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Chapter 1

Latent VariabLe Hybrids
Overview of Old and new Models

bengt Muthén1 
University of California, Los Angeles

Latent VariabLe Hybrids: 
OVerView Of OLd and new MOdeLs

The conference that this book builds upon contained many different special 
topics within the general area of modeling with categorical latent variables, 
also referred to as mixture modeling. The many different models addressed at 
that conference and within this volume may overwhelm a newcomer to the 
field. In fact, however, there are really only a small number of variations on 
a common theme. This chapter aims to distinguish the different themes, 
show how they relate to each other, and give some key references for fur-
ther study. Some new mixture models are also proposed.

Table 1.1 gives a summary of different types of latent variable models. 
An overview discussion of the models of Table 1.1 was presented in Muthén 
(2002). The entries of the table are types of models, with the rows dividing 
the models into cross-sectional and longitudinal and the columns divid-
ing models into traditional models with continuous latent variables, models 
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2 B. Muthén

with categorical latent variables, and newer hybrids using both types of la-
tent variables. The upper left cell includes conventional psychometric mod-
els such as factor analysis (FA) and structural equation models (SEMs). The 
bottom left cell contains the generalization to longitudinal settings, where 
the continuous latent variables appear in the form of random effects de-
scribing individual differences in development over time. The categorical 
latent variable column includes cross-sectional models such as latent class 
analysis (LCA), which in longitudinal settings generalizes to latent transi-
tion analysis (LTA). LTA is a longitudinal model in the class of auto-regres-
sive models (also including “hidden Markov” models), where the status at 
one time point influences the status at the next time point. Another LCA-
related model is latent class growth analysis (LCGA), where the outcomes 
are influenced by growth factors analogous to conventional random effects 
growth modeling. The current chapter gives an overview that emphasizes 
the last column of hybrid models, with the typical examples of factor mix-
ture analysis (FMA) and growth mixture modeling (GMM). As will be dis-
cussed, these models present useful generalizations of the models in the 
other columns, allowing for both classification of subjects in the form of 
latent classes and determination of continuous latent scores within these 
classes. All analyses to be discussed can be carried out using maximum-like-
lihood estimation in the Mplus program (Muthén & Muthén, 1998-2007).

Figure 1.1 gives a diagrammatic overview of hybrid latent variable mod-
els. The following sections will discuss the different branches of this dia-
gram. A key distinction is made between models that specify measurement 
invariance and those that do not. In this case, invariance refers to measure-
ment parameters being equal across the latent classes of the categorical 
latent variable(s). Measurement invariance with respect to observed groups 
such as gender is a well-known topic in psychometrics (see, e.g., Meredith, 
1964, 1993). Simultaneous confirmatory factor analysis in several groups to 
study measurement invariance and group comparisons of latent variable 
distributions has been discussed in Jöreskog (1971) and Sörbom (1974). 
Measurement invariance is an important prerequisite for valid across-group 
comparisons of continuous latent variable constructs, giving a latent con-
struct the same meaning and scale for proper comparisons across groups. 

tabLe 1.1 Model Overview

Continuous latent 
variables

Categorical latent 
variables Hybrids

 

Cross-sectional 
models

Factor analysis, SEM Regression mixture analysis,
Latent class analysis

Factor mixture 
analysis

Longitudinal 
models

Growth analysis 
(random effects)

Latent transition analysis,
Latent class growth analysis

Growth mixture 
analysis
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Latent Variable hybrids 3

Measurement invariance issues for latent groups are analogous and mix-
ture analysis can be thought of as a multiple-group analysis, except with 
groups determined by the data and the model. With both continuous and 
categorical outcomes, the key factor analysis measurement parameters are 
the intercepts and the slopes in the regression of the outcome on the re-
spective continuous latent variable. For example, with binary outcomes, a 
2-parameter logistic regression model is typically used where in the item 
response theory (IRT) formulation the terms difficulty and discrimination 
are used for the two parameters, respectively. In IRT, measurement non-
invariance is referred to as differential item functioning (DIF) and often 
focuses on the intercepts (difficulties) as in Rasch modeling.

As shown in the Figure 1.1 diagram, models with measurement invari-
ance typically have a factor analysis (or IRT) focus. Here, the latent classes 
are used to describe heterogeneity among individuals in their continuous 
latent variable distributions. Separating heterogeneous classes of individuals 
is important when studying antecedents and consequences. For example, a 
covariate may have different influence on a factor for one class compared 
to another or a distal outcome may have different means or probabilities 
in different classes. As the diagram of Figure 1.1 shows, new branches are 
created by the choice of how to represent the continuous latent variable 
distribution. The typical approach is to make a parametric assumption such 
as normality as in the left-most branch, referred to as branch 1. 

Figure 1.1 Overview of cross-sectional hybrids: Modeling with categorical and 
continuous latent variables.
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4 B. Muthén

branch 1: Hybrid Modeling with Measurement 
invariance and Parametric factor distribution

The bottom of branch 1 displays two graphs. The top graph shows two 
factor distributions for two latent classes, differing in means and variances. 
The model diagram below denotes the categorical latent class variable as c, 
the continuous factor as f, and the observed items as y. Here, c influences 
f and f influences y. The regressions of the y items on f are either linear or 
non-linear (logit/probit) depending on the y scale. The regression of f on 
c is a linear regression. In line with dummy variables in linear regression, 
the different classes of c have different means for f. The short arrow point-
ing to f is a residual, indicating that c does not explain all the variation in 
f, but that there is also unaccounted for within-class variance. The mea-
surement invariance specification is shown in the model diagram in that c 
neither influences y, nor changes the slopes in the regression of y on f.

Cross-Sectional Analysis
The following are some references to work in cross-sectional studies 

for branch 1, referring to the modeling as mixture factor analysis to em-
phasize the factor analysis aspects. Articles by McDonald (1967, 2003) on 
factor analysis represent pioneering work. Yung (1997) specifically stud-
ied measurement invariant mixture factor analysis and its maximum-likeli-
hood (ML) estimation. Lubke and Muthén (2005) applied mixture factor 
analysis to continuous achievement data using ML via the Mplus program. 
Lubke and Muthén (2003) did Monte Carlo studies of how well mixture fac-
tor model parameters could be recovered under different degrees of factor 
mean separation across latent classes. It was found that it is more difficult 
to recover a mixture solution if only the factor means change across classes 
than if the measurement intercepts change as well. In other words, the mea-
surement invariant hybrid can be more difficult to work with in practice.

Longitudinal Analysis
Turning to longitudinal examples, measurement invariant models are far 

more commonly used. In the branch 1 model diagram, the y box now rep-
resents repeated measures over several time points of a univariate y variable 
and f would correspond to intercept and slope growth factors (random ef-
fects). The growth factor means change over the latent classes, and thereby 
give rise to different trajectory shapes. In the SEM approach to growth mod-
eling, the time points at which the y items are measured are captured by 
fixed factor loadings and zero y intercepts. Measurement invariance is natu-
ral because the time points are the same across the latent classes. Compared 
to the mixture factor analysis model, such growth mixture models appear 
more successful in recovering parameter values. Figure 1.2 shows a hypo-
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thetical example of three trajectory classes for an outcome studied over ages 
18 to 37. In the graph on the left, the thick curves represent mean curves for 
each of the classes, while the thin curves represent individual curves within 
each class. The individual curves are variations on the curve shape themes 
represented by the mean curves. Defining the intercept growth factor i as 
the status at age 18, it is seen that the intercept i, the linear slope s, and the 
quadratic slope q have different means for the three classes. The model dia-
gram of Figure 1.2 shows the mean differences of i, s, and q as arrows from 
c to i, s, and q. 

Key references to growth mixture modeling include Verbeke and Lesaf-
fre (1996) with applications to the development of prostate-specific anti-
gen, Muthén and Shedden (1999) with application to the development of 
heavy drinking and alcohol dependence, Muthén et al. (2002) with appli-
cation to intervention effects varying across trajectory classes for aggres-
sive-disruptive behavior among school children, Lin, Turnbull, McCulloch, 
and Slate (2002) with application to prostate-specific antigen and prostate 
cancer, and Muthén (2004) with application to achievement development. 
Dolan, Schmittman, Lubke, and Neal (2005) modify the model to study 
regime (latent class) switching.

The Muthén (2004) analysis concerned mathematics achievement de-
velopment in grades 7–10 in U.S. public schools. It was argued that poor 
development in this challenging topic was predictive of high school drop-
out, with antecedents of poor math development and dropout being found 
among variables capturing disengagement from school. In Figure 1.2 terms, 
x contains the antecedents and u is high school dropout. Figure 1.3 shows 
that the 20% classified as developing poorly in math have a drastically high-
er dropout rate than other students.

The Muthén (2004) analysis was carried out as two-level growth mixture 
modeling shown in diagram form in Figure 1.4. The top part of the figure 
labeled “Within” shows student variation, while the bottom part labeled 
“Between” shows variation across schools. This is a 3-level model with varia-

Figure 1.2 Growth mixture modeling of developmental pathways.
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6 B. Muthén

Figure 1.3 Growth mixture modeling: LSAY math achievement trajectory classes 
and the prediction of high school dropout.

Figure 1.4 Two-level growth mixture modeling.
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Latent Variable hybrids 7

tion across time as level 1, variation across student as level 2, and varia-
tion across school as level 3. The figure shows the Mplus representation 
in “wide,” multivariate form, transforming the model to two levels, Within 
and Between, where Within combines level 1 and level 2. The list of ante-
cedents are shown in the box to the left in the Within part of the picture. 
Grade 7 measures of low schooling expectation and dropout thoughts were 
strongly related to both poor math development and dropout probability. 
The arrows from c to the intercept growth factor iw and the slope growth 
factor sw indicate that latent trajectory class membership influences the 
values of these growth factors. The arrow from c to high school dropout 
indicates that latent trajectory class membership influences the probability 
of this binary variable. The broken arrows from c to the arrows from the 
antecedents to the growth factors indicate that the antecedent influence 
varies across the latent trajectory classes. The math outcomes, the dropout 
outcome, and the latent class variable have filled circles attached to their 
boxes/circle indicating random intercepts, which vary across schools. On 
the Between level, these random intercepts are continuous latent variables. 
The math development on the Between level is captured by the random 
intercept ib, while the slope variance across schools is set to zero for sim-
plicity. The latent class variable gives rise to two random intercepts, c#1 and 
c#2, due to there being three classes. The regression of ib on the anteced-
ents is a linear regression, the regression of c#1, c#2 on the antecedents is 
a multinomial logistic regression, and the regression of hsdrop is a linear 
regression. Muthén (2004) found that a school-level covariate indicating 
quality of math teaching had a significant negative influence on being in 
the class of poor math achievement development and a positive influence 
on the within-class math achievement level. A school-level covariate indicat-
ing school neighborhood poverty had a positive influence on the probabil-
ity of dropout.

Growth mixture modeling is also useful for outcomes with more com-
plex distributions. The middle, left part of Figure 1.5 shows a commonly 
seen distribution of an outcome in longitudinal studies. A large portion of 
individuals is at the lowest point of the scale. A common reason is that these 
individuals at this time point have not yet started to engage in the activity 
studied. Examples of such outcomes include drinking and smoking among 
middle school students. A growth model approach that takes into account 
the large portion at zero was presented in Olsen and Schafer (2001). Figure 
1.5 shows that the idea behind this modeling is to split the outcome in two 
parts. One part, labeled u, refers the binary outcome obtained by consider-
ing whether or not the individual engaged in the activity at the time point 
in question. The other part, labeled y, represents the amount of activity 
for those who engaged in the activity. At a time point where the person is 
not engaged in the activity, y is coded as missing. A parallel process growth 
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model analyzes the two parts where the growth factors are correlated. The 
two parts may have different covariate influence.

The two-part growth model assumes that at a given time point individu-
als who just started to engage in the activity are at the same point in the 
growth process as individuals who started earlier. Individuals starting earlier 
may, however, be at a higher point in the growth process. To accommodate 
this, a mixture two-part model may be introduced as shown in Figure 1.6. 
A latent class variable cu influences the u part of the model, while the la-
tent class variable cy influences the y part. In conclusion, it is clear that the 
models shown in Figures 1.4–1.6 can be seen as variations on the branch 1 
theme of Figure 1.1.

branch 2: Hybrid Modeling with Measurement 
invariance and non-Parametric factor distribution

In branch 2, the parametric latent variable distribution is replaced by a 
non-parametric approach using a flexible discretized representation of the 
distribution. This is illustrated at the bottom of branch 2 in the form of a 

Figure 1.5 Two-part (semi-continuous) growth modeling.
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Latent Variable hybrids 9

bar chart with four bars indicating a skewed distribution. The model dia-
gram below the histogram shows that a mixture model can represent this 
where c influences f, but f has no within-class variability (there is no residual 
arrow pointing to f). Four classes of c results in four factor means for f. The 
positions of the four bars in the bottom graph represent scores on the la-
tent variable distribution and are captured by the factor means in the four 
classes. The heights of the bars represent the class probabilities. 

The relationship between the non-parametric approach and numerical 
integration is instructive and is illustrated in Figure 1.7 below. Numerical 
integration is necessary in maximum-likelihood estimation when a continu-
ous latent variable has categorical indicators. With numerical integration, 
the latent variable distribution is also discretized, but the scores and the 
heights (called points and weights) are fixed, not estimated quantities. Fig-
ure 1.7 shows an example of a normal and a non-normal distribution, each 
with five points of support.

Cross-Sectional Analysis
Non-parametric estimation of latent variable distributions has both cross-

sectional and longitudinal applications. In IRT applied to multiple-choice 
educational testing, Bock and Aitkin (1981) discussed the possibility of re-

Figure 1.6 Two-part growth mixture modeling.
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estimating the model with points and weights obtained from the posterior 
distribution, but suggested that this may not make much of a difference 
for the model parameters. This is also the experience of others (Robert 
J. Mislevy, personal communication), suggesting that the data commonly 
does not carry enough information about the particular form of the la-
tent variable distribution. The normality assumption for the latent variable 
distribution may therefore be harmless in many applications, but perhaps 
not in cases where there is a strongly skewed or multimodal distribution. 
The non-parametric distribution shown in the histogram of branch 2 may 
be suitable for mental health applications where it is plausible that a large 
percentage of the population is unaffected. It is useful to try out such an 
alternative form and see if the likelihood improves to an important degree. 
An application to diagnostic criteria for alcohol dependence and abuse was 
studied in Muthén (2006), using the term latent class factor analysis. 

Longitudinal Analysis
In longitudinal settings, Aitkin (1999) studied distributions of random 

effects in growth models, arguing that there it is hard empirically to find 
support for a normal distribution. He found that a few latent classes offered 
an adequate representation in several applications. Nagin and Land (1993) 
and Roeder, Lynch, and Nagin (1999) similarly argued for a non-paramet-
ric distribution of growth factors using the term “group-based” analysis, 
with application to groups of trajectories of criminal offenses. In some of 
Nagin’s writings, however, the latent trajectory classes are given an inter-
pretation as substantively meaningful subpopulations rather than seen as 
a mechanical way to non-parametrically represent a single population dis-
tribution (see Nagin, 2005). Figure 1.8 illustrates a unifying approach that 
does not seem to have been pursued by Nagin, namely using a combination 
of substantive and non-parametric classes. This example concerns analyses 
of the Cambridge data used in Nagin’s research. Extending the analyses in 
Muthén, (2004), counts of biannual criminal convictions ages 11–21 scored 

Figure 1.7 Non-parametric estimation of the random effect distribution using 
mixtures.
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Latent Variable hybrids 11

as 0, 1, and 2 for zero, one, or more convictions are analyzed using a qua-
dratic growth model and six latent classes. The linear and quadratic growth 
factors were considered fixed, with zero variances. Figure 1.8 shows two 
substantively different latent classes of crime curves: early-peaking and late-
peaking. Within each of these two classes, there are three variations: low, 
middle, and high. For each of the two substantive classes, the three varia-
tions are arrived at by using a three-class, non-parametric representation 
of the intercept growth factor in line with the branch 2 model diagram. 
Analogous to having the intercept factor random with a parametric inter-
cept growth factor distribution, the linear and quadratic means were both 
held equal across the three non-parametric intercept classes. The non-para-
metric approach resulted in a skewed distribution for the intercept factor 
with more individuals in the low class as expected. An LCGA in line with 
Nagin’s work would use six classes with no restrictions across classes on the 
linear and quadratic growth factor means.

Figure 1.9 compares three major approaches to growth modeling; hier-
achical linear modeling (HLM; see, e.g., Raudenbush & Bryk, 2002), growth 
mixture modeling (GMM; Muthén, 2004), and latent class growth analysis 
(LCGA; Nagin, 2005). LCGA and HLM are special cases of GMM. LCGA 
is a special case where there is no within-class variation so that the growth 
factor variances are all zero. In other words, there are no thin, individual 
curves in the graph implying that all individuals are the same within class. 
This in turn means that the within-class correlations across time are zero as 

Figure 1.8 Three non-parametric classes within each of two substantive classes.
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shown by the graph at the bottom right. HLM is a special case where there 
is only a single trajectory class. The thin, individual curves vary due to the 
growth factor variation. GMM allows more than one trajectory class as well 
as within-class variation, allowing non-zero within-class correlations across 
time. As mentioned above, GMM can be combined with a non-parametric 
representation of the growth factor distribution so that some latent classes 
have substantive meaning whereas others merely represent variation on the 
theme. A criminology application bridging the HLM, GMM, non-paramet-
ric GMM, and LCGA approaches is given in Kreuter and Muthén (2006).

branch 3: Hybrid Modeling with Measurement 
invariance and Parametric factor distribution

Going back up to the top of Figure 1.1, the first branching concerns mea-
surement invariance or not. The non-invariant measurement branch often 
has a cluster analysis focus. Here, comparability of factor metrics across 
latent classes is not of importance, but the aim is to group individuals us-
ing a within-class model that is flexible. In some applications, however, the 
factor analysis focus is also present, although with no attempt to compare 
scores in different latent classes. The choice between a parametric and non-
parametric latent variable distribution is available also here. The following 
discussion will focus on the parametric case of branch 3 given that there 
appears to be no literature on the non-parametric approach.

The bivariate graph of branches 3 and 4 shows two continuous items on 
the x and y axes, with the bivariate distribution of those two items displayed 

Figure 1.9 Growth modeling paradigms.
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for two latent classes as two ellipses. Latent class analysis (LCA) specifies 
that the items are uncorrelated within each latent class, which means that 
the ellipses for the two classes in the figure would both have zero slopes. 
In contrast, the hybrid model of factor mixture analysis (FMA) allows the 
slopes to be estimated as non zero. The branch 3 model diagram shows how 
this within-class correlation is represented. The factor f represents unob-
served heterogeneity among individuals and because f influences all items 
the items have non-zero correlation within each class. Consider for example 
the measurement of depression by a set of diagnostic criteria. Here, f may 
represent environmental influence such as stress in a person’s life, whereas 
c may represent genetically determined categories of depression. There-
fore, f influences all items (say, diagnostic criteria) to varying degrees, such 
that the measurement slopes vary across items. Furthermore, the variance 
of the factor and the measurement parameters may be different in differ-
ent classes. 

The branch 3 measurement non-invariance is indicated in the model 
diagram by the arrows from c to the items, representing intercept differenc-
es, and by the broken arrows from c to the arrows from f to the items, rep-
resenting slope differences. Using the depression example, the normative 
group of individuals who are not depressed may have smaller or a different 
pattern of measurement slopes (loadings) across the items due to being 
less influenced by stress or because stress has a different meaning for such 
individuals. Note that the model diagram does not include an arrow from c 
to f. This implies that the factor means in all classes can be standardized to 
zero, instead representing mean/probability differences across classes for 
an item by a direct arrow from c to the item. In cross-sectional analysis, the 
model in the diagram is referred to as an FMA model. LCA is a special case 
of FMA where f is absent, in other words has zero variance, so that only the 
arrows from c to the items are present. 

Cross-Sectional Analysis
There are many cross-section examples of branch 3, referred to here 

as FMA models. The earliest application appears to be Blafield (1980), 
studying factor mixture analysis applied to Fisher’s Iris data. Measurement 
parameters of slopes (factor loadings) were allowed to vary across classes 
to improve the classification, while measurement intercepts, factor means, 
and covariance matrices were class-invariant. Yung (1977) studied factor 
mixture models where all parameters were allowed to be class-varying. An 
application to the classic Holzinger-Swineford mental ability data was pre-
sented, resulting in a “mean-shift” model with non-invariant intercepts, in-
variant loadings, and invariant factor covariance matrix (factor means fixed 
at zero in all classes for identification given the class-varying intercepts). 
The generalization of factor mixture modeling to structural equation mod-
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el mixtures has been studied in market research, for example by Jedidi, Jag-
pal, and DeSarbo (1997) with an application to market segmentation and 
customer satisfaction. Factor mixture work for continuous outcomes has 
also developed outside psychometrics. McLachlan and Peel (2000) discuss 
factor analyzers where the within-class item correlations are described by an 
exploratory factor analysis (EFA) model. All measurement parameters are 
allowed to differ across the latent classes. The EFA model fixed the factor 
covariance matrix to an identity matrix (orthogonal factors) and let the 
residual variances vary across classes. McLachlan, Do, and Ambroise (2004) 
apply this model to microarray expression data, arguing that allowing for 
within-class correlation creates scientifically more meaningful clusters. In 
the most general case for continuous outcomes, FMA provides a within-class 
model with unstructured mean vector and covariance matrix, a commonly 
used model in finite mixture analysis. A classic example is the analysis of 
Fisher’s Iris data as discussed in, for example, Everitt and Hand (1981).

A separate strand of factor mixture applications can be found in the IRT 
literature with a focus on categorical outcomes and applications to achieve-
ment testing. Mislevy and Verhelst (1990) used a mixture version of the 
1-parameter Rasch model to classify individuals according to their solution 
strategies. Here, the measurement intercept (the “difficulty”) varies across 
the latent classes, resulting in measurement non-invariance. Spatial visu-
alization tasks can be solved by both rotational and by non-spatial analytic 
strategies, with item difficulties being higher for some items and lower for 
others depending on the latent class (strategy) the person belongs to. The 
authors also gave an example where the Rasch model holds for one latent 
class of individuals whereas the other class consists of those who guess at 
random. Mislevy and Wilson (1996) give an overview of mixture IRT mod-
els, including the Saltus model of Wilson (1989) distinguishing individuals 
with respect to different patterns of difficulties in line with theory of devel-
opmental psychology. For more recent work along the Saltus lines, see de 
Boeck, Wilson, and Acton (2005). The HYBRID model of Yamamoto (see 
Yamamoto & Gitomer, 1993) is a mixture model where an IRT model holds 
for one of the latent classes, whereas an LCA model model holds for other 
classes. Yamamoto and Gitomer apply this model to a test battery where sev-
eral types of misunderstandings create item response patterns correspond-
ing to latent classes. In the mixture IRT setting, measurement non-invari-
ance is not a problem because the factor dimension of the different classes 
are recognized as different ability dimensions. Several chapters in this book 
describe further mixture IRT work.

Factor mixture analysis developments for categorical outcomes have also 
been made outside the IRT literature. Muthén (2006) and Muthén and 
Asparouhov (2006) considered dichotomous diagnostic criteria for sub-
stance use disorders, comparing LCA, FA/IRT, and FMA. FMA was chosen 
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as the best model in both cases. Muthén, Asparouhov, and Rebollo (2006) 
applied FMA to alcohol criteria to provide latent variable phenotype mod-
eling in a twin study of heritability.

Model testing is a challenging topic with mixture models in general and 
in particular with hybrid models. There are two reasons. First, it is diffi-
cult to test the model against data because no simple sufficient statistics 
such as mean vectors and covariance matrices exist. Second, comparing 
nested models, it is difficult to decide on the number of latent classes given 
that the regular likelihood ratio testing (LRT) does not give a chi-square 
test variable. For the second problem, Nylund, Asparouhov, and Muthén 
(2006) carried out a Monte Carlo simulation study of common indices 
such as the Bayesian Information Criterion (BIC), as well as the two newer 
approaches to LRT using non-chi-square distributions: Lo-Mendel-Rubin 
(LMR) and bootstrapped LRT (BLRT). The naïve LRT approach that in-
correctly assumes a chi-square distribution was also studied (NCS). Table 
1.2 shows how these four indices are able to pick the correct four classes 
for an LCA with 10 binary items. For each row, percentages are given for 
how frequently certain numbers of classes are chosen. It is seen that BIC 
tends to underestimate the number of classes, NCS tends to overestimate 
the number of classes, LMR falls in between, and BLRT does best. Research 
is needed on approaches for comparing models that differ not only in the 
number of classes, but also in the number of random effects (factors with 
non-zero variance).

To illustrate the previous points, the following is an FMA application in 
the area of diagnosing Attention Deficit Hyperactivity Disorder (ADHD). 
The analysis considers a UCLA clinical sample of 425 males ages 5–18. 
Subjects were assessed by clinicians through direct interview with the child 
(> 7 years) and through interview with mother about child using the KSADS 
instrument which has 9 inattentiveness items and nine hyperactivity items as 
shown in Table 1.3. The items were dichotomously scored. The research ques-
tion concerned what types of ADHD are found in a treatment population. 
Table 1.4 shows model fitting results for three types of models: LCA, FA/IRT, 
and FMA. It is seen that the preferred LCA model is a 3-class model when 

tabLe 1.2 Monte Carlo simulation excerpt from nylund, asparouhov, 
and Muthén (in press)

BIC classes NCS classes LMR classes BLRT classes

n 3 4 5 3 4 5 3 4 5 3 4 5
 

10-item 
(complex 
structure) with 
4 latent classes

200 92 8 0 2 48 41 34 43 9 16 78 6

500 24 76 0 0 34 45 9 72 14 0 94 6

1000 0 100 0 0 26 41 2 80 17 0 94 6
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judged by BIC, but is a 6-class model when judged by BLRT. The item pro-
file plots corresponding to these two models are shown at the top of Figure 
1.10. The items are arranged along the x axis with the nine inattentiveness 
items first, followed by the nine hyperactivity items. The 3-class model sug-
gests a combined class, an inattentiveness only class, and a weakly defined 
hyperactivity only class. The 6-class model appears to show several variations 
on these three themes and is suggestive of a more dimensional representa-
tion. As seen in Table 1.4, an exploratory factor analysis (EFA) is a strong 
alternative to the LCA models. Here, EFA is the same as a two-dimensional 
IRT model, using 2-parameter logistic item characteristic curves. EFA has a 
better log-likelihood than the 3-class LCA for fewer parameters and a con-
siderably better BIC than the 6-class model. Given these results, FMA is an 

tabLe 1.3 the Latent structure of adHd

Inattentiveness items Hyperactivity items
 

Difficulty sustaining attention on task/play Difficulty remaining seated

Easily distracted Fidgets

Makes a lot of careless mistakes Runs or climbs excessively

Doesn’t listen Difficulty playing quietly

Difficulty following instructions Blurts out answers

Difficulty organizing tasks Difficulty waiting turn

Dislikes/avoids tasks Interrupts or intrudes

Loses things Talks excessively

Forgetful in daily activities Driven by motor

tabLe 1.4 the Latent structure of adHd: Model fit results

Model Log Likelihood # parameters BIC
BLRT 

p value for k–1
 

LCA—2c –3650 37 7523 0.00

LCA —3c –3545 56 7430 0.00

LCA   —4c –3499 75 7452 0.00

LCA—5c –3464 94 7496 0.00

LCA—6c –3431 113 7547 0.00

LCA—7c –3413 132 7625 0.27

EFA—2f –3505 53 7331

FMA—2c, 2f –3461 59 7280

FMA—2c, 2f
Class-varying factor 

loadings

–3432 75 7318 χ2-diff (16) = 58
p < 0.01
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interesting alternative. As seen in Table 1.4, a 2-class FMA with 2 factors (one 
for inattentiveness and one for hyperactivity) has as good of a log-likelihood 
as the 6-class LCA but with far fewer parameters, and has a better BIC value 
than the EFA. Figure 1.11 shows that the hyperactivity only class disappears 
in the FMA model. The plot shows the mean probability of item endorse-
ment, but it should be noted that variations in the item probabilities are 
produced within both classes as a function of the factor values. 

Longitudinal Analysis
Longitudinal examples in branch 3 do not appear to have been pub-

lished. Two different types of approaches can be considered. One model 
type is based on growth modeling where random effects influence an item 
measured at several time points. As seen when comparing the model dia-
grams in branches 1 and 3, this is different from the growth mixture mod-
eling discussed in branch 1. The branch 3 model diagram shows that the 
latent class variable influences the items directly. Without the factor, this 
is an LCA model where the time structure is ignored and T repeated mea-
sures of the item is seen as T different items. This is a useful first analysis 
before turning to the branch 2 latent class growth analysis (LCGA) where 
growth factors govern the change over time in items means/probabilities. 
The LCA can be used to explore growth shapes in the data without impos-

Figure 1.10 Item profiles for three-class LCA, six-class LCA, and two-class, two-
factor FMA.
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18 B. Muthén

ing a particular growth function. As shown in the Figure 1.1 model diagram 
for branch 3, a factor may also be included to account for within-class cor-
relations across time, allowing for a more flexible model in line with FMA. 
This factor does not have to be a growth factor where time determines the 
factor loadings, but a single-factor model with free factor loadings could for 
example be used.

Another longitudinal model type is based on auto-regressive modeling. As 
an example of the auto-regressive model type, latent transition analysis (LTA) 
considers several items measured at each of several time points to capture 
changes in a latent class variable. The latent class variable at one time point 
influences the latent class variable at the next time point in an auto-regressive 
fashion. Conventional LTA does not include a factor (factor variance is zero). 
A hypothetical example with two items measured at two time points is shown 
in Figure 1.11. LTA is an auto-regressive model in the sense that the time 2 
status of the latent class variable c2 is dependent on the time 1 status of the 
latent class variable c1. Top left of Figure 1.11 is a hypothetical transition 
probability table (see “Mover Class”). For examples, individuals starting in 
the c1 = 1 class have the probability 0.4 to transition to the c2 = 2 class. The 
probabilities in each row of the table sum to one. The bottom table for the 
“Stayer Class” shows smaller probabilities for transitioning between classes. 
Conventional LTA does not include the latent class variable c at the bottom 
of the model diagram. Including this additional latent class variable makes it 
possible to distinguish between the latent classes of Movers and Stayers (see, 
e.g., Langeheine & van de Pol, 2002; Mooijaart, 1998).

Figure 1.12 shows a two-level extension of LTA by Asparouhov and Muth-
én (2007) in this volume. The application concerns aggressive-disruptive be-

Figure 1.11 Latent transition analysis.
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havior in the classroom in Fall and Spring of first grade in Baltimore public 
schools (see also growth mixture modeling of these data in Muthén et al., 
2002). The top part of the model diagram describes the within-level part of 
the model where the variables vary across students. The bottom part of the 
model diagram describes the between-level part of the model with variation 
across classrooms. The within-level shows filled circles next to the latent class 
variables c1 and c2, representing random intercepts. For example, the filled 
circle for c2 is the random intercept in the multinomial logistic regression 
of c2 on c1. On the between level, these random intercepts are continu-
ous latent variables, shown as c1#1 and c2#1, representing the amount of 
classroom-level aggressive-disruptive behavior. On the between level, these 
two variables are connected via linear regression. Asparouhov and Muthén 
(2007) show that the classroom variation is large at both time points. The 
Fall between-classroom effect has a large impact on students’ aggressive-dis-
ruptive behavior in the Fall. However, the effect also carries over into Spring, 
both through the individual level and through the classroom level.

A new model, which is a generalized, hybrid latent transition model will 
now be presented. This model includes f as shown in the Figure 1.1 model 
diagram of branch 3. A hypothetical example with p items at two time points 
is shown in Figure 1.13. At each time point, an FMA measurement model 
is specified with c having direct effects on the u’s, and f describing continu-
ous heterogeneity among individuals that reflects within-class correlation 
among the items. The latent class variable c2 is influenced by c1, but is also 
potentially influenced by f1. As shown by the vertical bars for the two latent 
classes in the bottom graph, individuals who at time 1 are low in the high 

Figure 1.12 Two-level latent transition analysis.

IA395-Handcock.indb   19 8/17/07   9:32:48 PM



20 B. Muthén

class may be more likely to be in the low class at time 2 than individuals who 
are high in the high class. Similarly, individuals who are high in the low class 
may be more likely to be in the high class at time 2 than individuals who are 
low in the low class. 

The FMA-LTA was applied to the data on aggressive-disruptive behav-
ior in the classroom in Fall and Spring of first grade in Baltimore public 
schools referred to earlier. A model with two latent classes (high and low 
aggressive-disruptive behavior) and one factor dimension was found suit-
able for each of the two occasions. Table 1.5 shows the results of fitting the 
FMA-LTA versus the conventional LTA. It is seen that the log-likelihood is 
considerably better for FMA-LTA. Although this comes at the expense of 19 
more parameters, the log-likelihood is so much better that this is more than 
compensated for. This advantage is reflected in the considerably better BIC 
value for the FMA-LTA model. 

Table 1.6 shows the resulting estimates of the transition probability tables 
for the two model alternatives. The conventional LTA shows low probabili-

Figure 1.13 Factor mixture latent transition analysis.
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ties for transitioning from one class in Fall to a different class in Spring. In 
contrast, the FMA-LTA shows that there is a rather high probability (0.41) 
of transitioning from the high-aggressive class in Fall to the low-aggressive 
class in Spring.

COnCLusiOn

This discussion has attempted to bring together seemingly disparate hy-
brid latent variable modeling efforts in many different application areas. 
The aim was to show that the various models are only slight variations on a 
few key themes. The critical aspects of the models are whether or not they 
specify measurement invariance and whether or not a parametric latent 
variable distribution is specified. By clearly showing the connections be-
tween different modeling branches and types of applications, researchers 
may be enabled to more easily learn from analysis experiences in neighbor-
ing fields. It is clear that much more methodological research is needed 
in this emerging research topic of mixture modeling and hopefully this 
chapter will stimulate such developments.

tabLe 1.5 factor Mixture Latent transition analysis: 
aggressive-disruptive behavior in the Classroom

Model LogLikelihood # parameters BIC
 

Conventional LTA –8,649 21 17,445

FMA LTA factors 
related across time

–8,012 40 16,306

tabLe 1.6 estimated Latent transition 
Probabilities, fall to spring

Low High

Conventional LTA
 

Low 0.93 0.07

High 0.17 0.83

FMA-LTA
 

Low 0.94 0.06

High 0.41 0.59
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