although a detailed discussion of the rationale for using item
aggregates is beyond the scope of the present investigation (see
Little, Cunningham, Shahar, & Widaman, 2002; Marsh, 2007),
most of these rationales are based at least implicitly on the as-
sumption that the a priori model tested at the item level provides
a good fit to the data. However, it is difficult to support this
argument unless analyses are actually done at the item level.
Nevertheless, the controversial literature on the appropriate use of
item aggregates does suggest some special cases in which the use
of item aggregates might be justified (e.g., when the sample size is
small or the number of items is large). Our position is not that
analyses based on item aggregates are inherently bad but merely
that results should be interpreted appropriately and with due cau-
tion. We suspect that some analyses based on item aggregates were
conducted because of problems associated with application of the
ICM-CFA approach at the item level so that the ESEM approach
demonstrated here provides a viable alternative. Hence, we rec-
ommend that applied researchers who choose to do CFA analyses
at the item-aggregate level evaluate the appropriateness of the
ESEM approach for analyses at the individual item level and
compare results on the basis of the two approaches.

Partial invariance based on ex post facto modification indi-
ces. In the earlier discussion we indicated that this was an area of
concern, a limitation in the present investigation, and a direction
for further research. In the present investigation, support for the
full invariance of item intercepts in relation to time was marginal
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and was clearly lacking in relation to gender. We had a choice, as
is likely to be the case in many applied studies. We could have
adopted a purist perspective and simply not pursued any further
analyses. Instead we took a pragmatic perspective and sought
support for partial invariance. Although clearly ex post facto, there
are several justifications for our decision. First, the sample size
was sufficiently large that capitalization on chance was not a major
concern. Second, there were 12 items for each Big Five factor, so
at least five or six items per factor had invariant intercepts in our
tests of gender invariance (and even more for tests of invariance
over time). This is very different from many applications, which
are based on only a few items per factor such that there may be
only one or two items with invariant intercepts after introducing
partial invariance. Third, these ex post facto modifications were
reasonably invariant over gender and over time, supporting their
generalizability and stability. Finally, the patterns of gender dif-
ferences and latent mean differences over time were similar for the
fully and partially invariant solutions. A stronger approach might
be to posit a priori those item intercepts for which invariance is
likely to fail or, perhaps, to evaluate the ex post facto reasonable-
ness of item intercepts that were not invariant (e.g., Roberts et al.,
2006). However, we had no a priori basis for knowing which item
intercepts would fail and suspect that this is likely to be the case
for most applied studies. Also, we have always been a bit suspect
of the reasonableness of ex post facto explanations (if they are so
reasonable, then why was the explanation not an a priori hypoth-
esis). Furthermore, such ex post facto scrutiny is likely to be more
valuable when constructing an instrument—the stage when applied
researchers are selecting the best items from a large pool of
items—than when evaluating one of the most widely used instru-
ments in personality research. Nevertheless, we readily concede
that this issue is a limitation in our study and one that needs further
research and consideration in the context of ESEM and measure-
ment invariance more generally.

Conclusions

Why have Big Five researchers not taken more advantage of the
tremendous advances in statistical methodology that appear to be
highly relevant to important substantive concerns such as those
considered here? Many of these advances are based substantially
on CFA and related statistical techniques. We argued here that the
traditional ICM-CFA model is not appropriate for the NEO-FFI
and suspect that this would also be the case for many personality
measures. Indeed, this is commonly expressed by Big Five re-
searchers (e.g., McCrae et al., 1996) and is consistent with the
failure of Big Five CFAs based on item-level responses for NEO
instruments to achieve acceptable levels of fit (but see Benet-
Martinez & John, 1998). However, personality researchers pro-
claiming the inappropriateness of CFA are also forced to forgo the
many methodological advances that are associated with CFA, an
ironic situation in a discipline that has made such extensive use of
factor analysis. We suspect that the failure to incorporate these
important advances can be overcome—at least to some extent—
through application of the ESEM approach, as demonstrated here.

Importantly, the analytical strategies demonstrated here could
also be applied in traditional ICM-CFA studies. In this respect, we
present the ESEM model as a viable alternative to the ICM-CFA
model but do not argue that the ESEM approach should replace the

corresponding CFA approach. Indeed, when the more parsimoni-
ous ICM-CFA model fits the data as well as the ESEM model
does, then the ICM-CFA should be used. However, when the
ICM-CFA model is unable to fit the data whereas the ESEM model
is able to do so, we suggest that advanced statistical strategies such
as those demonstrated here are more appropriately conducted with
ESEM models than with ICM-CFA models. From this perspective,
our results provide clear evidence that an ESEM approach is more
appropriate than a traditional ICM-CFA approach for Big Five
responses to the NEO-FFI. Although ESEM is not a panacea and
may not be appropriate in some applications, it provides applied
personality researchers with considerable flexibility in addressing
issues such as those raised here when the traditional ICM-CFA
approach is not appropriate. Because ESEM is a new statistical
tool, best practice will have to evolve with experience. Neverthe-
less, results of the present investigation (also see Marsh et al.,
2009) provide considerable promise for the application of ESEM
in Big Five studies and in psychological assessment research more
generally.
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