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TEACHER'S CORNER

Methodological Advances with Penalized Structural Equation Models

Tihomir Asparouhov and Bengt Muth�en 

Mplus 

ABSTRACT 
Penalized structural equation models (PSEM) is a powerful technique that unlocks a variety of new 
modeling frameworks. PSEM applications have been established previously for standard SEM and 
ESEM models. In this note we aim to extend these ideas to more general types of models such as 
finite mixture models, multilevel models as well as models with more general types of outcomes. 
Maximum likelihood and weighted least squares estimation methods naturally accommodate a penalty 
term. In Mplus 8.12 the PSEM methodology is implemented for all models that can be estimated with 
these two estimators. Therefore we can now easily combine the more general models with the 
features of PSEM such as EFA, Alignment, and parameter invariance. Some additional basic SEM 
applications are also included.

KEYWORDS 
Alignment; EFA; penalized 
maximum-likelihood; 
regularization   

1. Introduction

The penalized structural equation models (PSEM) described 
in Asparouhov and Muth�en (2024) have been used so far 
within the SEM and ESEM modeling frameworks to create 
new models that can address practical challenges which 
standard modeling methods can not address. The PSEM 
methodology is available for maximum-likelihood (ML) and 
weighted least squares (WLS) estimation in Mplus under the 
names PML and PWLS. In Mplus 8.12 the PML and PWLS 
estimators are extended to all models that can be estimated 
in Mplus with the ML and WLS estimators. This means that 
new modeling opportunities are now available for the PSEM 
framework. In particular, finite mixture and multilevel mod
els can now be estimated with predesigned penalty to 
incorporate PSEM features such as factor rotation, factor 
analysis alignment, as well as parameter invariance across 
structures in these more general settings. More specifically, 
the PSEM extensions included in Mplus 8.12 are as follows.

� Maximum likelihood estimation of single level and two- 
level SEM models with numerical integration which 
includes a variety of dependent variable types such as 
continuous, categorical, censored, count, nominal, and 
survival variables.

� Maximum likelihood EM-algorithm based estimation of 
two-level and three-level SEM models with continuous 
dependent variables.

� Maximum likelihood EM-algorithm based estimation of 
single level finite mixture models.

� Maximum likelihood numerical integration based estima
tion of single and two-level finite mixture models.

� Weighted least squares estimation of two-level SEM 
models with continuous and categorical dependent 
variables.

In this article we aim to illustrate new models that are 
now available in these settings. In addition, some new basic 
PSEM concepts will be illustrated as well. The article is 
intended to be an inspiration for real-data applications. We 
illustrate general concepts and methodological advances. 
How exactly these new possibilities will be connected to real 
data applications is still a wide open and largely unexplored 
area of research.

2. Summary of the PSEM Framework

The PSEM framework in Mplus is based on adding a pen
alty function to an existing estimation method for the pur
pose of obtaining a very specific model estimation. Two 
estimators have been utilized for this framework so far: ML 
(maximum-likelihood) and WLS (weighted least squares). 
Both of these estimators minimize a fit function FðhÞ, 
where h is the vector of model parameters. In the PSEM 
framework we add a weighted penalty to the fit function 
and the estimator now minimizes

F1ðhÞ ¼ FðhÞ þ wPðhÞ (1) 

where w is the penalty weight and P is the penalty function.
Two different types of models are estimated using this 

framework. The first type is a PSEM model. This is an 
unidentified model, i.e., if the model is estimated by mini
mizing only the fit function FðhÞ using the standard ML or 
WLS estimators, the model becomes unidentified: an entire 
subspace of the h parameters yield the same FðhÞ values. 
The model becomes identified when the penalty is added to 
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the fit function. In this estimation, the weight w is set to a 
small value so that when we optimize F1ðhÞ we primarily 
optimize FðhÞ: More specifically, when w is sufficiently 
small, optimizing F1ðhÞ is equivalent to optimizing FðhÞ
first, and in the subspace of h where FðhÞ is maximized, the 
penalty PðhÞ is then optimized. This secondary optimization 
leads to identifying the model. A PSEM model estimation 
may also describe a null model: this is a model in the sub
space where FðhÞ is maximized and is a known model. The 
null model is identified by explicitly constraining some of 
the h parameters. By comparing the fit function values FðhÞ
for the PSEM and the null model, we can ensure that the 
two models yield the same data fit. The weight w is chosen 
numerically as the largest value yielding the same data fit 
for the PSEM and the null model.

The second type of models that are estimated with the 
PSEM framework are the Regularized SEM models 
(RegSEM). The RegSEM model is identified even if we use 
the standard estimation without the penalty. For the 
RegSEM estimation, when we add the penalty to the fit 
function, a portion of the FðhÞ optimization is sacrificed to 
the benefit of optimizing the penalty PðhÞ: The weight w is 
selected so that it is not too big to damage substantially the 
data fit optimization of FðhÞ and not too small so that the 
penalty effect is not eliminated.

In Asparouhov and Muth�en (2024) it was shown that 
EFA models are a special case of PSEM models where the 
penalty is set to the rotation criterion. It was shown also 
that the multiple group alignment method of Asparouhov 
and Muth�en (2014b) is a special case of PSEM models 
where the penalty function is set to the alignment optimiza
tion function. It was also shown that the BSEM method
ology of Muth�en and Asparouhov (2012), which develops 
the concepts of approximately zero parameters and approxi
mately equal parameters, is also a special case of PSEM 
models. These facts allow us to include optimal factor rota
tions, parameter alignment, approximate parameter equality, 
and approximately zero parameters in any general model.

In Mplus, the penalty function is specified with MODEL 
PRIOR. Any kind of penalty function can be specified but 
the most common univariate and multivariate penalty func
tions can be specified directly as priors. Three univariate pen
alties are available directly: h2, jhj, and 

ffiffiffiffiffiffi
jhj

p
and these are 

specified as univariate priors for the parameters: Nð0, vÞ, 
LASSOð0, vÞ, and ALFð0, vÞ where w ¼ 1=v is the penalty 
weight. These are used when a parameters is meant to be 
approximately zero. Two multivariate penalties are also dir
ectly available. The first uses the DIFF function. For example, 
DIFFðh1 − hkÞ � LASSOð0, vÞ results in a penalty function 
which is the sum of all absolute value pairwise differences in 
the set of parameters h1, :::, hk: The weight is again w ¼ 1=v:
The DIFF penalty/prior is used to ensure approximate equal
ity in the set of parameters. The second multivariate penalty 
that is directly available is the Geomin rotation criterion. The 
specification h1 − hk � GEOMINðm, vÞ gives the Geomin 
rotation function for a loading matrix of size m by k=m with 
all the loadings parameters listed column by column as 

h1, :::, hk: This penalty is used to conduct EFA analysis and 
to rotate the loading matrix to the simplest pattern.

3. Algorithms for Maximizing the Penalized Fit 
Function

The scope of the PSEM generalization we describe here 
involves a variety of advanced numerical algorithms: numer
ical integration for continuous latent variables, EM-algo
rithm for categorical latent variables, EM-algorithm for 
missing data, EM-algorithm for random intercepts and 
slopes, acceleration for EM-algorithms. These advanced 
techniques are essential in the corresponding modeling 
frameworks. Because of these techniques we are able to effi
ciently estimate increasingly large and sophisticated latent 
variable models. It is therefore imperative to be able to 
incorporate the penalized likelihood into these methods. 
Fortunately this is a trivial task and it only depends on the 
approach.

There are several different approaches that can be used 
here. The first approach is to use an optimization method 
which is based only on the first or the first and the second 
derivatives of the function we are optimizing. To implement 
this approach the first and the second derivatives of the 
penalty are simply added to the first and the second deriva
tives of the data fit function. Algorithms that fall into this 
category are Quasi-Newton, Fisher-scoring, Newton- 
Raphson, and when these are used as accelerators to the 
EM-algorithm.

The second approach is based on the observation estab
lished in Asparouhov and Muth�en (2024) that the PSEM 
model estimation is equivalent to the standard fit function 
optimization with parameter constraints. These constraints 
can be solved implicitly or explicitly and the log-likelihood 
constrained optimization is performed as usual. None of the 
EM-algorithms or the numerical integration is entangled 
with the constraints on the parameters. Mplus algorithms 
have been developed to use parameter constraints of any 
kind and therefore the PSEM optimization can take advan
tage of that prior development.

The third approach is based on treating the penalty as 
the log-likelihood of one additional observation that has its 
own model and is in its own group. This penalty model 
does not contain any latent variables and therefore when 
latent variables are dealt with using the EM-algorithm or 
numerical integration, the penalty will have no impact. The 
E-step of the EM-algorithm will remain unchanged. The M- 
step however will incorporate the penalty in the usual way 
as an addition. Since the M-step is derivative based, the 
incorporation of the penalty in that step is also easy.

For finite mixture models, the Mplus algorithm also takes 
advantage of separating the variables by indicator type: con
tinuous vs. categorical vs. counts, etc. This way a large opti
mization problem is broken up into several smaller 
optimization problems. The smaller optimization problems 
where variables are of the same type may also allow special 
simplifications based on sufficient statistics, which would 
not be the case without the split. This M-step split is also 
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acceptable for the penalized likelihood since the penalty 
usually splits nicely by variable type as well. For example, 
the Geomin rotation criterion is the sum of penalties for 
each row in the loading matrix, i.e., the penalty is variable 
specific and can be separated by variable types as well. In 
the M-step split, each of the smaller optimizations will 
include a portion of the penalty.

In the following sections, we describe a variety of new 
PSEM application areas.

4. Formative Factor

Consider the following factor analysis model. Let Yp, p ¼
1, :::, P be a set of factor indicators and Xq, q ¼ 1, :::, Q, be 
a set of factor predictors. Consider the following model 

Yp ¼ �p þ kpF þ ep (2) 

F0 ¼
XQ

q¼1
bqXq (3) 

F ¼ cF0 þ n (4) 
n � Nð0, /Þ, ep � Nð0, hpÞ: (5) 

For identification purposes k1 and b1 are fixed to 1. In 
the above model, the factor F is a reflective factor, while the 
factor F0 is a formative factor, see Bollen (1989). The forma
tive factor does not have a residual and is simply a weighted 
sum of the predictors. We can use the standard chi-square 
test to evaluate the model. However, the test does not 
address the existence of the formative factor. The test of fit 
can be rejected because of 3 different issues: covariance 
between the indicators is not explained by the reflective fac
tor, there are direct effects from the formative factor to the 
indicators, or there is a direct effect from the covariates to 
the indicators.

The above model is equivalent to the MIMIC model 
where the factor F is regressed directly on all the covariates 
and the formative factor is excluded from the model. The 
formative factor becomes more valuable when more than 
one variable is regressed on that factor. In that case, the 
existence of the formative factor is essentially a hypothesis 
for regression coefficient proportionality if the raw covari
ates are used directly as predictors instead of via a formative 
factor. The general idea behind a formative factor is to 
replace a larger number of covariates by the most suitable 
linear combination of the covariates, which increases the 
power of the model. For example, variables such as educa
tion level, occupation, income and other background varia
bles can be clumped together into a single predictor usually 
named SES (socioeconomic status). A different example is 
the case where rare event covariates yield weak power but 
when properly combined can provide a single meaningful 
predictor.

Here we provide a PSEM based factor analysis model 
that can be used more directly to support the existence of 
the formative factor. Consider the following PSEM model

Yp ¼ �p þ kpF þ apF0 þ
XQ

q¼1
bpqXq þ ep (6) 

F0 ¼
XQ

q¼1
bqXq (7) 

F ¼ cF0 þ n (8) 

n � Nð0, /Þ, ep � Nð0, hpÞ (9) 

ap � ALFð0, 1Þ, bpq � ALFð0, 1Þ (10) 

The parameters ap account for possible direct effects 
from the formative factor to the indicators, while bpq pro
vide direct effects from the covariates to the indicators. If 
the parameters bpq are all near zero and not significant, we 
interpret this as evidence for the existence of the formative 
factor. If a small portion of these parameters are significant, 
that means that in addition to the formative factor a small 
set of the covariates must be retained alongside the forma
tive factor.

Because of the added penalties for these new parameters 
ap and bpq, we expect that the PSEM estimation will set 
these to zeros as long as the model fit is not compromised. 
If model (2–5) does not fit the data, some of the parameters 
ap and bpq will be non-zero, while the parameters bq and kp 
will remain unbiased. Most importantly, the above PSEM 
model allows us to test the hypothesis that a linear combin
ation of the covariates is sufficient to capture the predictive 
power of these covariates without entangling that hypothesis 
with the hypothesis that all the effects of the covariates go 
through the factor F.

We illustrate the PSEM model with a simulation study 
using 100 replications and sample size of 2000. The model 
has 4 indicator variable, 5 covariates, one direct effect from 
a covariate (one non-zero bpq parameter) and one direct 
effect from the formative factor (one non-zero ap param
eter). Figure 1 shows the Mplus input file for this simulation 
study and Figure 2 shows the results for a selection of the 
parameters. The bias in the estimate is minimal and the 
coverage is near the nominal levels. For this particular 
model the formative factor can be retained using the esti
mated weights, while in addition to the formative factor, 
one more covariate X3 must be retained due to its predictive 
power for indicator Y2 that is significant and substantial. 
The chi-square test for this PSEM model has an average 
value of 2.2 and with 2 degrees of freedom the test yields a 
rejection rate of 8% which is near the nominal level. The 
MIMIC model, without the formative factor, yields a rejec
tion rate of 100% and it will require the addition of 6 indir
ect effects to be acceptable (5 indirect effects stemming 
from the one indirect effect of the formative factor plus 1 
indirect effect from X3). The MIMIC model would also fail 
to recognize the uniform impact of the covariates as pro
vided by the formative factor.

In Figure 3, we also provide the model statement for this 
formative factor analysis that can be used with real data 
sets. We provide this statement as it is much simpler than 
the model statement used in simulation study. A simulation 
study setup needs starting values to compute confidence 
intervals coverage.
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5. Longitudinal Growth Modeling for Exploratory 
Factor Analysis

In this section we illustrate how PSEM can be used for lon
gitudinal growth modeling of factors repeatedly measured 
by EFA. Such models can be used to study developmental 
changes with age across various traits that are measured via 
exploratory analysis. For example the big 5 personality traits 
are measured most accurately within the ESEM framework, 
see Marsh et al. (2010). Suppose that Ytp are P factor meas
urements, p ¼ 1, ::, P across various time points t ¼ 0, :::, T:
Let M be the number of factors measured by these indica
tors and ftm be the m−th factor measured at time point t, 
m ¼ 1, :::, M and t ¼ 0, :::, T: The EFA measurement model 
at time t is given by the following equation

Ytp ¼ �p þ
XM

m¼1
kpmgtm þ etp (11) 

The growth model for these factors is given by

gtm ¼ Im þ tSm þ ntm, (12) 

where Im is the latent intercept (the time invariant part of 
the m−th factor) and Sm is the latent slope factor (the sys
tematic change across time in the m − th factor). The vari
ance covariance for the 2 M latent variable Im and Sm is 
unconstrained. In addition, the means of Sm are estimated, 
while the means of Im are fixed to zero along the lines of 
longitudinal growth CFA models, see Mplus User’s Guide, 
Muth�en and Muth�en (1998–2020), example 6.14. The 

loading parameters are unconstrained as in EFA, but are 
invariant across time to ensure that the factor measure
ments are consistent across time. The intercepts �p of the 
indicators are also time invariant. The residual variances 
of etp are estimated as time invariant, although this restric
tion is generally not needed. The factor residuals ntm are 
correlated within each time point but uncorrelated across 
time points. In addition, the factor variances of ntm are 
fixed to 1 for t ¼ 0 but are unconstrained at all other 
time points. This constraint is along the lines of longitu
dinal EFA/CFA analysis with invariant measurement struc
ture. Model (11–12) is an example of EFA rotation that is 
neither oblique or orthogonal. The factor variance covari
ance is structured.

Figure 4 contains the Mplus input file for a simulation 
study for this model using T ¼ 5, P ¼ 10 and M ¼ 2: For 
brevity we omitted the data generating model which is iden
tical to the estimated model. Figure 5 contains the results of 
the simulation study for a selection of the parameters. The 
bias is minimal and the coverage is near the nominal level. 
Figure 6 shows the simplified model statement that can be 
used with real data. The third argument in the Geomin pen
alty function refers to the small � used in the definition of 
the Geomin rotation function, for details see Asparouhov 
and Muth�en (2024). Smaller values yield less bias but also 
yield a more erratic function to optimize. Typically, � is set 
to 0.001 (default) or 0.0001.

6. Latent Variables as EFA Model Indicators

In a typical EFA model a set of observed variables measures 
a set of latent factors. In some circumstances however it 
might be of interest to use latent variables as indicators in 
an EFA model. These latent indicator variables will have 
their own separate measurement model, which may be an 
EFA or a CFA model. Such models have been discussed in 
Asparouhov and Muth�en (2024) in the context of hierarch
ical EFA models where all the indicators are latent: EFA 
measured factors are used as measurement indicators for 
secondary factors. Here we focus on CFA measured latent 
variables that are used as indicators in an EFA model. In 
addition to the latent variable indicators, the EFA model 
also contains observed indicators.

In the ESEM framework implemented in Mplus, latent 
variables cannot be used as EFA indicators. However, latent 
variables can be regressed on EFA factors and thus can be 
viewed as indicators to the EFA factors, although these will 
not contribute to the EFA factor rotation. To be more spe
cific, suppose that g1 is a vector of latent variables measured 
by a vector of observed variables Z and g2 is a vector of 
latent variables measured by a vector of observed variables 
Y and g1: In this model, g1 is measured by a CFA model 
while g2 is measured by an EFA model. The model is given 
as follows

Z ¼ �1 þ K1g1 þ e1 (13) 
Y ¼ �2 þ K2g2 þ e2 (14) 

g1 ¼ K3g2 þ e3 (15) 

Figure 1. Formative factor simulation study.
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where K1 is a structured CFA loading structure, while K2 
and K3 are unconstrained EFA loading structures. In the 
ESEM framework the above model can be estimated by 
selecting an optimal rotation for g2 which simplifies K2:

Here we will show how PSEM can be used to estimate the 
model by selecting an optimal rotation for g2 which simpli
fies both K2 and K3:

Before we proceed, however, we want to discuss the justi
fication for including K3 in the rotation selection. If the 
latent variables g1 are expected to perform as “pure” indica
tors to a large extent, i.e., similarly to the observed indica
tors Y, then it makes sense that the rotation should be 

chosen to simplify not just K2 but also K3: If K3 is not 
expected to be close to a simple loading structure but is 
likely to contain only non-zero values, then including that 
matrix in the rotation selection would be counterproductive 
and may result in less accurate results. Thus, context and 
substantive judgment are important in choosing between the 
ESEM and PSEM models. If the size of K3 however is sub
stantially smaller than the size of K2, we can expect that the 
methods will be quite similar as K2 is likely to dominate the 
rotation selection optimization.

To illustrate the PSEM estimation we conduct a simula
tion study using 2 latent indicators and 2 EFA factors, i.e., 
both g1 and g2 are of size 2. The indicator vectors Y and Z 
are of size 6. In this simulation, K2 has two cross-loadings 
while K3 has none. Figure 7 contains the simulation study 
using the PSEM method and Figure 8 contains the simula
tion study using the ESEM method. Note that g1 latent vari
ables are uncorrelated. Since these are indicators for g2, 
their correlation is modeled by the EFA model for g2: The 
results of the simulation study for the PSEM method are 
given in Figure 9. The bias in the parameter estimates is 
small and the coverage is near the nominal levels. The 
ESEM results for this simulation are similar but are worse 
than those of the PSEM method, in terms of bias and MSE. 

Figure 2. Formative factor simulation study results.

Figure 3. Formative factor analysis with PSEM.
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This is explained by the fact that the additional pure latent 
indicators contribute to the optimal rotation selection. On 
the other hand, if we generate data where K3 contains only 
non-zero values, i.e., 2 cross-loadings, then the situation is 
reversed and the ESEM method performs slightly better 
than the PSEM method. This is again explained with the 
fact that the added latent indicators contribute more cross- 
loadings and thus hinder the recovery of the original struc
ture. It should be noted here that the meaning of bias is 
only in the context of recovering simple structure and not 
in terms of standard model estimation bias. As with every 
EFA estimation, the more cross-loadings there are, the less 
likely the generating parameters are to be recovered in its 
original form, and the more likely it is that a simpler struc
ture, equally well fitting, will be found as a replacement.

The question of which model parts should contribute to 
the optimal factor rotation arises in other contexts as well. 
Consider the ESEM model where EFA measured factors g 

are regressed on covariates X

Y ¼ � þ Kgþ e (16) 

g ¼ BX þ n: (17) 

The question we consider is this: should the optimal fac
tor rotation be selected to simplify not just K but also B. 
From a practical perspective it will be somewhat harder to 
justify a simple form for B than it is for K but let’s ignore 
that point for now. Suppose that B has indeed a simple 
form and each of the covariates predicts just one factor. 
Would including the B matrix in the rotation function 
strengthen the optimal rotation selection. It turns out that 
the answer is no. The two matrices are rotated in an oppos
ite direction which is why the information does not com
bine easily. Even when B has a simple structure, based on 
simulation studies that we do not report, it is the case that 
selecting the optimal rotation based on simplifying K alone, 
B alone, or K and B together works about equally well. 
Thus, utilizing PSEM here for the purpose of simplifying 
more than just the measurement loading matrix is not bene
ficial. ESEM, which only works on simplifying K works 
equally well. Furthermore, if we consider the case of non- 
simple B structures, simulations not reported here show that 
there is a substantial drawback if the optimal rotation 
attempts to simplify both K and B, and PSEM results can 
be substantially worse than ESEM. Unlike the case of latent 
EFA indicators, expanding the model simplification goals 
beyond the loading matrix in a model like (16–17) is not 
recommended at this time.

7. Measurement Invariance in Latent Transition 
Analysis

The PSEM modeling framework is defined generally to 
make an unidentified model into an identified model via the 
addition of a penalty function which is optimized simultan
eously with the likelihood. The log-likelihood of the PSEM 
model is identical to the null model, i.e., an identified ver
sion of the model where a set of unidentified parameters are 
fixed. The PSEM model is generally an interpretable model 
that is practically desirable while the null model is generally 
an impractical model that lacks proper interpretation. For 
example, in the EFA settings, the PSEM model is the rotated 
EFA model while the null model is the unrotated CFA 
model where the loadings above the diagonal are fixed to 
zero. Similarly in multiple group factor analysis, the PSEM 
model is the aligned model which allows factor means com
parison across groups while the null model is the configural 
model where factor means are all fixed to zero and group 
comparison is not available. Prior to the introduction of the 
PSEM framework, the Regularized SEM (RegSEM) frame
work was introduced in Jacobucci et al. (2016) following the 
idea of regularized LASSO regression, Tibshirani (1996). 
The difference between PSEM and regularized models is 
that in RegSEM, the penalty function may alter the log-like
lihood, i.e., a small portion of the likelihood is sacrificed to 
obtain a smaller penalty and a more interpretable model. In 
proper PSEM applications, the log-likelihood is not sacri
ficed for the benefit of minimizing the penalty. The penalty 
is minimized only within the space of unidentified dimen
sions. In terms of algorithms and software implementation, 

Figure 4. EFA growth simulation study.
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however, there is no difference between the two methods. In 
Mplus, simply using a penalty with an identified model 
leads to a RegSEM model.

The Mplus framework is built along the lines that con
tinuous and categorical latent variables are used to model 
relations between observed variables. Models with continu
ous latent variables (SEM models) have analogue models 
that use categorical latent variables (Mixture models). 
However, SEM models typically fit only the first and second 
order moments of the observed data, while finite mixture 
models fit also higher level moments. Because of that, a 
continuous latent variable model that is unidentified, might 
have a categorical latent variable analogue that is identified. 
Thus, unidentified models that PSEM takes advantage of are 
not as easily available in the Mixture settings.

As an example consider an LTA model with time invari
ant latent class measurement as well as the “continuous” 
variable equivalent: longitudinal factor analysis with invari
ant measurement. In the continuous case, the measurement 
invariance in the model allows us to estimate time specific 
factor mean and if the measurement invariance is relaxed 
the model becomes unidentified. This makes it suitable for 
PSEM. In the LTA case, the time-invariant measurement 
model allows us to estimate time specific distribution for 
the latent class variable, however, relaxing the measurement 
invariance does not result in an unidentified model. 
Therefore adding a penalty function which forces invariance 
as much as possible will result in a RegSEM model rather 
than a PSEM model. Nevertheless, here we will explore the 
advantages of these RegSEM mixture models that are 

Figure 5. EFA growth simulation study results.
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constructed along the lines of their continuous variable 
counterparts. Regularized Mixture models have also been 
discussed in Shedden and Zucker (2008).

To illustrate this concept we consider a latent class vari
able measured at 3 time points by 4 binary variables as in 
an LTA model. Measurement invariance holds only partially 
as it is often the case in real data. We generate the data so 
that measurement invariance holds for 7 out of the 8 meas
urement parameters at each time point, i.e., there are 3 
non-invariant measurement parameters. We consider the 

following 3 models. The first model is the LTA-PSEM 
model where a measurement invariance penalty is added to 
the model. As we discussed earlier this is in fact a RegSEM 
model. The second model is the model where measurement 
invariance is removed. The third model is the LTA model 
which forces measurement invariance incorrectly. Figure 10
contains the Mplus input file for this simulation study for 
the LTA-PSEM model. The model population part of the 
input is omitted for brevity but is identical to the model 
statement. The parameter estimates for the PSEM-LTA are 
unbiased and the coverage is near the nominal levels. In 
that regard, the PSEM-LTA model can be used to determine 
which measurement parameters are invariant and which are 
not. Figure 11 contains the results for all three models for a 
selection of the parameters, namely the time specific class 
distribution. Here we see that PSEM-LTA outperforms the 
other two estimations substantially in terms of MSE. In add
ition, assuming measurement invariance leads to bias in the 
parameter estimates and lower coverage. The addition of the 
measurement invariance penalty leads to substantial benefits 
for the estimation without damaging the data fit. The drop 
in the log-likelihood due to the penalty addition is 1 on 
average across the 100 replications. As a comparison, the 
drop in the likelihood resulting from strictly imposing 
measurement invariance is close to 100 on average. This 
also leads to LRT rejection for the measurement invariance. 
The PSEM-LTA model is essentially estimating the LTA 
model with approximate measurement invariance.

In this simulation study the measurement non-invariance 
is small and easily detectable. In practical applications that 
might not be the case. The weight of the penalty will likely 
need further analysis in such situations. Multiple models 
may need to be considered with different levels of penalty 

Figure 6. EFA growth modeling with PSEM.

Figure 7. EFA with latent indicators: PSEM method.

Figure 8. EFA with latent indicators: ESEM method.
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weight (grid search). The different PSEM-LTA models may 
need to be converted to non-PSEM models where approxi
mately invariant parameters are actually held equal and the 
non-invariant parameters are estimated as non-invariant. 
The BIC criterion for the non-PSEM models can then be 
used for the final model selection.

8. Direct Effects in Latent Class Analysis

In this section we provide another illustration where a con
tinuous variable PSEM model suggests applications for 
RegSEM Mixture modeling. First consider the continuous 
variable MIMIC model where a latent variable is predicted 
by a covariate but the covariate may also have a direct effect 
on some of the indicators. The PSEM model allows us to 
include all direct effects with LASSO/ALF priors which 
forces the direct effects to stay near zero unless the data fit 
mandates a non-zero value. In this process, the predictive 
power of the covariate on the latent variable remains intact. 
Without the prior/penalty, including all direct effects and 
the effect of the covariate on the factor is an unidentified 

model. The PSEM framework takes advantage of that. In 
LCA, the equivalent situation where all direct effects are 
included in addition to the effect of the covariate on the 
latent class variable is a generally identified model. This sug
gests that the MIMIC-equivalent approach, i.e., adding 
LASSO/ALF priors for the direct effects in LCA, will be a 
RegSEM Mixture model where a portion of the likelihood is 
sacrificed to the benefit of the penalty. In all such applica
tions, it is important to make sure that the penalty is not 
weighted too heavily so that the overall optimization does 
not alter the log-likelihood substantially. As in the previous 
example, here we expect that the added penalty will benefit 
the Mixture model by stabilizing the estimation and would 
reduce MSE of the estimates.

We illustrate this situation using a simulation study 
where 6 binary indicators measure a 2-class latent variable. 
A latent class predictor is included in the model which also 
has 3 direct effects to the indicators, i.e., 3 direct effects are 
non-zero and 3 direct effects are zero. Direct effects in 
Mixture models can be class specific which corresponds to a 
latent class and covariate interaction. Such effects are 

Figure 9. EFA with latent indicators: PSEM results.
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secondary in nature and are less common in practice but 
certainly can occur. For this simulation study, we consider 
only class invariant direct effects. The conclusions of the 
simulation study, however, carry over also to the class spe
cific direct effects.

In this model estimation, all direct effects are included. 
This corresponds to the situation where we do not know 
which direct effects must be included in the model. All direct 
effects are given ALF priors to keep them near zero when 
possible. For comparison, we also include a simulation study 
where the penalty function is not included. Without the pen
alty, the model is identified, although in some cases the iden
tification is weak. In this simulation study, we deliberately 
choose the smaller sample size of N ¼ 200: This is because 
smaller sample sizes are more likely to need the stabilization 
power of the penalty. With an infinitely large sample size, the 
model without penalty is expected to perform well.

Mixture models are prone to multiple local solutions. 
This is even more so when the model is extra flexible, as is 
the case of including all direct effects. Smaller sample sizes 
also make multiple local solutions more likely. This is why 
we included in this simulation study random starting values. 
In real data analysis, random starting values are used by 
default in Mplus but in simulation studies they are not. 
When the classes in a model are equivalent in nature and 
each class has the same number of parameters, the order of 
the estimated classes is somewhat random. Random starting 
values may randomly reorder the classes. This is not of 
importance in real data analysis but in simulation studies it 
becomes an obstacle as we want to make sure that the aver
age estimates across the simulations are computed using the 
same classes and the class ordering is the same across repli
cations. Because we include random starting values in this 
simulation, we must also include a feature that would 

Figure 10. PSEM-LTA simulation study.

Figure 11. LTA simulation study results.
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enforce the same class ordering across the replications. In 
this simulation study, we use a model constraint which 
automatically orders the larger class as the first class.

Figure 12 shows the Mplus input file for the PSEM-LCA 
simulation study. The regular LCA analysis uses the same 
setup except for the penalty specification given in MODEL 
PRIOR. The results for both model estimations are given in 
Figure 13. We include only the predictor effect estimates in 
this figure. The multiple ���� here indicates that the value 
is too large to print in the allotted space. The stabilization 
effect of the penalty is clearly visible in this comparison. In 
addition, the MSE reduction is obtained in all regression 
parameters as expected. The LCA-PSEM model yields 
unbiased estimates and coverage near the nominal levels. 
The log-likelihood drop caused by the penalty inclusion is 
minimal. The average drop across the replications is 0.2. We 
conclude that the penalty inclusion can be beneficial when 
direct effects need to be explored. To a large extent, the 

PSEM-LCA method with all direct effects included can also 
be viewed as a method for discovering direct effects. It can 
also be viewed as an alternative to multistage estimation 
used in LCA, see Asparouhov and Muth�en (2014a). The 
multistage estimation is primarily designed to prevent 
unwanted direct effects to alter the class formation. If the 
direct effects are properly accounted for in the latent class 
estimation, then the effect of the covariates on the latent 
class variable is unbiased.

9. Class Enumeration

The most fundamental question in finite mixture modeling 
is to determine the number of classes. The LRT test com
paring the K and the K þ 1 class models does not have an 
explicit distribution and thus is impractical to use for this 
purpose. The BIC criterion is the most well performing tool 
that is easily available, see Nylund et al. (2007). In this sec
tion we explore the possibility to use PSEM for class enu
meration. The idea is as follows. We introduce a penalty for 
each additional class that is needed to fit the data well. This 
way small classes will be eliminated to avoid the penalty. 
Classes that can be combined will be combined to avoid the 
penalty. Adding a penalty for every additional class that is 
needed is similar to the Chinese restaurant process used in 
Bayesian analysis, see Gelman et al. (2004). The penalty 
essentially acts as a prior and thus the similarities are clear. 
It is possible to choose a penalty that has a progressively 
higher penalty for every additional class. We will not pursue 
this here and will instead have a constant penalty for every 
additional class. The precise value of the penalty for each 
class will be computed to match the BIC criterion. Since 
minimizing BIC leads to the correct number of classes 
asymptotically, the penalty should match the BIC penalty 
for each additional class. The BIC criterion is given by

BIC ¼ P � log ðNÞ − 2 � LL (18) 

where P is the number of model parameters, N is the sam
ple size, and LL is the log-likelihood. This means that the 
BIC criterion penalty for each additional parameter is 
log ðNÞ=2: Suppose that each additional class contributes P0 
parameters in the model. Then the penalty for each add
itional class should be P0 log ðNÞ=2: That is, in order for us 
to allow an additional class, the log-likelihood of the model 
must be improved by at least P0 log ðNÞ=2: There are a 
number of ways to implement such a penalty. For simpli
city, we shall use a penalty prior for the parameters in the 
distribution of the latent class variable. Suppose that the 
latent class variable distribution is given by

PðC ¼ kÞ ¼
ExpðakÞ

P
k ExpðakÞ

(19) 

for k ¼ 1, :::, K, where K is the total number of classes. 
Here aK is fixed to 0 for identification purposes. If ak is a 
large negative number such as −15, the class will be empty 
because PðC ¼ kÞ will be zero. We introduce a penalty for 
the parameters ak as ALFð−15, vÞ: The penalty is thus 

Figure 12. PSEM-LCA with direct effects.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak þ 15
p

=v: We need to determine the value of v to match 
the BIC penalty.

The last class doesn’t have a penalty. It will be the default 
for the observations and is expected to be the largest class. 
Here we will make an assumption that a class which is 
smaller than 1% of the largest class would be considered too 
small for practical purposes. A class which is 1% of the larg
est class has a ak parameter of −4:6 which is log ð0:01Þ: We 
determine v by setting the BIC penalty to be equal to the 
ALF penalty at ak ¼ −4:6: Classes that are larger than the 
1% of the largest class will have a little bigger penalty but 
these classes will also be bigger in size so presumably the 
sample size will compensate for that discrepancy. Because 
the square root is not a flat function, the penalty increases 
slightly for the larger classes but not by more than 20% ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð15 − 0Þ=ð15 − 4:6Þ

p
− 1: This is an advantage of the ALF 

prior (square root) as it resembles a flat line in the interval 
(10.4,15) more so than LASSO or Normal prior.

We now obtain the following equation for v by setting 
the ALF penalty be equal to the BIC penalty

ffiffiffiffiffiffiffiffiffi
10:4
p

=v ¼ P0 log ðNÞ=2 (20) 

or

v ¼
6:45

P0 log ðNÞ
: (21) 

Classes that are smaller than the 1% of the largest class 
will be considered empty. In most cases, however, because 
we are utilizing alignment priors, we expect that empty 
classes will all have ak ¼ −15:

We select K as the maximum number of classes that can 
occur for the model. For example, if we are not expecting 
more than 10 classes to be estimated by the finite mixture 
PSEM model we can estimate a PSEM model with K ¼ 10 
classes and determine the number of classes that are not 
empty. The class enumeration technique will then conclude 
that the proper number of classes for this model is the 
number of non-empty classes found in this PSEM Mixture 
model.

Next, we illustrate this methodology with a simulation 
study using a 4-class latent profile analysis with 10 indica
tors and N ¼ 500: We use a 10 class estimation, i.e., K ¼ 10 
and we simultaneously explore finite mixture models with 
up to 10 classes. In this model, each class contributes an 

Figure 13. LCA with direct effects results.
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additional 11 parameters and so P0 ¼ 11 which leads to 
v ¼ 0:094: Figure 14 shows the input file for this simulation 
study. Note that the large amount of random starting values 
is key for this analysis. Figure 15 shows the results of the 
analysis. There are 6 empty classes where ak ¼ −15 and 
thus the analysis correctly concludes that the proper number 
of classes for this model is 4. For comparison, if the 10-class 
model is estimated without the prior, all 10 classes are above 
the 1% threshold. Using the BIC criterion directly also con
cludes that there are 4 classes. Repeating this analysis 10 
times yields the same result in each replication. It should be 
noted that because the non-empty classes do not appear in 
the same position across the replications, it is not as easy to 
conduct enumeration simulation studies without some 

additional techniques. It is possible to order the classes by 
size but that will hinder the random starting values to some 
extent. With the current setup, the results of each replica
tion must be saved and manually evaluated.

10. Finite Mixtures of Exploratory Structural 
Equation Models (ESEM)

New models can be obtained also by combining finite mix
ture modeling with the standard PSEM models described in 
Asparouhov and Muth�en (2024). In this section we describe 
one such example: Mixture of ESEM models. It is already 
possible to estimate Mixtures of EFA models in Mplus dir
ectly without the use of PSEM. EFA models however do not 
have the full flexibility of ESEM models. In this illustration 
we add a covariate which predicts the factors in the EFA 
model. This model is a pure PSEM model. The null model 
is the finite mixture of unrotated ESEM models. The penalty 
function as usual is not expected to affect the data fit and 
the weight is determined numerically: the penalty weight is 
the largest value which leads to the same log-likelihood as 
the null model log-likelihood.

The Mixture-ESEM model extracts subpopulations in the 
data, where the observed variables within each subpopula
tion are modeled with an ESEM model. The ESEM model 
can have a class-invariant measurement structure, a class- 
specific measurement structure, or it can have different 
numbers of factors in each class. Here we consider continu
ous class indicators. Thus, this mixture model can be viewed 
as latent profile analysis (LPA) with structured residual 
covariance within class. In the absence of class-invariant 
EFA/CFA structure, the intercepts/means of the indicators 
are class specific. Furthermore, these intercepts are the driv
ing force in the latent class formation. Class specific differ
ences in the ESEM model can serve as additional 
information that can identify the latent subpopulations but 
typically the means of the observed variables is the main 
class differentiator as in LPA. Also, the latent class variable 
is typically the main explanatory variable for covariance 
between the observed variables. The factor analysis within 
class is typically secondary in terms of explaining the cova
riances between the variables. As such, the within class fac
tor model is often unknown and can benefit from 
exploratory techniques and the flexibility of ESEM.Figure 14. PSEM class enumeration.

Figure 15. PSEM class enumeration results.
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Figure 16 contains the input file for a 2-class 2-factor 
ESEM model with 8 continuous endogenous variables and 
one covariate. For brevity the model population statement is 
omitted but is identical to the model statement. The means 
of the dependent variables are class specific. The EFA struc
ture is also class specific. The results of this simulation 
study for a selection of the parameters is given in Figure 17. 
The bias in the parameter estimates is minimal and the 
coverage is near the nominal levels.

In this simulation study the entropy for the mixture 
model is 0.6. This level of entropy is generally considered to 
be in the moderate range. At this level, latent classes are not 
easily differentiated and class membership is typically based 
on the entirety of the observed data. There are no elements 
in the model and the data that can easily determine the class 
membership. In such situations, the within class model spe
cification becomes important and class formation can be 
affected if the within class model changes. For this particu
lar data, there are two other alternative models that do not 
use ESEM for the within class model. The first model is the 
LPA model with unrestricted variance covariance and the 
second model is with diagonal variance covariance (the cor
relation between the endogenous variables is explained 
entirely by the latent class variable). Here, neither of the 
two models is able to recover the latent classes well. This 

points out again the need for a small EFA style correlation 
structure to account for endogenous variables correlation 
not accounted for by the latent class variable. The EFA 
model is able to obtain parsimonious correlation structure 
while also retaining the correct latent class formation despite 
the moderate entropy level and relatively low class 
separation.

11. Alignment in Factor Mixture Analysis

Factor Mixture Analysis has been discussed in Lubke and 
Muth�en (2005, 2007), Lubke et al. (2007), Clark et al. (2009, 
2013). Similar to the previous example, a latent class model 
is estimated where the endogenous variables are not condi
tionally independent but within each class the dependence is 
modeled with a factor analysis model. In these factor mix
ture models, it is desirable to estimate the model with a 
class invariant loading matrix. This gives a more parsimoni
ous model than a model with class specific loading struc
ture. As a result, typically a better BIC can be obtained with 
such models. This is important because BIC is widely used 
for model comparison in mixture settings where often mod
els are compared with different number of classes and fac
tors. Invariant loading structure also allows us to estimate 
class specific factor variance for all non-reference classes. If 
the endogenous variables intercepts are also estimated as 
class invariant then the mean of the factor can be estimated. 
These class invariant restrictions however might not hold. 
We can use PSEM, however, to obtain a model with as 
much invariance as possible. This mixture model then 
becomes equivalent to the multiple group factor analysis 
alignment model, see Asparouhov and Muth�en (2014b), 
with the only difference being that the subpopulation vari
able is not the observed grouping variable but is the unob
served latent class variable. Essentially, we suggest using 
alignment in factor mixture models as an alternative to 
using strict class invariance.

We illustrate this concept with a 2-class model where 8 
continuous variables are used as class indicators. In add
ition, within each class the 8 variables measure two factors. 
Each factor loads on 5 variables. There are 3 non-invariant 
intercepts and 1 non-invariant loading. We use ALF DIFF 
priors for all intercepts and loadings to obtain the factor 
analysis alignment across the two classes. It should be noted 
here that the non-invariance parameters are helpful in iden
tifying the latent classes. In the absence of non-invariance, 
the latent classes would be measured only by the latent class 
differences in the factor distribution, which is relatively 
small in the following sense. In LPA, 8 intercept differences 
contribute to the class formation. In this alignment of the 
factor mixture analysis model, only two factor intercepts 
and any other non-invariant intercept contribute to the 
latent class formation. Thus non-invariance in the intercepts 
of the observed variables is important in the class 
identification.

Figure 18 contains the input file for the simulation study. 
The model population is omitted for brevity but is identical 
to the model statement. Figure 19 contains the results of 

Figure 16. ESEM mixture simulation study.
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this simulation for a selection of the parameters. The bias in 
the parameter estimates is minimal and the coverage is near 
the nominal level. The alignment of the factor mixture ana
lysis model is not the most parsimonious model that can be 
estimated in these settings. Ideally, this analysis should be 
followed by the estimation of a standard factor mixture ana
lysis where parameters that are identified as non-invariant 
are estimated as class specific while parameters that were 
identified as invariant are held equal across class. Such a 
model would yield the most parsimonious and well fitting 
model and thus would yield the best BIC value.

Another model that is of similar interest is the model 
where alignment is performed only on the loadings but not 
on the means. The means of the factors will be fixed to zero 
in each class but the endogenous variable means will be 
class specific as in LPA. Such a model would have more 

power to identify homogeneous subgroups in the population 
because there are more class-specific parameters.

12. Latent Profile Analysis with PSEM

Latent profile analysis uses continuous variables as indica
tors for latent classes. The most common version estimates 
class specific means for the variables, assumes conditional 
independence within each class, and class invariant vari
ance parameters. The conditional independence assump
tion is often unrealistic and within class some residual 
covariance occurs. It is possible to abandon the conditional 
independence and class invariance for the variance covari
ance and still estimate the LPA model, i.e., conditional on 
the latent class variable the distribution of the class-indica
tor variables is class-specific unconstrained multivariate 

Figure 17. ESEM mixture results.
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normal distribution. This model can be identified with 
large samples but the number of additional parameters 
makes the model too flexible. With smaller samples the 
model will likely be poorly identified. In the previous 
two sections we discussed one possible parsimonious 
strategy to model the within class covariance: using 
within class factor analysis models. In this section we 
focus on the situation where factors are not easily avail
able such as sparse covariance matrices. In such situa
tions, the problem with parsimony can be resolved by 
adding ALF(0,v) priors for all covariance parameters, i.e., 
forcing these parameters to be as close to 0 as possible. 
Because the model without the priors is identified, this 
model is a RegSEM model and not a PSEM model.

We illustrate the advantages of PSEM-LPA with a simu
lation study using a 2-class model with 8 indicators. Within 
each class we add 3 non-zero covariances. We compare 
three models: the standard LPA with conditional independ
ence and variance invariance, LPA with class-specific uncon
strained variance/covariance matrix, and the LPA-PSEM 
model which adds the ALF(0,1) priors for all covariances. 
The PSEM-LPA simulation study is given in Figure 20. The 
results of the simulation study are given in Figure 21 where 
we compare the three models for a selection of the parame
ters. PSEM-LPA outperforms the two standard LPA models 
in terms of parameter bias, coverage and MSE. This also 
implies that the PSEM-LPA is better at recovering the latent 
subgroups.

13. Growth Modeling with Non-Normal Outcomes

The PSEM framework allows us to estimate more flexible 
growth models. Subject specific latent variables (intercept 
and slope) are used to model individually specific develop
mental curves. Typically, in a linear growth model, the 
means of the random intercept and slope are estimated but 
the intercepts of the observed variables are fixed to zero. If 
one attempts to estimate the intercepts of the observed vari
ables as well, the model becomes unidentified. The PSEM 
framework allows us to estimate both the observed variable 
intercepts as well as the means of the random intercept and 
slope by giving LASSO or ALF priors to the observed vari
able intercepts. That allows us to estimate the random inter
cept and slope means while still allowing small time-specific 
deviations from the linear growth projection when such are 
needed. These time-specific deviations occur quite often and 
usually yield substantial improvement in data fit.

This model is discussed in detail in Section 4.2 in 
Asparouhov and Muth�en (2024) for continuous outcomes. 
Here we will illustrate the model for count outcomes using 
the PML estimator in conjunction with numerical integra
tion which is required for the estimation with count out
comes. The growth model is as follows. The observed count 
variable for individual i ¼ 1, :::, N at time t ¼ 0, 1, :::, T is

Yit � PoðlitÞ (22) 

where Po here represents the Poisson distribution. 
Furthermore,

log ðlitÞ ¼ �t þ Ii þ Si � t (23) 

where �t is the time specific deviation, Ii and Si are the ran
dom intercepts and slope for individual i and

Ii
Si

� �

� Nð a

b

� �

, r11 r12
r12 r22

� �

Þ (24) 

�t � ALFð0, 1Þ: (25) 

As usual, the ALF prior/penalty for �t will minimize 
these parameters near zero and will minimize how many of 
them are non-zero.

The above model uses two-dimension integration. In our 
illustration, we fix r12 and r22 to zero, which results in one 
dimensional integration and faster computations. In this 
simulation study, we use T ¼ 7, i.e., the growth model is 
based on 8 count observations. Two of the time points do 
not fit the linear growth model perfectly, i.e., two of the �t 
parameters are non-zero. The PSEM model estimation is 
able to detect which two of the time points need time spe
cific parameters �t while at the same time, the distribution 
of the random effects is estimated without bias. The simula
tion study setup is given in Figure 22 and the results are 
given in Figure 23. The bias is minimal and the coverage 
for the estimates is near the nominal level.

This model generalizes to various other link functions 
and outcome variables, for example censored outcomes, 
negative binomial, and ordered categorical. For categorical 
variables, the model can be estimated with the WLSMV esti
mator or the ML estimator with numerical integration. In 
the presence of missing data, the ML estimator as usual has 

Figure 18. Alignment in factor mixture analysis.
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the advantage that the parameter estimates are unbiased 
even when the missing data is MAR.

14. EFA with Nominal Variables

Exploratory factor analysis can be estimated in Mplus with 
continuous, ordered categorical, censored and count varia
bles. Using the PSEM methodology we can now add to this 
list nominal variables. Numerical integration is used for the 
estimation of such models. For models with a larger number 
of factors, the numerical integration can be performed with 
fewer integration points per dimension. Alternatively, 
Monte Carlo integration can be used. With nominal varia
bles, the interpretation of the EFA model is somewhat more 
complex because one nominal variable with K categories 
will have K − 1 loadings. If N represents the nominal vari
able, g represents the vector of latent variables, the model 
for N is given by

PðN ¼ kÞ ¼
Expð�k þ kkgÞ

PK
k¼1Expð�k þ kkgÞ

(26) 

The last loading vector kK is fixed to 0 for identification 
purposes as well as �K : If a nominal variable is connected to 
a particular factor we can expect all K − 1 loadings to be 
non-zero. If a nominal variable is not connected to a factor 
we can expect all K − 1 loadings to be zero. If some of the 
K − 1 loadings are zero and some are not zero, the inter
pretation is somewhat more difficult because the zeros and 
non-zeros change depending on which nominal category is 
set as the reference category. Thus, one key question in this 
kind of analysis is whether or not the EFA model is affected 
by the reference category of the nominal variables. The ref
erence category for the nominal variables is set arbitrarily 
since the categories are not ordered and it would be impor
tant for the EFA estimation to not be affected by this arbi
trary setting.

Figure 19. Alignment in factor mixture analysis results.
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For the PSEM estimation of EFA models with nominal 
variables we describe here, the rotation criterion is applied 
to all the loadings as if they come from different variables. 
An alternative method might be possible that takes into 
account the fact that the K − 1 loadings are intra-connected 
and that the loadings can change if the reference category is 
altered. Ultimately, a rotation criterion for the nominal vari
able should really be symmetric with respect to which cat
egory is selected as a reference category. One possible 
criterion is as follows: for each nominal variable create 
KðK − 1Þ rows in the loadings matrix which consists of the 
K − 1 loadings crossed with the K possible reference catego
ries. If K ¼ 3 and the loading vectors with the last category 
as a reference category are k1 and k2, the total loading 
matrix will have these 6 rows k1, k2, k1 − k2, −k2, k2 − k1, 
−k1: This rotation criterion is then invariant to the refer
ence category but it is not necessarily optimal since we want 
the loading structure to be simple for one of the reference 
categories and not all of them. We will not explore this here 
and will use for simplicity only the K − 1 loading rows. 
Further research is needed in this direction, however, we 

want to point out here again that this concept is of concern 
only for the case when the K − 1 loadings of a nominal 
variable on a factor includes both zeros and non-zeros. If 
the number of nominal variables of that kind is relatively 
small as compared to the total number of observed variables 
in the EFA model, it is unlikely that a more elaborate rota
tion criterion will lead to a different solution.

Consider also the following related aspect of the EFA 
analysis. If a nominal variable has zero and non-zero load
ings for the same factor, it may be possible to exclude that 
variable from the rotation. If there is a sufficient number of 
other observed variables that can be used to identify the 
EFA model, this kind of a nominal variable can be used as 
a distal outcome, i.e., the loadings are estimated as well but 
they are excluded from the rotation criterion completely. 
This situation may indeed be preferable in the case when 
the nominal variable is truly a distal outcome that is 
regressed on the EFA factors, rather than a part of the 
measurement model.

As stated earlier, these complications arise in some spe
cial situations and may not need to be dwelled on in many 
simpler examples. In this section we use as an illustration 
an EFA model with 5 continuous indicators, 3 nominal vari
ables, and 2 factors. The nominal variables have 3 catego
ries. Of the 3 nominal variables 2 are pure indicators, i.e., 
for two of the nominal variables both loadings are simultan
eously zero or simultaneously non-zero for each of the two 
factors. The third nominal variable has zero and non-zero 
loadings on the same factor. The full setup for this simula
tion study is given in Figure 24. We use all the loadings for 
the rotation. The results of the simulation study are given in 
Figure 25. The bias is minimal and the coverage is near the 
nominal levels. Using only the continuous and the 2 pure 
nominal indicators to determine the optimal rotation yields 
nearly identical results.

Other types of variables can similarly be used in an EFA 
model. For example time-to-even/survival variables can now 
also be used as indicators in EFA models.

15. Measurement Invariance across Levels in Multi- 
Level Factor Analysis

Consider the following two-level factor analysis model. Let 
Yijp be the p−th observed variable for individual i in cluster 
j. The variables measure one factor on the within level gwij 
and one factor on the between level gbj

Yijp ¼ Ywijp þ Ybjp (27) 
Ywijp ¼ kwpgwij þ ewijp (28) 

Ybjp ¼ �p þ kbpgbj þ ebjp (29) 

gwij � Nð0, wwÞ, gbj � Nð0, wbÞ, ewijp � Nð0, hwpÞ, ebjp

� Nð0, hbpÞ: (30) 

Certain constraints are required to identify the model. 
One common approach is to fix the factor variances ww and 
wb to 1. In most applications, it is desirable to interpret the 
two factors as being the within and the between part of 
the same latent construct. Such interpretation requires the 

Figure 20. PSEM-LPA simulation study.
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following formulation of the factor model

Yijp ¼ �p þ kpgij þ ewijp þ ebjp (31) 
gij ¼ gwij þ gbj (32) 

gwij � Nð0, wwÞ, gbj � Nð0, wbÞ, ewijp � Nð0, hwpÞ, ebjp

� Nð0, hbpÞ: (33) 

Typically, this model is identified by fixing the 
within level factor variance ww to 1. Equation (32)
allows us to interpret the between part of the factor as 
the random intercept as in two-level random intercept 
regression. The between part of the factor is the cluster 
level contribution to the latent construct while the within 
factor is the individually specific part of the latent con
struct. The intra class correlation for the factor is com
puted as

ICCg ¼
wb

1þ wb
(34) 

Figure 21. PSEM-LPA simulation study results.

Figure 22. PSEM growth model for counts simulation study.
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In the above model and model (27–30), the term ebjp is 
often omitted, i.e., hbp is fixed to 0. The following discussion 
applies equally well with or without that term.

Model (31–33) is nested within the model (27–30). The 
models are equivalent if the within level loadings and the 
between level loadings in (27–30) are proportional (across 
indicators)

kwp ¼ kp (35) 

kbp ¼
ffiffiffiffiffiffi
wb

p
kp (36) 

where 
ffiffiffiffiffiffi
wb

p
is the coefficient of proportionality. If this pro

portionality condition holds then model (27–30) can be 
rewritten as

Yijp ¼ Ywijp þ Ybjp (37) 
Ywijp ¼ kpgwij þ ewijp (38) 

Ybjp ¼ �p þ kpgbj þ ebjp (39) 

gwij � Nð0, 1Þ, gbj � Nð0, wbÞ, ewijp � Nð0, hwpÞ, ebjp

� Nð0, hbpÞ: (40) 

Model (37–40) is identical to the model (31–33). This 
proportionality condition can also be viewed as measure
ment invariance across the two levels, similarly to how 
measurement invariance is considered in multiple group fac
tor analysis.

It is often the case that the proportionality condition 
is violated for some of the factor indicators, i.e., only a 
partial invariance holds across the levels. Thus we are 
faced with the dilemma to use a poorly fitting model 
(37–40) or a better fitting model (27–30) but without the 
interpretability of the factor as the within-between parts 
of the same latent construct. The PSEM framework can 
be used to resolve this problem, similarly to multiple 
group alignment. We estimate the model (27–30) with 

Figure 23. PSEM growth model for counts results.

Figure 24. EFA with nominal variables.
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wb as a free parameter. This of course is an unidentified 
model on its own. Instead of holding the loadings equal 
across the two levels, as in (37–40), we use approximate 
measurement invariance as in alignment. That is, we add 
ALF priors for kwp − kbp: This will allow us to obtain a 
model with the same fit as model (27–30), while also 
obtaining the closest model to measurement invariance, 
and as a result, an approximate within-between interpret
ation of the factor.

We illustrate this PSEM estimation for a two-level factor 
model with 4 indicators measuring 1 factor on both levels. 
In this simulation study, only one of the four indicators 
lacks measurement invariance. We generate and analyze 
samples with 200 clusters of size 30. Figure 26 gives the 
input file for this simulation study. The results are given in 
Figure 27. The bias is small and the coverage is near the 
nominal levels. The non-invariant indicator is correctly 
identified. The invariant indicator loadings are nearly identi
cal across the two levels. The average chi-square value for 
this model is 3.1 and with 4 degrees of freedom we obtain a 
rejection rate of 1%.

The measurement invariance across levels PSEM model 
applies also to 3-level models and models with other types 
of indicators such as categorical indicators. The model can 
be estimated with the ML and WLSMV estimators in 
Mplus.

16. Multilevel Exploratory Structural Equation 
Models

In this section, we combine multilevel models and explora
tory factor analysis models with the power of the PSEM 
framework. Let Yij be a vector of observed variables for 
individual i in cluster j. Let gij be a vector of exploratory 
factors measured by Yij: Let Xij be a vector of covariates. 
The two-level ESEM model is given by

Yij ¼ �j þ Kgij þ eij (41) 

gij ¼ aj þ BjXij þ nij: (42) 

Here �j is a vector of random intercepts for the observed 
variables, K is an unconstrained matrix of loadings to be 
rotated using a simplicity Geomin rotation criterion, eij is a 
vector of uncorrelated residuals, aj is a vector of random 
intercepts for the EFA factors. For identification purposes aj 
means are fixed to 0. The matrix Bj contains cluster-specific 
random regression coefficients. nij is a vector of correlated 
residuals with variance fixed to 1 for identification purposes. 
Typically aj and Bj are fully correlated random effects but �j 
are uncorrelated random effects (among each other and also 
other effects). The reason for this is that aj acts as between 
level factors and �j as residuals on the between level. In 
fact, aj is the vector of between level factors which is added 
to the within level factors to obtain the total factors gij: The 

Figure 25. EFA with nominal variables results.
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same loading matrix applies to the within and the between 
portions of the factors. Thus, this model is based on across- 
level measurement invariance which was discussed in the 
previous section.

We present this model for normally distributed outcomes 
but the model generalizes to other types of variables if 
numerical integration is utilized. The model can be modified 
and generalized in various ways: direct effects from the 
covariates can be included, �j can be non-random inter
cepts, etc. The model essentially is an EFA model in 
Equation (41) and a standard hierarchical model in 
Equation (42) where the EFA factors are now the dependent 
variables.

We illustrate the multilevel ESEM model with a stimulation 
study using a 2-factor EFA model, measured by 10 indicator 
variables, and one covariate. In the EFA model, each factor 
has 5 main indicators as well as one cross-loading. The simula
tion study setup is given in Figure 28. The random intercepts 
for the factors are estimated as factors on the between level. 
The loadings are held equal across the two levels to ensure 
that the between factors indeed take the role of random inter
cepts. The results of the simulation study for a selection of the 
parameters are given in Figure 29. The bias in the parameter 
estimates is minimal and the coverage is near the nominal 
level. The Geomin penalty function responsible for the factor 
rotation successfully rotates the factors to the simplest loading 
pattern and the external multilevel model as well. The estima
tion of this model is very fast: it takes only 16 seconds to esti
mate 100 replications.

17. Lasso Regression

Penalized methods were originally developed for linear regres
sion models for the situation where a variable is regressed on Figure 26. Measurement invariance in two-level factor analysis.

Figure 27. Measurement invariance in two-level factor analysis results.
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a large set of predictors. If the number of observations in the 
data set is larger than the number of covariates the model is 
identified and thus it is categorized as a RegSEM model. For 
such models, the weight of the penalty cannot be determined 
numerically and there is an extensive methodology developed 
already on the optimal selection of the penalty weight for lin
ear regression. Among the most popular methods are the 
adaptive lasso method, cross-validation, and minimizing AIC/ 
BIC values. Only the last method is easily accessible in Mplus 
at this time. Here we will briefly discuss Mplus specifics related 
to the last method and will also include a chi-square test of fit 
for model selection.

Suppose that a Y variable is regressed on a set of covari
ates X1, :::, XQ: The LASSO regression estimates the model 
using LASSOð0, vÞ prior for the Q regression coefficients. To 
be able to make a proper model selection, this model is 
evaluated on a grid of v values. For example, using v ¼
0:1, 0:2, :::, 1, we obtain 10 models. Some of the bq coeffi
cients will be shrunk to near zero and some will not. Here 
we need to decide which coefficients are considered 0 and 
which are not. There are several different criteria that can 

be used for this purpose. We can use statistical significance 
to see which coefficients must be retained. Alternatively, a 
low threshold value can be set. If all the predictors and the 
dependent variable are standardized, coefficients which are 
smaller than 0.1 (or 0.05) may be considered substantively 
unimportant as they have less than 1% contribution to the 
R2 of the dependent variable. Next, a parallel set of models 
must be estimated where the coefficients that are considered 
zero are actually fixed to 0. Among the 10 models then a 
selection criteria such as BIC or AIC can be used to make 
the final selection model or alternatively the most parsimo
nious model that is not rejected by the chi-square test of fit 
can be used as the final model. It should be noted here that 
the BIC and AIC criterions in the LASSO runs can not be 
used for model selection because Mplus does not adjust the 
number of parameters when the model is RegSEM. Mplus 
will adjust the number of parameters only for a proper 
PSEM model. Thus the BIC criterion should be obtained 
only in the parallel run where the coefficients that are near 
zero in LASSO are actually fixed to 0.

Consider the following simulated example where a 
dependent variable is regressed on 10 standardized covari
ates, 7 of the coefficients are zero and 3 are not zero: 0.3, 
0.2 and 0.1. The sample size is only N ¼ 100 and the correl
ation between all the covariates is set to 0.8. In such difficult 
settings, significance for the coefficients is out of reach. 
Figure 30 shows the input file for estimating the LASSO 
regression using LASSOð0, vÞ penalty with v ¼ 1: We esti
mate this model on the following grid of v values: 
0.05,0.1,0.2,0.3, … ,0.9,1.0. For v between 0.4 and 1.0, there 
are 6 coefficients greater than 0.1 by absolute values, for the 
6 variables X1, X2, X3, X4, X7, and X10: For v ¼ 0:3 there 
are 5 coefficients that remain above 0.1: X1, X2, X3, X4, 
X7: For v ¼ 0:2 there are 3 coefficients that are above 0.1: 
X1, X3, X4: For v ¼ 0:1 only X1 and X3 have coefficients 
above 0.1. For v ¼ 0:05 there are no coefficients that are 
above 0.1. Neither of these models is the true model which 
includes only X1, X2 and X3 as predictors. Next we evaluate 
the above standard regression models with Q0¼ 6,5,3,2, and 
0 predictors, i.e., Q − Q0 of the parameters are fixed to 0. 
The first 5 of these are not rejected by the chi-square test of 
fit. Only the model with Q0 ¼ 0 is rejected. Therefore, using 
the chi-square test of fit as the selection criterion, we select 
the most parsimonious model which includes only X1 and 
X3 as predictors. Using the BIC criterion the same model is 
identified as the best model.

The covariate X2 was omitted in the selection process for 
this one replication. In these settings, even when X1 and X3 
are the only covariates selected in the model, significance 
for the regression coefficients could not be established. If 
the simulation is repeated with a larger sample size, we 
expect that all 3 predictors will be correctly identified. Note, 
however, that even if the model with the true covariates X1, 
X2 and X3 was included in the model comparison, the 
model with X1 and X3 alone would have been the final 
selection model since it is more parsimonious and is not 
rejected by the test of fit for this particular data set.

Figure 28. Multilevel ESEM.
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18. Regularization for Moderated Nonlinear Factor 
Analysis (MNLFA)

The MNLFA model was introduced in Bauer and Hussong 
(2009). The model is a generalization of the MIMIC model 
and it allows covariates to affect the factor variance in add
ition to the factor mean. For simplicity, in this section we 
shall limit the discussion to a 1-factor model but models 
with multiple factors can be used as well. The 1-factor 
MNLFA model is given as follows

Y ¼ � þ Kgþ e (43) 
g ¼ B1X þ n (44) 

e � Nð0, HÞ, n � Nð0, ExpðB2XÞÞ, (45) 

where Y is a vector of factor measurements, X is a vector 
of factor predictors, g is the factor, and e is a vector of 
uncorrelated residuals. Unlike the MIMIC model, the 
residual factor variance is ExpðB2XÞ and varies across cova
riates. The model can be viewed also as a generalization of 
the multiple group scalar factor model in the following 
sense. If the covariate X is an unordered categorical vari
able, in the form of dummy covariates for each group, the 
model reduces precisely to the multiple group factor ana
lysis scalar model where each group except the reference 
group has a group-specific factor mean and variance 
parameters. Thus, we can view the MNLFA as a continuum 
generalization of the multiple group factor analysis model. 
If the covariates X represent a continuum of background 

Figure 29. Multilevel ESEM results.
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variables and we want to determine how the factor mean 
and variance change over that continuum, we can use the 
MNLFA model. The MNLFA model can be used with cat
egorical or continuous indicators.

The regularization of the MNLFA model has been dis
cussed in detail in Belzak and Bauer (2024). From a PSEM 
perspective, the model can be described as follows. Equation 
(43) is replaced by

Y ¼ � þ ðKþ C2XÞgþ C1X þ e (46) 

while Equations (44–45) remain the same, and all param
eters C1 and C2 are given ALF or LASSO priors. The role 
of C1 and C2 are to discover measurement non-invariance 
across the continuum of covariates X, i.e., identifying DIF 
along the space of covariates. The multiple group analog 
of this model is the alignment method, which also allows 
non-invariance in the loadings and intercepts across 
groups, while ALF priors are given to the differences in 
the loadings and intercepts. There is one key difference 
between MNLFA and multiple group alignment (MGA). 
In the alignment method, the penalty function includes 
all pairwise differences in the parameters, while if we use 
the MNLFA model with dummy indicators for the groups, 
the penalty function includes only the differences between 
each group and the reference group (incomplete penalty). 
This can also lead to MNLFA dependence on the refer
ence group specification.

Note also that if we remove the covariate effect on the 
loadings C2 (metric invariance), we essentially obtain the 
MIMIC regularization model discussed in Asparouhov 
and Muth�en (2024) Section 4.3. That model is a pure 
PSEM model which is not identified. If all direct effects 
C1 are included in the model then the covariate effects on 
the factor B1 are not identified parameters without a pen
alty. Thus adding ALF priors for C1 yields a PSEM model. 
The PSEM model has the advantage over the regulariza
tion model that we don’t need to sacrifice any part of the 
data fit. We do not need to consider the penalty weight 
and can let it be determined numerically.

The same applies to the loading and variance parameters 
to some extent. Consider the MNLFA regularization model 
without the mean effect B1 but with C1, i.e., unrestricted 
covariates effect on the indicators and without a penalty 
function. Consider also the following alternative parameter
ization of the MNLFA loading model

Y ¼ � þ ExpðK0 þ C3XÞgþ C1X þ e: (47) 

This model has all positive loadings but there is no loss 
of generality because the signs of the indicators can be 
reversed. The model is not an exact reparameterization of 
(46) but is sufficiently close. Using the approximation 
Expðaþ bxÞ � ExpðaÞð1þ bxÞ which is valid for small val
ues of x, we see that as long as the loading non-invariance 
is relatively small, models (46) and (47) are approximately 
equal. Now, if B1 is excluded from the model, then (47) is 
also a pure PSEM model and B2 can not be identified with
out a penalty function. Thus adding ALF priors for C2 
yields a pure PSEM model.

Unfortunately, when both pure PSEM models discussed 
above are combined together (both mean and variance/load
ing effects), they do not produce a pure PSEM model. The 
loading and mean effects combine together and break the 
non-identification. Thus both (46) and (47) are technically 
identified models even without priors. However, these mod
els are sufficiently close to a PSEM models and can essen
tially be treated as such. The identification of B1 and B2, 
without the penalty function for C1 and C2 is going to be 
poor and a null model with B1 ¼ B2 ¼ 0 can be used as the 
benchmark for the data fit and the determination of the 
penalty weight.

Next, we will illustrate both the MNLFA and the exponen
tial MNLFA with a simulation study. The data is generated 
according to a MNLFA model. We use a 5-indicator, 1-factor 
and 1-covariate model. The model has one loading non-invari
ance on the first indicator and one intercept non-invariance 
(direct effect) on the second indicator. The simulation study is 
based on the external Monte Carlo facility in Mplus which 
generates the data in one step and analyzes it in a different 
step. The easiest way to generate such data in Mplus is with a 
two-level setup where each cluster contains just one observa
tion and the variances for all (between level) random effects is 
fixed to 0. Figure 31 shows the Mplus input file for the data 
generation. Figures 32 and 33 show the Mplus input files for 
the external Monte Carlo estimation for the MNLFA and the 
exponential MNLFA respectively. The results of the simulation 
for the two models are given in Figures 34 and 35. For both 
models the bias is minimal and the coverage is near the nom
inal levels. A slightly smaller bias is seen for the MNLFA. To 
some extent this is expected since this model has the unfair 
advantage that it corresponds exactly to how the data is gener
ated. The exponential MNLFA appears to have more power in 
detecting significance for the C2 and B2 coefficients. Note that 
the two parametrizations are different and therefore quantities 
such as bias and MSE are not directly comparable. The power 
to detect significance, however, is comparable. For the two 
non-zero coefficients in C2 and B2, the power to detect signifi
cance estimated with the exponential MNLFA is 68 and 67%. 

Figure 30. Lasso regression.
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For the MNLFA model, the corresponding values are 59 and 
51%. The estimation of the MNLFA model takes approxi
mately 1 second per replication.

In this simulation study, the average log-likelihood values 
for the MNLFA and the exponential MNLFA are −3984.8 
and −3985.2 respectively. This confirms our expectation 
that in terms of data fit the two models are similar. The 
null model log-likelihood is −3987.4. This also confirms our 
expectation that the MNLFA model is not exactly a pure 
PSEM model and the two additional parameters in B1 and 

B2 are indeed identified. The null model can still be used as 
a benchmark. The penalty weight should be low enough so 
that MNLFA yields log-likelihood that is at least as good as 
the null model log-likelihood.

We conclude that the MNLFA model has a great 
potential for identifying measurement non-invariance 
with respect to a variety of covariates, particularly con
tinuous covariates and situations where multiple covari
ates are considered simultaneously. We would not 
recommend the MNLFA model as a replacement of the 
multiple group alignment method due to the MNLFA 
incomplete penalty function and dependence on the refer
ence group. Note, however, that the MNLFA penalty 
function can be adjusted to match that of the alignment 
method precisely. The combination of Alignment and 
MNLFA in the presence of grouping and continuous 
covariates is also possible in this framework.

The MNLFA model can be used with more than one fac
tor. All factor variances and covariances can be modeled as 
functions of the covariates. The most common approach is 
to use a linear predictor for the inverse hyperbolic tangent 
of the correlations. Consider the case of a model with 2 fac
tors. If the two factor variances are v1 and v2, the covari
ance between the two factors is c, the correlation between 
the two factors is q, and the covariate is X, the model is 
given by

log ðv1Þ ¼ a1 þ b1X (48) 
log ðv2Þ ¼ a2 þ b2X (49) 

tanh−1ðqÞ ¼ 0:5 log
1þ q

1 − q

� �

¼ a3 þ b3X: (50) 

This results in the following variance covariance matrix

v1 ¼ Expða1 þ b1XÞ (51) 

Figure 33. Exponential MNLFA.

Figure 31. Generating data for MNLFA.

Figure 32. MNLFA.
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Figure 34. MNLFA results.

Figure 35. Exponential MNLFA results.
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v2 ¼ Expða2 þ b2XÞ (52) 

c ¼ Expðða1 þ a2Þ=2þ ðb1 þ b2ÞX=2Þ
Expð2a3 þ 2b3XÞ − 1
Expð2a3 þ 2b3XÞ þ 1

:

(53) 

The above equations must be specified precisely in the 
Mplus model constraint section for the MNLFA estimation. 
If the loadings in the factor model are all free and the factor 
variances are meant to be fixed to 1 in the absence of cova
riates, the parameters a1 and a2 must be fixed to zero 
(removed).

19. Conclusion

In this paper we illustrate the power of the PSEM frame
work when it is combined with various other modeling 
frameworks such as multilevel and mixtures. It is clear that 
adding a penalty to existing estimation methods can be used 
to efficiently obtain novel methodology that can not be 
otherwise accessed with traditional methods. The addition 
of the penalty does not lead to complications for the estima
tion and the added setup is minimal. Further exploration of 
this methodology is clearly necessary as well as real data 
applications.

As we have now expanded the PSEM application area, 
we have inevitably broached the limit of pure PSEM 
applications. RegSEM models are needed in many instan
ces. This means that additional methodology is needed to 
guide the balancing act of sacrificing a portion of the data 
fit for the benefit of the penalty, i.e., the parsimony of the 
model. Additional development is needed to be able to 
effectively view and understand the continuum of models, 
see Asparouhov (2023) page 73, that a varying penalty 
weight provides. In the RegSEM examples we discussed, 
we stayed in the realm of minimal data fit drop, by mini
mizing the penalty but keeping the log-likelihood change 
to less than 1. This clearly would not be a universally 
acceptable strategy. Real-data applications usually reveal 
complex modeling problems and minor model modifica
tions as in our simulation studies aren’t the likely final 
outcome. Larger penalty weight and bigger data fit drops 
are likely to be of value in real data analysis. This raises 
questions such as how much can we increase the Geomin 
penalty weight and drop the data fit to obtain a more rep
licable model with fewer spurious cross loadings. New 
methodologies are needed to systematically consider the 
realm of RegSEM. Linear regression LASSO provides a 
guiding light in this regard. Many methods have been 
developed for linear LASSO, such as cross-validation 
techniques. These methods need to be expanded to the 
general latent variable modeling framework.

Ultimately, the penalty function is a quantification of our 
expectations for what the model should look like. We can 
argue that when the penalty is not used directly in the ana
lysis, but only subconsciously in the analyst modeling itera
tions, it is much more likely for a subjective error to occur. 
As a consequence, replicability of the analysis will be in 
question. The PSEM framework and the regularization of 

latent variable models paired with meaningful cross-valid
ation has the potential to greatly improve the quality of our 
analyses.
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