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1 Appendix

1.1 Identification proof for RCLPM

Consider the CLPM for the variables Yt and Zt for t = 2, ..., T ,

Yt = αyt + β1tYt−1 + β2tZt−1 + εyt (1)

Zt = αzt + β3tYt−1 + β4tZt−1 + εzt (2)

εyt ∼ N(0, vyt) (3)

εzt ∼ N(0, vzt) (4)

ct = Cov(εyt, εzt). (5)

Next, consider the reciprocal cross-lagged model.This model is referred to as RCLPM (re-
ciprocal cross-lagged panel model). The RCLPM can be expressed as

Yt = ayt + rytZt + b1tYt−1 + b2tZt−1 + εyt (6)

Zt = azt + rztYt + b3tYt−1 + b4tZt−1 + εzt (7)

εyt ∼ N(0, wyt) (8)

εzt ∼ N(0, wzt) (9)

0 = Cov(εyt, εzt). (10)

We begin with the case of T = 3. In this case we need 2 = T − 1 parameter constraints
to make the RCLPM model identifiable and possibly equivalent to the CLPM. We consider
the following constraint: time invariance of the reciprocal interactions

ry2 = ry3 = ry (11)

rz2 = rz3 = rz. (12)

Under this constraint, we have the following 6 equations, obtained from equations (??-??)
for t = 2 and t = 3:

vy2 =
wy2 + r2ywz2

(1− ryrz)2
(13)

vz2 =
wz2 + r2zwy2

(1− ryrz)2
(14)

c2 =
wz2ry + wy2rz
(1− ryrz)2

(15)

vy3 =
wy3 + r2ywz3

(1− ryrz)2
(16)

vz3 =
wz3 + r2zwy3

(1− ryrz)2
(17)
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c3 =
wz3ry + wy3rz
(1− ryrz)2

(18)

In these 6 equations, the CLPM has 6 parameters vy2, vz2, c2, vy3, vz3, c3 and the RCLPM has
6 parameters wy2, wz2, wy3, wz3, ry, rz. The above 6 equations show how to derive the CLPM
parameters from the RCLPM parameters. If we can reverse these equations and show that
the 6 RCLPM parameters can be derived from the 6 CLPM parameters, we establish the
equivalence of the two models under the constraints (11-12). Thus we need to solve the
above equations for the RCLPM parameters. Below we delve into this task. Using (13) and
(15),

wy2 = (vy2 − c2ry)(1− ryrz). (19)

Similarly,
wz2 = (vz2 − c2rz)(1− ryrz) (20)

wy3 = (vy3 − c3ry)(1− ryrz) (21)

wz3 = (vz3 − c3rz)(1− ryrz). (22)

Thus, if we find a way to solve for ry and rz in terms of the CLPM parameters, the above 4
equations will complete the task. Substituting wy2 and wz2, using (19) and (20), in equation
(15) we obtain

vz2ry + vy2rz = (1 + ryrz)c2 (23)

and similarly
vz3ry + vy3rz = (1 + ryrz)c3. (24)

These two equations can serve as the basis for determining ry and rz in terms of the CLPM
parameters. Next we divide the two equations to obtain

vz2
c2

ry +
vy2
c2

rz =
vz3
c3

ry +
vy3
c3

rz (25)

and

rz = ry

vz2
c2

− vz3
c3

vy3
c3

− vy2
c2

. (26)

With this last equation we are solving for rz and then only ry is left, however, we see that a
new condition for identification appears

vy3
c3

̸= vy2
c2

(27)

and
vz3
c3

̸= vz2
c2

. (28)

This can be interpreted as follows. There has to be some time non-invariance in vyt/ct and
vzt/ct for the identification to occur. Also note that in the situation when that non-invariance
is not very pronounced, the identification of the reciprocal regression parameters is likely to
be poor. Furthermore, for finite sample size when the non-invariance is not sufficiently
pronounced to ensure that the asymptotic distribution of the denominator in (26) is away
from zero, we can expect a very non-normal/skewed parameter distribution for the estimated
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reciprocal regression parameters. Such a distribution can be assessed properly with the Bayes
estimator or with the bootstrap method, both of which allow for asymmetric parameter
distribution. The ML estimator, which assumes a symmetric asymptotic distribution, may
yield questionable confidence intervals that do not reflect the skewed distribution.

The final step in this analysis is to determine an expression for ry in terms of the CLPM
parameters. Denote the quantity

λ =
vz2
c2

− vz3
c3

vy3
c3

− vy2
c2

, (29)

so that
rz = ryλ. (30)

We then substitute that expression in equation (23) and obtain the following quadratic
equation

λr2y −
(vz2
c2

+ λ
vy2
c2

)
ry + 1 = 0 (31)

with discriminant

D =
(vz2
c2

+ λ
vy2
c2

)2

− 4λ.

Using the basic inequality that (a+ b)2 ≥ 4ab and the fact that vy2vz2 ≥ c22, we can see that
D ≥ 0 and therefore the quadratic equation always yields a solution

ry =
vz2
c2

+ λvy2
c2

±
√
D

2λ
. (32)

As is typical in quadratic equations we get two different solutions. That may present some-
what of an interpretation challenge because there is no statistical way to discriminate be-
tween the two. Furthermore, in simulation studies, there is no guarantee that different
replications will converge towards the same solution. It may be that some of the replications
converge to one solution and some to the other, rendering the typical Montecarlo evaluation
strategies useless. The two solutions can also cause problems for the Bayes and bootstrap
estimators because the built parameter distribution may become a bimodal mixture of the
posterior/bootstrap distribution for the two solutions. Inequality constraints on the recip-
rocal regression parameters can be used to reduce the posterior/bootstrap distribution to
only one of the two solutions. If the sample size is small, however, separating the poste-
rior/bootstrap distributions for the two solutions may become impossible because the two
distributions will overlap substantially.

1.2 Resolving the dual solution problem

In this section we provide some more information on the Appendix Section 1.1 dual solution
problem that arises from the quadratic nature of the equations determining the reciprocal
regression parameters of the RCLPM. Suppose that the two solutions of equation (31) are
r′y and r′′y and the corresponding solutions for rz are r′z and r′′z . It can be shown that

r′z
r′y

=
r′′z
r′′y

= λ (33)

4



r′yr
′′
y =

1

λ
(34)

r′zr
′′
z = λ (35)

r′yr
′
zr

′′
yr

′′
z = 1, (36)

where λ is given in (29). Because of equation (36), in one of the two solutions |ryrz| < 1
and in the other |ryrz| > 1. This inequality can be used to assist Monte Carlo simulations,
Bayes and bootstrap estimations to converge to just one of the two solutions. For example,
constraining the estimation to the case of

r2yr
2
z < 1 (37)

will ensure that all estimates across Monte Carlo replications, MCMC draws, or bootstrap
draws are using just one of the two solutions.

In principle the two solutions are mathematically equivalent, however, we can argue here
that the solution which satisfies |ryrz| < 1 will be easier to interpret. The product of the
two reciprocal regression coefficients represents the feedback loop and one would generally
expect that to be less than 1. Furthermore, there is the impact on the auto-regressive (AR)
matrix. In the typical stationary CLPM, both eigenvalues as well as the determinant of
the AR matrix will be between 0 and 1. In the RCLPM, that determinant is multiplied
by 1 − ryrz which will be negative if ryrz > 1, i.e., the RCLPM will have an unusual AR
matrix. Finally, the solution which satisfies |ryrz| < 1 has the advantage that the structural
concepts of total and indirect effects are actually defined, see Chapter 8 in Bollen (1989).
This is because the eigenvalues of

B0 =

(
0 ry
rz 0

)
are less than 1 by absolute value precisely when |ryrz| < 1. When these eigenvalues are
less than 1 by absolute value, Bn

0 converges to zero and that guarantees that the total and
indirect effects can be computed for the reciprocal model. The matrix Bn

0 contains the
indirect paths of length n.

In principle, the dual solution problem can be eliminated with additional constraints
on the model parameters. For example, in the article Section The RCLPM with time-
invariant reciprocal and cross-lagged regression we show that if the cross-lagged regressions
are invariant across time, there is no dual solution. In the article Section The RCLPM
without cross-lagged regressions and Appendix Section 1.5, we show that if the cross-lagged
regressions are fixed to zero, there is no dual solution. Not every parameter constraint
however can eliminate the dual solution. Consider as an example the case of T > 3 where
all reciprocal regression coefficients are time invariant. This means that we have T − 1
equations to determine ry and rz of the type given in (23-24) instead of just two such
equations. Unfortunately, there can be only two independent such equations. Any other
equation of the same type will be a linear combination of the first two. To be more specific,
suppose that we have the following system of three equations

p1ry + q1rz = 1 + ryrz

p2ry + q2rz = 1 + ryrz
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p3ry + q3rz = 1 + ryrz.

Subtracting the third equation from the first two yields

(p1− p3)ry = (q3− q1)rz

(p2− p3)ry = (q3− q2)rz.

If ry and rz are non-zero, we can divide these two equations and we obtain

p1− p3

p2− p3
=

q1− q3

q2− q3
.

If we denote the above quantity by δ then

p3 =
1

1− δ
p1 −

δ

1− δ
p2

q3 =
1

1− δ
q1 −

δ

1− δ
q2,

which means that the third equation is a linear combination of the first two and it does not
carry any new information for ry and rz. We conclude that reciprocal interaction invari-
ance constraint for T > 3 will not provide any additional information that can resolve the
quadratic nature of the solution we have for T = 3.

1.3 Resolving interpretability problems due to negative R2

When an RCLPM is estimated, a negative R2 value can occur for some of the variables. In
this section we discuss conditions for when that occurs and common sense strategies to deal
with this problem. Mplus computes the following R2 values for the RCLPM (6-7),

R2
yt = 1− V ar(εyt)

V ar(Yt)

R2
zt = 1− V ar(εzt)

V ar(Zt)
.

These quantities are somewhat intractable because they involve auto-regressive and recip-
rocal relationships. Here we consider the conditional R2 values, where we condition on all
variables from the previous period

R2
yt0 = 1− V ar(εyt)

V ar(Yt|Yt−1, Zt−1)

R2
zt0 = 1− V ar(εzt)

V ar(Zt|Yt−1, Zt−1)
.

The conditional R2 values can also be viewed as the unconditional R2 if all auto-regressive
parameters are 0. It can also be viewed as the incremental improvements in R2 obtained
by the predictors we don’t condition on. All of the above R2 values should be positive. If
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any of these are negative, interpretability will be compromised. Negative R2 values imply
the illogical conclusion that when a predictor is added to a regression equation, the error
becomes bigger rather than smaller. When we add a predictor to a regression, we expect the
predictor to help explain the variation in the predicted variable and to reduce the residual
error term. As we add predictors we expect the R2 to increase monotonically. In this section
we show that this expectation fails precisely when ry and rz are of opposite signs.

In what follows we focus on the RCLPM for T = 3 with invariant reciprocal parameters.
However, the conclusions can be extended to other models. We consider the RCLPM solution
where |ryrz| < 1, which we established earlier as the most interpretable case. We will show
that if 0 < ryrz < 1 the conditional R2 are positive and if −1 < ryrz < 0 at least one of the
conditional R2 is negative. First note that

R2
yt0 = 1− wyt

vyt

where vyt is given in (??). Therefore

R2
yt0 =

wyt + r2ytwzt − wyt(1− rytrzt)
2

wyt + r2ytwzt

=
wytrytrzt(2− rytrzt) + r2ytwzt

wyt + r2ytwzt

which is clearly positive when 0 < ryrz < 1.
Now consider the case −1 < ryrz < 0. The reciprocal parameters are of opposite sign.

One of the two reciprocals will have a sign opposite to the sign of c2. Let’s assume that is
ry, i.e., ryc2 < 0. From equation (20) we then see that wyt > vyt which implies that Ryt0 is
negative.

An alternative argument that implies difficulties with the interpretation of the case ryrz <
0 goes as follows. If we substitute equation (7) in (6) we obtain an equation

Yt = ...+ ryrzYt + ...

If ryrz < 0 the equation implies that an increase in Yt leads to a decrease in Yt which is a
contradiction.

Next we focus on the condition of the CLPM parameters that determine whether or
not the equivalent RCLPM will be interpretable, i.e., ry and rz would have the same sign.
Because of equation (30), we see that ry and rz have the same sign if and only if λ > 0.
Furthermore we can see from equation (29) that if c2 and c3 are of opposite signs then λ < 0
and the RCLPM would not be interpretable. Thus, if the sign of the residual covariance of
the CLPM changes over time, the RCLPM is not interpretable. It is also possible to show
that λ > 0 is equivalent to the following condition

max(ρt, 1/ρt) < max(vyt/vzt, vzt/vyt),

where ρt = ρt/ρt−1 is the rate of change in the residual correlation parameter ρt of the
VAR model, and vyt =

√
vyt/vyt−1 is the rate of change in the standard deviation of εyt,

etc. The above inequality can be interpreted as follows. In order for a CLPM to produce
an interpretable RCLPM, the correlation parameter in the CLPM must have more stability
across time than the ratio of the scales of the residuals.
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The R2 issue applies to any reciprocal and more generally non-recursive SEM models,
i.e., it applies to the RCLPM discussed above but also the models in article Section 3.2 and
Section 1.5 below. In certain situations, it may be preferable to deal with the negative R2

problem not by adjusting the model but by adjusting the definition of the R2, see Hayduk
(2006). This approach should be reserved for those situations when a very strong substantive
reasoning is available (in favor of a nonrecursive model) that outweighs the opposing evidence
found in the data (the negative R2 should be interpreted as evidence against the model). In
almost all situations, minor modifications of a nonrecursive model can convert it to a recursive
model, preserving model fit and resolving the negative R2 issue. Such a modification, for
example, can be replacing a regression parameter with a covariance parameter. Non-recursive
models have an abundance of competing/alternative recursive models which will not have a
negative R2. It would be difficult to argue in general that all of these recursive alternative
models should be dismissed. This is particularly the case for the RCLPM which has a
perfectly reasonable and well established alternative CLPM.

1.4 The RCLPM with invariant reciprocal and cross-lagged re-
gressions, and non-invariant residual covariances

In this section we show that the RCLPM with invariant reciprocal and cross-lagged regres-
sions with added residual covariances is an identified model as long as the auto-regressive
parameters b1t and b4t are not time invariant. To do that, we first consider a constrained
version of the CLPM (1-5). The constraint that we are interested in can be described as
follows: the scatter plot of the Yt regression coefficients (β1t, β3t) forms a straight line, and
the scatter plot of the Zt regression coefficients (β4t, β2t) forms a straight line as well.1 This
amounts to adding the following parameter constraints

β3,t+1 − β3t

β1,t+1 − β1t

=
β33 − β32

β13 − β12

(38)

β2,t+1 − β2t

β4,t+1 − β4t

=
β23 − β22

β43 − β42

(39)

or an equivalent version of those. These equations can easily be converted to an expression
which specifies that β3t is a linear function of β1t and β2t is a linear function of β4t. Since
the CLPM is identified, so is the constrained CLPM with the constraints (38-39). Let’s now
denote the slope and intercept of the scatter plot line of (β1t, β3t) by rz and b3, and denote
the slope and intercept of the scatter plot line of (β4t, β2t) by ry and b2. The expression given
in (38) is rz and the expression given in (39) is ry. Note that as long as the scatter plot for
(β1t, β3t) contains at least two distinct points, i.e., β1t is not time invariant, the slope and
intercept for the straight line rz and b3 are identified. Similarly, as long as β4t is not time
invariant, ry and b2 are identified. Because of the linearity we obtain

β3t = rzβ1t + b3 (40)

β2t = ryβ4t + b2. (41)

1Adding such constraints in Mplus can be accomplished with the MODEL CONSTRAINT command.
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Next we define b1t and b4t as follows

b1t = β1t − ryβ3t (42)

b4t = β4t − rzβ2t. (43)

Now it is easy to see that equations (40-43) are equivalent to article equation (23) under
the assumption of invariant reciprocal RVAR parameters ryt = ry, rzt = rz and invariant
cross-lagged parameters b2t = b2 and b3t = b3. We conclude that the constrained CLPM,
using constraints (38-39), is a reparameterization of the RCLPM with invariant reciprocal
and cross-lagged parameters. Note that the auto-regressive parameters b1t and b4t are not
time invariant precisely when β1t and β4t are not time invariant. This is the only condition
needed for the above reparameterization.

The reparametrization for the remaining model parameters (intercepts, variances and
covariances) is given as follows. The reparameterization for the intercept parameters is given
again by article equation (17) or equivalently by equation (22). The reparameterization for
the residual covariance parameters is derived as follows. If εyt and εzt are the residuals of
the VAR model, from article equation (13) we see that the residuals for the RCLPM are(

1 −ry
−rz 1

)(
εyt
εzt

)
. (44)

If we denote the residual covariance parameter of the RCLPM by ρt, the variance/covariance
reparameterization is given by(

wyt ρt
ρt wzt

)
=

(
1 −ry

−rz 1

)(
vyt ct
ct vzt

)(
1 −rz

−ry 1

)
(45)

or equivalently (
vyt ct
ct vzt

)
=

1

(1− ryrz)2

(
1 ry
rz 1

)(
wyt ρt
ρt wzt

)(
1 rz
ry 1

)
. (46)

We conclude that the RCLPM with invariant reciprocal and cross-lagged regressions and
added residual covariances is identified because it is equivalent to a constrained RCLPM.
The above derivation also implies that this RCLPM does not have a dual solution but it can
be a subject to the negative R2 issue discussed in Appendix Section 1.3. As in Appendix
Section 1.3, the conditional R2 for the RVAR model is positive if and only if

vyt > wyt (47)

vzt > wzt. (48)

From (45) we get
vyt > wyt = vyt − 2ryct + r2yvzt

vzt > wzt = vzt − 2rzct + r2zvyt

or equivalently
2ryct > r2yvzt
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2rzct > r2zvyt

If we multiply the above two inequalities we obtain that for the RCLPM to have positive
conditional R2 it is necessary to have ryrz > 0, i.e., the reciprocal coefficients must have the
same sign. If they have different signs, the model has a negative conditional R2 and thus
the model is inadmissible. This conclusion is the same as in Appendix Section 1.3 for the
RCLPM without the residual covariance. Multiplying the above two inequalities also gives
as a necessary upper bound for ryrz

ryrz <
4c2t
vytvzt

< 4. (49)

Thus, if ryrz is not in the interval [0, 4], the solution is inadmissible. However, if ryrz is in
that interval the solution is not necessarily admissible.

Next we consider conditions that can ensure that the solution is admissible. Using (45),
inequality (47) can be expressed as

wyt + 2ryρt + r2ywzt > wyt(1− ryrz)
2. (50)

Clearly this is satisfied if ry, rz and ρt have the same signs and 0 < ryrz < 1, i.e., this would
be one sufficient condition to ensure that the solution is admissible. An alternative sufficient
condition can be obtained as follows. If ρ̃t is the residual correlation at time t,

wyt + 2ryρt + r2ywzt > wyt(1− ρ̃2t ). (51)

Thus another sufficient condition for admissibility is

1− ρ̃2t > (1− ryrz)
2 (52)

or equivalently
ryrz(2− ryrz) > ρ̃2t . (53)

In conclusion, time-specific residual covariance can be added to the RCLPM as long as
the reciprocal and the cross-lagged parameters are held time invariant. It is possible to
further constrain the residual covariance or the residual correlation to be time invariant.
Such a model will also be identified as it is nested within the above model.

1.5 The RCLPM without cross-lagged regressions

Consider the RCLPM without the cross-lagged regressions but with residual covariance.
This model will be referred to as RLPM (the L refers to the lagged auto regression for each
variable). The RLPM is given by the following equations

Yt = ayt + rytZt + b1tYt−1 + εyt

Zt = azt + rztYt + b4tZt−1 + εzt

εyt ∼ N(0, wyt)

εzt ∼ N(0, wzt)
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wt = Cov(εyt, εzt)

In matrix form the model is given by(
Yt

Zt

)
=

(
ayt
azt

)
+

(
ryt 0
0 rzt

)(
Yt

Zt

)
+

(
b1t 0
0 b4t

)(
Yt−1

Zt−1

)
+

(
εyt
εzt

)
(54)

where

V ar

(
εyt
εzt

)
=

(
wyt wt

wt wzt

)
.

This model is as usual converted to(
Yt

Zt

)
=

1

1− rytrzt

(
1 ryt
rzt 1

)(
ayt
azt

)
+ (55)

1

1− rytrzt

(
1 ryt
rzt 1

)(
b1t 0
0 b4t

)(
Yt−1

Zt−1

)
+ (56)

1

1− rytrzt

(
1 ryt
rzt 1

)(
εyt
εzt

)
. (57)

We can see that the model has the same expression as the CLPM and it has the same number
of parameters as the CLPM. In fact the two models are equivalent. The parameters of the
CLPM can be obtained from the parameters of the RLPM using the following equations(

αyt

αzt

)
=

1

1− rytrzt

(
1 ryt
rzt 1

)(
ayt
azt

)
(58)

(
β1t β2t

β3t β4t

)
=

1

1− rytrzt

(
1 ryt
rzt 1

)(
b1t 0
0 b4t

)
(59)(

vyt ct
ct vzt

)
=

1

(1− rytrzt)2

(
1 ryt
rzt 1

)(
wyt wt

wt vzt

)(
1 rzt
ryt 1

)
(60)

These equations are easily reversible and we can obtain the parameters of the RLPM model
from the parameters of the CLPM. The first step is to determine ryt and rzt. Equation (59)
is equivalent to (

1 −ryt
−rzt 1

)(
β1t β2t

β3t β4t

)
=

(
b1t 0
0 b4t

)
. (61)

From here we obtain

ryt =
β2t

β4t

(62)

rzt =
β3t

β1t

. (63)

Equation (61) gives the expressions for b1t and b4t. Equations (58) and (60) are now also
completely reversible (

ayt
azt

)
=

(
1 −ryt

−rzt 1

)(
αyt

αzt

)
(64)
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(
wyt wt

wt vzt

)
=

(
1 −ryt

−rzt 1

)(
vyt ct
ct vzt

)(
1 −rzt

−ryt 1

)
(65)

The equivalence between the two models is established as long as all denominators are not
zero, i.e.,

β1t ̸= 0 (66)

β4t ̸= 0 (67)

β1tβ4t ̸= β2tβ3t (68)

or equivalently
b1t ̸= 0 (69)

b4t ̸= 0 (70)

rytrzt ̸= 1. (71)

If these inequalities are satisfied not just by the point estimates but the entire posterior
distributions, we can expect the RLPM to exhibit easy identifiability and approximately
normal posterior distributions. Note here that the identification of the RLPM without
cross-lags does not require equality constraints across-time, i.e., the reciprocal regression
parameters can be time-specific.

Note that the absence of cross-lagged regressions in the RLPM avoids the dual solution
problem discussed in Appendix Section 1.2 but it does not avoid the possible negative R2

issue discussed in Appendix Section 1.3.
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