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Abstract

This article reviews and compares recently proposed factor analytic and
item response theory approaches to the study of invariance across groups.
Two methods are described and contrasted. The alignment method
considers the groups as a fixed mode of variation, while the random-
intercept, random-loading two-level method considers the groups as a
random mode of variation. Both maximum likelihood and Bayesian anal-
yses are applied. A survey of close to 50,000 subjects in 26 countries is
used as an illustration. In addition, the two methods are studied by Monte
Carlo simulations. A list of considerations for choosing between the two
methods is presented.
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Introduction

This article considers new factor analytic and item response theory (IRT)

approaches to the study of invariance across many groups. The analysis of

many groups presents special difficulties in that it is often realistic to assume

that there is a large degree of measurement noninvariance. This is typically

the case with studies comparing countries in that quite different subject

background and country characteristics cause potentially wide differences

in response processes. Recent methodological developments attempt to take

this into account, providing modeling that assumes only approximate mea-

surement invariance (Asparouhov and Muthén 2014; Fox 2010), while still

making it possible to make group comparisons on latent variables.

To structure the presentation, it is useful to distinguish between two

traditional strands of research viewing the groups as fixed or random modes

of variation. With fixed mode, inference is to the groups in the sample (e.g.,

all U.S. states, all European countries) and usually there is a relatively small

number of groups, leading to multiple-group factor analysis or multiple-

group IRT. With random mode, inference is to a population from which the

groups/clusters have been sampled (e.g., U.S. public schools) and usually

there is a relatively large number of groups/clusters, leading to two-level

factor analysis or two-level IRT. Using either of the two views, two new

techniques have been recently proposed that have in common the notion of

approximate measurement invariance:

1. Fixed mode: Alignment (Asparouhov and Muthén 2014).

2. Random mode: Two-level modeling with random item parameters

(De Jong, Steenkamp, and Fox 2007; Fox 2010; Jak et al. 2013,

2014).

This article gives an overview of the two approaches, describes how

they relate to each other, and gives some recommendations for choosing

between them.

The following example will be used throughout to illustrate the different

analysis approaches. The data are from the European Social Survey as dis-

cussed in Beierlein et al. (2012). The survey intended to cover the 28

European Union countries and if possible all other European states including

Russia and Israel. Due to cost issues, however, not all countries participated,

resulting in 26 countries and 49,894 subjects with an average country sample

size of 1,919. The latent variable constructs of tradition and conformity are

measured by four items presented in portrait format, where the scale of the

items is such that a high value represents a low level of tradition conformity.
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The item wording is shown in Table 1. The two constructs have been found to

correlate highly and are here viewed as forming a single factor.

The structure of this article is as follows. The second section applies con-

ventional, fixed-mode multiple-group factor analysis to the 26-country data,

presents the fixed-mode alignment method, and applies the alignment method

to the 26-country data. The third section presents different two-level models,

contrasts them, and applies them to the 26-country data. The fourth section

presents Monte Carlo simulation studies of the two methods. The fifth section

concludes with a comparison of the two methods on several practical criteria.

Fixed-mode Analysis

Conventional Multiple-group Factor Analysis

With fixed-mode analysis, it is well known that factor analysis of multiple

groups commonly considers three different degrees of measurement invar-

iance (see, e.g., Millsap 2011): configural, metric (also referred to as weak

factorial invariance), and scalar (strong factorial invariance). Configural

invariance specifies the same location of the zero factor loadings of confir-

matory factor analysis (CFA) commonly used with multiple-group analysis.

A recent alternative to CFA is multiple-group “exploratory structural equa-

tion modeling” analysis (Asparouhov and Muthén 2009). With configural

invariance, no equality restrictions across groups are present for any of the

parameters. Metric invariance holds the values of the factor loadings equal

across groups. This makes it possible to make group comparisons of factor

variances and structural relationships in Structural Equation Modeling

(SEM). Scalar invariance specifies that both the factor loadings and the

measurement intercepts (thresholds with categorical items) are invariant.

This makes it possible to compare factor means and factor intercepts across

Table 1. Tradition-conformity Items From the 26-country European Social Survey.

Tradition (TR) 9. It is important for him to be humble and modest. He tries
not to draw attention to himself (IPMODST).

20. Tradition is important to him. He tries to follow the customs
handed down by his religion or family (IMPTRAD).

Conformity (CO) 7. He believes that people should do what they’re told. He
thinks people should follow rules at all times, even when no
one is watching (IPFRULE).

16. It is important for him to always behave properly. He wants
to avoid doing anything people would say is wrong (IPBHPRP).
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groups. Strict measurement invariance also holds residual variances invariant

across groups, but this case is not considered here.

The following introduces notation and gives a quick refresher of the

corresponding three sets of factor analysis formulas for a particular item in

the one-factor case for individual i in group j.

Configural:

yij ¼ nj þ lj fij þ Eij;
EðfjÞ ¼ aj ¼ 0;VðfjÞ ¼ ψj ¼ 1:

ð1Þ

Metric:

yij ¼ nj þ l fij þ Eij;
EðfjÞ ¼ aj ¼ 0;VðfjÞ ¼ ψj:

ð2Þ

Scalar:

yij ¼ nþ l fij þ Eij;
EðfjÞ ¼ aj;VðfjÞ ¼ ψj;

ð3Þ

where n is a measurement intercept, l is a factor loading, f is a factor with mean a
and variance ψ, and E is a residual with mean zero and variance y uncorrelated

with f. The configural model has subscript j for both intercepts and loadings, the

metric model drops the subscript j for the loadings, and the scalar model drops the

subscript j for both intercepts and loadings. Given the noninvariant intercepts and

loadings, the configural model cannot identify the factor mean and variance but

sets the metric of the factor by fixing the factor mean to 0 and the factor variance to

1, while the metric model identifies group differences in the factor variances, and

the scalar model identifies group differences in both factor means and variances.

For historical reasons, metric invariance has dominated multiple-group

analysis, given that mean structure modeling was introduced relatively late

in SEM, initially having a covariance structure emphasis. In other fields such as

IRT, the opposite is the case with a stronger emphasis on the categorical

counterpart to measurement intercepts (referred to as difficulties in IRT). The

emphasis on metric invariance is unfortunate, because it is hard to imagine how

an item can be perceived the same way by subjects if in the regression of an

item on a factor only the regression slope (the factor loading) and not the

regression intercept (the measurement intercept) is invariant. Scalar invariance,

however, has been found to rarely fit the data well, especially in the analysis of

many groups. This has hampered the comparison of factor means across

groups. The new fixed-mode method referred to as alignment solves this
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problem. Interestingly, the method is not limited to the traditional domain of

multiple-group CFA or IRT, where only a few groups are typically studied, but

the alignment method is suitable for the study of many groups, say up to 100.

The study of measurement noninvariance (referred to as “item bias” and

“Differential Item Functioning (DIF)” in IRT) has traditionally been concerned

with comparing a small number of groups such as with gender or ethnicity using

techniques such as likelihood ratio w2 testing of one item at a time (see, e.g.,

Thissen, Steinberg, and Wainer 1993). Two common approaches have been

discussed (Kim and Yoon 2011; Lee, Little, and Preacher 2010; Stark, Cherny-

shenko, and Drasgow 2006):

� Bottom-up approach: Start with no invariance (configural case),

imposing invariance one item at a time.

� Top-down approach: Start with full invariance (scalar case), freeing

invariance one item at a time, for example, using modification indices

(Sörbom 1989).

Neither approach is scalable—both are very cumbersome when there are

many groups, such as 50 countries (50� 49/2 ¼ 1,225 pairwise comparisons

for each item). The correct model may well be far from either of the two

starting points, which may lead to the wrong model.

Conventional Multiple-group CFA of the 26-country Example

Table 2 shows the model fit results for the configural, metric, and scalar

models. The large sample size of 49,894 produces zero p values for all three

models. The configural model, however, may be deemed to have reasonable

root mean square error of approximation (RMSEA) and comparative fit

Table 2. Twenty-six-country Example: Model Fit for Multiple-group Model.

Models w2 df p Value RMSEA (Probability � .05) CFI

Configural 317 52 .000 .052 (.311) .990
Metric 1,002 127 .000 .060 (.000) .967
Scalar 8,654 202 .000 .148 (.000) .677
Metric vs. configural 685 75 .000
Scalar vs. configural 8,337 150 .000
Scalar vs. metric 7,652 75 .000

Note. n ¼ 49,894. RMSEA ¼ root mean square error of approximation; CFI ¼ comparative fit
index.
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index (CFI) fit values. It is clear that the addition of invariant intercepts of the

scalar model in particular adds greatly to the misfit.

The scalar model shows many large modification indices: 83 in the range

of 10–100, 15 in the range of 100–200, and 16 in the range of 200–457 (the

largest value). The presence of so many large modification indices implies

that a long sequence of model modifications is needed to reach a model with

acceptable fit and the search for a good model may easily lead to the wrong

model. We conclude that traditional multiple-group CFA makes it very dif-

ficult to properly identify the sources of noninvariance due to too many

necessary model modifications. This is a typical outcome when a scalar

invariance model is applied to many groups. It is then impossible to compare

factor means across the groups. A new method is needed. In this article, we

review the radically different method of alignment as proposed in Asparou-

hov and Muthén (2014).

The Alignment Method

To save space, only a brief description of the alignment method is given here;

for a full account, the reader is referred to Asparouhov and Muthén (2014).

An advantage of the alignment method is that it has the same fit as the

configural model. The alignment method minimizes the amount of measure-

ment noninvariance by estimating group-varying factor means a and factor

variances ψ. This is possible despite the fact that these parameters are not

identified without imposing scalar invariance because a different set of

restrictions is imposed that optimizes a simplicity function. The simplicity

function F is optimized at a few large noninvariant parameters and many

approximately invariant parameters rather than many medium-sized nonin-

variant parameters (compare with Exploratory factor Analysis (EFA) rota-

tions using functions that aim for either large or small loadings, not midsized

loadings).

In the alignment optimization of the simplicity function, the factor means

aj and variances ψj are free parameters, noting that for every set of factor

means and variances the same fit as the configural model is obtained with

loadings lj and intercepts nj changed as:

lj ¼ lj;configural=
ffiffiffiffi
ψj

p
; ð4Þ

nj ¼ nj;configural � aj lj;configural=
ffiffiffiffi
ψj

p
: ð5Þ

The alignment method has two steps:
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1. Estimate the configural model:

� Loadings and intercepts free across groups, factor means fixed

at 0 in all groups, factor variances fixed at 1 in all groups.

2. Alignment optimization:

� Free the factor means and variances and choose their values to

minimize the total amount of noninvariance using a simplicity

function

F ¼
X

p

X

j1<j2

wj1;j2 f ðlpj1 � lpj2Þ þ
X

p

X

j1<j2

wj1;j2 f ðnpj1 � npj2Þ; ð6Þ

for every pair of groups and every intercept and loading using a

component loss function f from EFA rotations (Jennrich 2006).

In this way, a nonidentified model where factor means and factor

variances are added to the configural model is made identified by adding

a simplicity requirement. Our simulation studies show that the alignment

method works very well unless there is a majority of significant noninvar-

iant parameters or small group sizes. For well-known multiple-group exam-

ples with few groups and few noninvariances, such as with the classic

Holzinger–Swineford data for two different schools, the results agree with

the alignment method.

In addition to the estimated aligned model, the alignment procedure as

implemented in Mplus Version 7.1 gives measurement invariance test

results produced by an algorithm that determines the largest set of para-

meters that has no significant difference between the parameters. Factor

mean ordering among groups and significant differences produced by

z-tests are also given. Information is further provided on each item’s inter-

cept and loading contribution to the optimized simplicity function. An R2

measure is a useful descriptive statistic for the degree of invariance for a

parameter, showing how much of the configural parameter variation across

groups can be explained by variation in the factor means and factor var-

iances. A high R2 value indicates a high degree of measurement invariance.

Further details of the alignment method are given in Asparouhov and

Muthén (2014).
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Alignment Analysis of the 26-country Example

This section continues the analysis of the tradition-conformity items for

49,894 subjects in 26 European countries that were introduced in Conven-

tional Multiple-group CFA of the 26-country Example section. It is shown

how the alignment method resolves the problem of comparing factor means

found with the traditional multiple-group factor analysis under scalar invar-

iance. Maximum likelihood estimation was used for the initial configural

model as discussed in Asparouhov and Muthén (2014).

Table 3 shows the (non)invariance results for the measurement intercepts

and factor loadings. The countries that are deemed to have a significantly

noninvariant measurement parameter are shown as bolded within parentheses.

As seen in Table 3, most of the items show a large degree of measurement

noninvariance for the measurement intercepts and, to a lesser extent, the

loadings. The large degree of noninvariance is in line with the findings of the

traditional approach using the scalar model. However, Table 3 also shows that

item IPBHPRP has no significant measurement noninvariance, and this item is

therefore particularly useful for comparing these countries on the factor.

Table 4 shows each item’s intercept and loading contribution to the opti-

mized simplicity function. These values add up to the total optimized

Table 3. Twenty-six-country Example: Approximate Measurement (Non)Invariance
for Intercepts and Loadings Over Countries.

Intercepts
IPMODST (2) (3) (4) 5 (6) (7) (8) 9 (10) (11) (12) 13 14 (15) 16 17 (18) (21)

(22) (23) (24) 25 26 (27) 28 (30)
IMPTRAD (2) (3) (4) (5) 6 (7) 8 9 (10) 11 (12) 13 (14) (15) (16) (17) 18 (21)

(22) (23) (24) (25) 26 27 (28) (30)
IPFRULE (2) 3 (4) (5) 6 (7) (8) (9) (10) 11 (12) (13) (14) (15) (16) (17) 18

(21) (22) (23) 24 (25) 26 (27) 28 30
IPBHPRP 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 30

Loadings
IPMODST (2) 3 (4) 5 6 (7) (8) 9 (10) (11) (12) (13) 14 15 16 17 18 21 22 23

24 25 (26) (27) 28 30
IMPTRAD 2 3 4 5 6 7 (8) 9 10 11 12 13 14 15 16 17 18 21 22 23 (24) 25 (26) 27

(28) 30
IPFRULE 2 3 4 5 6 (7) 8 9 10 (11) (12) 13 14 15 16 17 18 21 22 23 24 25 26 27 28 30
IPBHPRP 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 21 22 23 24 25 26 27 28 30

Note. Countries that are deemed to have a significantly noninvariant measurement parameter
are shown in boldface within parentheses.
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simplicity function value. In line with Table 3, it is seen that the item

IPBHPRP contributes by far the least, while the items IPMODST,

IMPTRAD, and IPFRULE, contribute roughly the same. This implies that

IPMODST, IMPTRAD, and IPFRULE have a similar degree of measure-

ment noninvariance. The R2 column of Table 4 also indicates that the

IPBHPRP item is the most invariant in that essentially all the variation across

groups in the configural model intercepts and loadings for this item is

explained by variation in the factor mean and factor variance across groups.

The variance column of Table 4 again shows the variation in the alignment

parameters across groups and again indicates invariance for item IPBHPRP.

Taken together, these three columns give an indication of the plausibility of

the assumption underlying the alignment method mentioned in section (The

Alignment Method), namely, that an invariance pattern can be found. In this

example, the inclusion of the IPBHPRP item makes this assumption plausi-

ble and ensures good performance of the alignment method. This is also

supported by Monte Carlo simulation studies discussed in Simulations Based

on the 26-country Data section. Note, however, that simulation studies show

that to obtain good alignment performance, it is not necessary that any item

has invariant measurement parameters across all groups.

Table 5 shows the factor means as estimated by the alignment method.

For convenience in the presentation, the factor means are ordered from high

to low and groups that have factor means significantly different on the 5

percent level are shown. Figure 1 compares the estimated factor means

using the alignment method with the factor means of the scalar invariance

model (without relaxing any invariance restrictions). The correlation

between the two sets is .943, but despite this seemingly high correlation,

there are several discrepancies. Recalling the reversed scale, the two meth-

ods agree that Sweden (Country 23) has the lowest level of tradition con-

formity and Cyprus (Country 4) the highest level. The alignment method,

Table 4. Twenty-six-country Example: Alignment Fit Statistics.

Intercepts Loadings

Fit Function Fit Function
Items Contribution R2 Variance Contribution R2 Variance

IPMODST �229.849 .203 .105 �158.121 .000 .020
IMPTRAD �199.831 .566 .058 �134.042 .000 .014
IPFRULE �213.806 .198 .103 �113.305 .263 .008
IPBHPRP �32.836 1.000 .000 �33.941 .999 .000
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however, finds that Portugal (Country 21) has a significantly different mean

from the Netherlands (Country 18), whereas the scalar method finds essen-

tially no difference between these countries. Other discrepancies between

the two methods are found for France compared to Switzerland and for

Norway compared to Russia.

Random-mode Analysis

Turning to random-mode analysis, the question is what two-level factor

analysis and two-level IRT can tell us about measurement invariance and

how it can be used to compare groups with respect to group-specific factor

values. As a refresher on two-level factor analysis and IRT, it is useful to

distinguish between three major types of models:

Table 5. Twenty-six-country Example: Factor Mean Comparisons of Countries.

Ranking Group Value Groups With Significantly Smaller Factor Mean

1 26 .928 24 21 7 11 4 12 30 8 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

2 24 .613 21 7 11 4 12 30 8 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

3 21 .391 30 8 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

4 7 .357 30 8 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

5 11 .342 8 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

6 4 .331 8 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

7 12 .310 6 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

8 30 .247 17 9 2 13 22 25 15 23 28 16 18 10 3 14 27 5

9 8 .200 13 22 25 15 23 28 16 18 10 3 14 27 5

10 6 .161 22 25 15 23 28 16 18 10 3 14 27 5

11 17 .130 22 25 15 23 28 16 18 10 3 14 27 5

12 9 .121 22 25 15 23 28 16 18 10 3 14 27 5

13 2 .114 22 25 15 23 28 16 18 10 3 14 27 5

14 13 .100 25 15 23 28 16 18 10 3 14 27 5

15 22 .007 15 23 28 16 18 10 3 14 27 5

16 25 .000 15 23 28 16 18 10 3 14 27 5

17 15 �.114 18 10 3 14 27 5

18 23 �.145 10 3 14 27 5

19 28 �.185 3 14 27 5

20 16 �.190 3 14 27 5

21 18 �.214 14 27 5

22 10 �.234 14 27 5

23 3 �.288 5

24 14 �.314 5

25 27 �.327 5

26 5 �.478
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1. Random intercepts, nonrandom (invariant) loadings: Different

within- and between-level factor loadings.

2. Measurement invariance (nonrandom intercepts and loadings): Same

within- and between-level factor loadings and zero between-level

residual variances.

3. Random intercepts and random loadings.

Model Type 1: Random Intercepts, Nonrandom Loadings,
and Different Within- and Between-level Factor Loadings

As a background for model type 1, recall random effect analysis of variance

for individual i in cluster j,

Figure 1. Twenty-six-country example: Factor means for alignment method versus
scalar model.
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yij ¼ nþ yBj
þ yWij

; ð7Þ

where yBj
and yWij

are uncorrelated latent variable decompositions of yij. For

a given item, two-level factor analysis generalizes this to

yij ¼ nþ lB fBj
þ EBj

þ lW fWij
þ EWij

; ð8Þ

with covariance structure VðyijÞ ¼ SB þ SW , where

SB ¼ LB CB L0B þYB;
SW ¼ LW CW LW 0 þYW :

It is clear that equation (8) can be equivalently expressed as a random

intercept model:

Level 1 : yij ¼ nj þ lW fWij
þ EWij

; ð9Þ

Level 2 : nj ¼ nþ lB fBj
þ EBj

: ð10Þ

The variation in the random intercept nj is expressed in terms of variation

in a between-level factor fBj
and a between-level residual EBj

.

Figure 2. Random intercept two-level factor analysis in figure form.
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Figure 2 shows the model in diagram form. On the within level, there are

two factors (f1w and f2w), shown as circles, whereas on the between level,

there is one factor (fb). In an educational testing context with students

clustered within schools, the within factors may correspond to verbal and

mathematics achievement, while the between factor may correspond to

school excellence. This illustrates that the factor loadings can be different

on the two levels. The filled circles on the within level indicate that the

intercepts of the factor indicators y1 � y6 are random effects. These random

effects are latent continuous variables on the between level, where the

figure shows a standard linear one-factor model albeit with latent instead

of observed factor indicators. The short arrows show the residuals, labeled

EBj
on the between level in equation (10). The idea of possibly different

factor structures on the two levels is in line with the two-level factor

analysis tradition starting with Cronbach (1976) and Härnqvist (1978) and

carried further in Goldstein and McDonald (1988), McDonald and Gold-

stein (1989), Longford and Muthén (1992), Härnqvist et al. (1994), and

Muthén (1994).

Model Type 2: Measurement Invariance, Same Within-
and Between-level Factor Loadings

Moving to model type 2, it is instructive to see the connections between

random intercept two-level factor analysis, conventional two-level IRT, and

measurement invariance. Conventional two-level IRT (see, e.g., Fox 2005,

2010; Fox and Glas 2001) considers the special case of lW ¼ lB ¼ l and

VðEBj
Þ ¼ 0, so that equations (9) and (10) become

Level 1 : yij ¼ nj þ l fWij
þ Eij; ð11Þ

Level 2 : nj ¼ nþ l fBj
þ 0; ð12Þ

so that nj varies only as a function of fB, that is, the intercept of the outcome is

determined by the cluster factor value. In conventional two-level IRT

contexts, this is typically rewritten as

yij ¼ nþ l fij þ Eij; ð13Þ

fij ¼ fBj
þ fWij

; ð14Þ

which shows that the model assumes invariance of the intercept n and the

loading l across clusters and that the same l multiplies both fB and fW . This

conventional two-level IRT model has the covariance structure
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SB ¼ L CB L0; ð15Þ

SW ¼ L CW L0 þYW ; ð16Þ

so that YB ¼ 0.

Testing of measurement invariance with random intercept two-level fac-

tor analysis is considered in Jak, Oort, and Dolan (2013, 2014). This involves

testing the general model of equations (9) and (10) against the model with

lW ¼ lB ¼ l and VðEBj
Þ ¼ 0 using likelihood ratio w2. Modification indices

(Lagrange multipliers; Sörbom 1989) are used to reveal model misfit due to

nonzero VðEBj
Þ, pointing to factor indicators that have significant between-

level residual variance and therefore noninvariant intercepts. This approach

is illustrated in Random Intercept Analysis section.

Model Type 3: Random Intercepts, Random Loadings

Model type 3 lets both intercepts and factor loadings vary across between-

level units. This has been discussed in De Jong et al. (2007), De Boeck

(2008), de Jong and Steenkamp (2010), Frederickx et al. (2010), Fox

(2010), Fox and Verhagen (2011), Verhagen and Fox (2013), Verhagen

(2013), and Asparouhov and Muthén (2015). Bayesian estimation is needed

because random loadings with maximum likelihood estimation give rise to

numerical integration with many dimensions which is computationally

intractable. The proposed analysis implies a new conceptualization of mea-

surement invariance where each measurement parameter varies across

groups/clusters, but groups/clusters have a common mean and variance for

the measurement parameter. As with the alignment method, only approxi-

mate measurement invariance is presumed. Different groups/clusters have

different random deviations from the common mean. For example, for a

factor loading,

lj*Nðml;s2
lÞ: ð17Þ

This is illustrated in Figure 3, where the overall factor loading ml ¼ 1, but

there is a small variance s2
l ¼ 0:01 across groups/clusters. Nevertheless, 95

percent of the groups/clusters have a factor loading between 0.8 and 1.2.

Fox (2010) considered this approach in the context of IRT with binary

indicators, where the random-intercepts, random-loadings model can be

expressed for an outcome yij for individual i in group/cluster j as

Pðyij ¼ 1Þ ¼ Fðaj yij þ bjÞ; ð18Þ
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aj ¼ aþ Eaj
; ð19Þ

bj ¼ bþ Ebj
; ð20Þ

where F is the standard normal distribution function, yij is an ability factor,

Eaj
*Nð0;saÞ and Ebj

*Nð0;sbÞ. This is a two-parameter probit IRT model

where both discrimination (a) and difficulty (b) vary across groups/clusters. The y
ability factor is decomposed into between- and within-group/cluster components as

yij ¼ yBj
þ yWij

: ð21Þ

The mean and variance of the ability vary across the groups/clusters. The

model preserves a common measurement scale while accommodating mea-

surement noninvariance. The ability for each group/cluster can be obtained

by factor score estimation.

As discussed by Fox (2010), special modeling considerations are needed

to separately identify cluster/varying factor means and variances in the pres-

ence of random intercepts and loadings. Asparouhov and Muthén (2015)

proposed a convenient way to accomplish this. This is described here for

continuous factor indicators but carries over directly to binary indicators. For

a certain continuous factor indicator yij, the model is specified as

yij ¼ nj þ lj fWij
þ Eij; ð22Þ

nj ¼ nþ l fBj
þ Enj

; ð23Þ

Figure 3. Random measurement parameter.
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lj ¼ lþ l fψj
þ Elj

: ð24Þ

where fWij
*Nð0; 1Þ, Eij*Nð0; yÞ, Enj

*Nð0;s2
nÞ, El;j*Nð0;s2

lÞ, fB*Nð0;ψÞ,
and fψj

*Nð0;s2Þ. The variation in intercepts is captured bys2
n , the variation in

the loadings is captured by s2
l, the variation in factor means is captured

by ψ, and the variation in the factor variance is captured by s2. Cluster-

specific factor values corresponding to factor means can be obtained as

factor score means for the between-level factor fBj
using draws of Baye-

sian plausible values.

The previous two types of two-level factor analysis and IRT models are

easily related to the model in equations (22) to (24). Model type 2 of equation

(13), equation (14) is obtained when setting s2 ¼ 0, s2
l ¼ 0, and s2

n ¼ 0, that

is, requiring no factor loading variation so that lj ¼ l and requiring no

intercept variation that is not explained by fB, so that nj ¼ nþ l fBj
. Model

type 1 of equation (9), equation (10) is obtained when setting s2 ¼ 0,

s2
l ¼ 0, and in addition letting lj ¼ lW , that is, requiring no factor loading

variation but allowing different factor loadings on the two levels. It may be

noted that only model type 3 allows for cluster variation in the factor var-

iances by letting s2 be freely estimated.

Two-level Analyses of the 26-country Example

In this section, the three types of two-level models discussed above are

applied to the 26-country data. One factor is specified for both levels.

Random intercept analysis. Three random intercept models are fitted, following

the suggestions of Jak et al. (2013). Model 1 lets factor loadings be different

on the two levels and lets the residual variances on the between level be free

(lB 6¼ lW , yB free). Model 2 holds the factor loadings equal across levels,

while still letting the between-level residual variances be free (lB ¼ lW , yB

free). Model 3 holds the factor loadings equal across levels and fixes the

residual variances on the between level to 0 (lB ¼ lW , yB ¼ 0). The models

are estimated by maximum likelihood. The resulting fit statistics are shown

in Table 6.

Model 1 fits rather well, given the large sample size of 49,894 subjects.

The w2 p value is .000, but good fit is indicated by RMSEA ¼ :011 and

CFI ¼ :999. A test of model 2 against model 1 leads to a w2 test of 3.9 with

3 degrees of freedom so that equality of factor loadings across levels cannot

be rejected. Testing model 3 against model 1, however, rejects zero between-

level residual variances with a w2 of 6,703 with 7 degrees of freedom.
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The influence on model misfit for model 3 due to nonzero residual var-

iances on the between level is shown in Table 7. In addition to modification

indices, the actual w2 improvements (the drop in w2) when freeing the resi-

dual variances one at a time are shown. For these parameters, the modifica-

tion index values do not seem to give a good approximation of the actual

model fit improvement, although the conclusions about which indicators are

most in need of free residual variances are the same as for the actual w2

improvement. The two factor indicators IPMODST and IPFRULE show a

much stronger need for free residual variances than the other two indicators

and are therefore exhibiting much stronger noninvariance of the measure-

ment intercepts.

Random intercept and random loading analysis. Bayesian analysis was applied to

the random-intercept, random-loading model of equations (22) to (24). The

intercept and loading variance estimates are shown in Table 8. The two-

factor indicators IPMODST and IPFRULE show larger intercept variances

than the other two indicators. This is in line with the random intercept model,

that is, allowing loadings to be random as well does not change the picture.

Table 6. Twenty-six-country Example: Two-level Random Intercept Analysis.

Models w2 df RMSEA CFI

1 Different loadings across levels, residual variances free on between
28.010 4 .011 .999

2 Equal loadings across levels, residual variances free on between
31.868 7 .008 .999

3 Equal loadings across levels, residual variances fixed at 0
6,731.072 11 .111 .723

Table 7. Twenty-six-country Example: Two-level Random Intercept Predicted and
Actual w2 Improvement for Model 3 Between-level Residual Variances.

w2 Improvement

Items Predicted by Modification Index Actual

IPMODST 201,293 3,549
IMPTRAD 29,726 1,201
IPFRULE 161,347 2,924
IPBHPRP 14,347 852
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For the loadings, the IPMODST item has the largest variance. The variance

estimates are in line with those of the alignment method shown in Table 4.

Significant variation in factor means and factor variances is also found

(not shown). The ordering of the countries based on factor means can be

compared between the factor means of the alignment method and the factor

score means of the Bayesian plausible values for the between-level factor fBj
.

For this example, the correlation between the two sets is .987. Figure 4 shows

the relationship. Some of the differences between the two approaches in the

ordering of the countries are similar to those of Figure 1, with the two-level

approach taking the role of the scalar model approach. The relationship

between the scalar model approach and two-level approach is, however, not

perfect, but the correlation is .980.

Simulation Studies Comparing Fixed Versus
Random-mode Analysis

This section compares the alignment method and the random-intercept,

random-loading method using a Monte Carlo study with simulated data. Due

to having known measurement noninvariance with known factor means and

variances, a Monte Carlo study makes it possible to gauge the success of each

method in finding the correct parameter values.

In the Monte Carlo studies, it is useful to have a simple gauge of the

quality of the estimation. An important goal is to correctly estimate the

ordering of the groups with respect to the factor means/factor scores. In

Monte Carlo simulations, an important statistic is therefore the correlation

between the true factor means and the estimated factor means. As a first step,

the relationship between this correlation and the error in the estimation of the

factor mean is derived. This is followed by several simulation studies using

Table 8. Twenty-six-country Example: Two-level Random Intercept and Random
Loading Variance Estimates and 95 Percent Credibility Intervals.

Intercept Loading

Items Estimate CI Estimate CI

IPMODST .122 [.070, .240] .022 [.012, .042]
IMPTRAD .056 [.031, .116] .010 [.005, .021]
IPFRULE .100 [.055, .196] .008 [.003, .019]
IPBHPRP .008 [.000, .038] .006 [.002, .016]

Note. CI ¼ confidence interval.
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the alignment approach and using the two-level approach. The results for the

model with full measurement invariance are also shown as a comparison.

Correlation and Standard Error for Group-specific Factor Means

Consider the alignment method, that is, a fixed-mode, multiple-group anal-

ysis and the goal of correctly estimating the ordering of the groups with

respect to the factor means. The correlation between the true factor means

and the estimated factor means can be computed for each replication and

averaged over the replications. It can also be computed from the correlation

between the true factor means and the average estimated factor means, where

the average is over the replications. The latter value is largely independent of

the sample size and therefore shows the potential of the alignment method to

Figure 4. Twenty-six-country example: Factor means for two-level versus
alignment analysis.
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do a good job for the extent of noninvariance studied, whereas the former

value shows the performance of the alignment method for the extent of

noninvariance studied as well as the sample size studied.

Although the size of a correlation is easy to understand, it is also useful to

consider the standard error of the factor mean estimate. Online Appendix A

derives the relationship between the standard error and the correlation. Table

9 shows examples of correlation values and the corresponding limit of the

estimation error for 95 percent of the groups, where the error is given in a

standardized metric. It is seen that a rather high correlation is required to

keep the absolute error small. For example, to achieve a relatively small

absolute error limit of 0.277 for 95 percent of the groups, a correlation of

.99 is required. A correlation of .95 gives a large error of .620. Figures 1 and

4 exemplify the difference in ordering of the countries for a correlation of

.943 and .987, respectively. A correlation of at least .99 has also shown to be

a good requirement for low bias in estimating each group’s factor mean.

Using the factor mean correlation as a gauge of quality is also applicable

to the two-level, random-intercept, random-slope method. In this case, the

factor means are replaced by factor score means from Bayesian plausible

value draws for each group/cluster. Because of the random-mode approach,

the true values vary across replications.

Simulations Based on the 26-country Data

As discussed in Asparouhov and Muthén (2014), the quality of estimation can be

studied based on the features of a particular real data set. The estimated parameter

values for the data set are used to generate data for the simulation study. In this

section, data for each of the two methods are generated by the model assumed for

that method. In the Online Appendix B, however, data for each method are gen-

erated by the model assumed for the other method. To study the alignment method,

the real data are analyzed by the alignment method, data are generated in many

replications from those estimates, and analyzed using the alignment method. The

two-level method is studied analogously by analyzing the real data by the random-

intercept, random-loading two-level method, generating data from those estimates

over many replications, and analyzing using the random-intercept, random-

loading two-level method. The real data used here are the 26-country data.

Table 9. Relationship Between Factor Mean Correlation and Absolute Error Size.

Correlation .95 .96 .97 .98 .99 .995 .999
Error .620 .554 .480 .392 .277 .196 .088
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For the alignment method, the correlation between the true factor means

and the estimated factor means computed for each replication and averaged

over the replications is .990 for the factor means. According to Table 9, the

high-factor mean correlation corresponds to a relatively small absolute error of

.277. The correlation between the true factor means and the average estimated

factor means, where the average is over the replications, is .999 for the factor

means. The latter value approximates the quality of estimation for a very large

sample, whereas the former value is sample size-specific. These values indi-

cate very good performance of the alignment method. Analysis using the scalar

model performs considerably less well with correlations of .940 and .943,

respectively, for the replication-specific and average computations.

Using the analogous approach when applying the random-intercept,

random-loading two-level method, the correlation between the true factor

scores and the estimated factor scores computed for each replication and

averaged over the replications is only .950 corresponding to an absolute error

of .620. The correlation using averages is not applicable in this case, given

that average scores are 0. The poor performance of the two-level method is

most likely due to using only four-factor indicators. The corresponding cor-

relations when adding similar indicators to use 8, 12, 16, and 20 indicators

are .977, .982, .985, and .988, respectively. This suggests that for indicators

of the quality seen for the 26-country data, about 20 indicators are needed for

good recovery of the factor scores.

Still generating the data according to the random-intercept, random-loading

two-level method, but analyzing using the two-level model type 2, where both

the intercepts and loadings are invariant (not random), a correlation of only

.874 is obtained. This is akin to using the scalar model in the fixed-mode case.

Applying model type 1, a correlation of .872 is obtained. These two results

show the importance of using random measurement parameters. Note, how-

ever, that in this case using a model with random intercepts and nonrandom

loadings that are equal across the two levels obtains a correlation of .951, that

is, the same as when also letting the loadings to be random. This means that

this simpler model can be estimated by maximum likelihood in line with what

was used for model type 1, leading to quicker computations.

In the above studies, data were analyzed by the same model that generated

the data. It is useful to also study the methods when applied to data generated

by a different model. Online Appendix B shows simulations where the data

generation is based on multiple-group data suitable for the alignment method

and a comparison is made between the results of analyzing by the alignment

method versus analyzing by the two-level method. The analogous case of

data generation based on a random-intercept, random-slope two-level model
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is also studied. In these comparisons between methods, the same data are

used, and it is therefore possible to compare the methods with respect to both

correlation and a mean squared error that describes in one statistic both the

bias and variability of the estimates. The reader is referred to Online Appen-

dix B for the results.

Conclusions

This article discusses two new methodologies for studying invariance across

many groups. Both are based on the idea of approximate measurement invar-

iance and perform well under a large set of conditions. The availability of the

two new methods should be a welcome contribution to the study of invar-

iance across many groups. They represent a big step forward in the metho-

dology and they are not difficult to use.

The differences between the two methods discussed in this article are in

how the group-specific factor mean and variance parameter are obtained and

what assumptions are added to the information in the data. The assumption of

the alignment method is that a majority of the parameters are invariant and a

minority of the parameters are noninvariant. The assumption of the random

intercept and loading method is that all parameters are approximately the

same, that is, no parameters are exactly the same across the groups, but rather

each parameter has random variation that makes it slightly different from the

corresponding parameter in the rest of the groups. Thus, when deciding

which model to use for a practical application, one should focus on deciding

which of the above two assumptions is more appropriate for the particular

application. The alignment method focuses on identifying the reason for

noninvariance and produces a model that has clear interpretation in terms

of invariance and noninvariance. The random intercept and slope method are

not as detailed or focused on the actual parameter variations across the

groups but instead look at the entire population as a whole. In addition to

these general considerations, there are several practical issues in deciding

between the two methods as described below.

Critique of the Assumptions Behind Two-level Analysis

The random-mode approach of two-level analysis builds on the assumptions of

randomly sampled groups/clusters and normally distributed random measure-

ment parameters. In some cases, these random-mode assumptions are not well

supported. The group of countries studied may not represent a random sample

of a specific population and may in fact be a heterogeneous collection of
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different country types. Bou and Satorra (2010) criticize the random-mode

approach in favor of a fixed-mode, multiple-group approach. They argue from

a substantive point of view in terms of comparing countries that it is not likely

that the set of countries can be considered as random draws from a population.

Nonnormality of the distribution of a measurement parameter may be violated

due to a set of outlying countries for which the survey question has quite

different meaning. From this point of view, deviations from a common mean

are not likely to follow a simple distribution such as the normal. For example,

consider a situation such as shown in Figure 5. The figure can be seen as

showing a set of measurement intercepts for a factor indicator, where a majority

of the groups/clusters have a small intercept with some variation around it and a

minority of the groups/clusters have a much larger intercept with some varia-

tion around it. In this way, there is a mixture of two unobserved subpopulations,

and treating this as a single population random intercept situation gives dis-

torted results with an estimated mean that is incorrect for both subpopulations

and a variance estimate that is inflated. The mixture case is considered in de

Jong and Steenkamp (2010) but results in a very complex analysis.

Practical Issues in Choosing Between Fixed and Random Approaches

There are several practical reasons for preferring either the alignment or the

random-intercept, random-loading two-level approach. The pros and cons of

the two methods are listed in Table 10. A plus sign denotes that the method

has an advantage over the other method, and a minus sign denotes that it has a

disadvantage.

Figure 5. Group-varying intercepts.
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Number of factor indicators. As seen in the simulations, the two-level method

needs a sufficiently large number of factor indicators to perform well. This

is due to the need to estimate factor scores and is in this way analogous to

scoring issues in IRT. Many survey instruments represent factors with only

a few indicators in order to cover many factors without making the survey

instrument too long. For achievement studies, however, the number of

indicators is much larger and the two-level method would work well. The

alignment method can work very well with a small number of indicators as

seen in the simulations. For one factor, three indicators are sufficient in

principle.

Number of groups. If the number of groups is small, the random intercept,

random-loading model may not perform well and perhaps not even con-

verge. Typically, at least 30 groups are recommended in the multilevel

literature. If the number of groups is large, the alignment method may

have slow convergence and with more than say 100 groups computations

are prohibitive due to the many parameters of the configural model. In

many cases, however, both methods are possible and for any particular

example, it may be useful to compare the results to better understand the

data.

Table 10. Advantages and Disadvantages of Fixed Versus Random Approaches in
Terms of Estimating Factor Means/Scores.

Criterion Alignment
Random Intercepts,

Random Slopes

Small number of factor indicators þ �
Number of groups

2–30 þ �
30–100 þ þ
>100 � þ

Small group size � þ
Weak invariance pattern � þ
Information about which groups contribute

to noninvariance
þ �

Not requiring normality of measurement
parameters

þ �

Ability to relate noninvariance to other
variables

� þ

Complex survey data þ �
Computational speed þ �
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Group size. With small group sizes, the two-level method has an advantage

over the alignment method. In contrast to the alignment method, the

two-level method does not estimate parameters specific to each group.

The two-level method borrows information from all groups in estimating

the parameters which are common to all the groups, while allowing for

random variation across groups. The group size requirement for the align-

ment method varies depending on how clear the invariance pattern is. For

both alignment and two-level analysis, a notion of the actual group size

needed in a specific example can be obtained by Monte Carlo simulation.

Asparouhov and Muthén (2014) did Monte Carlo studies of the 26-country

data and found good alignment results for group sizes as low as 100, but in

other situations, group sizes of several thousand observations may be needed.

Invariance pattern. The type of measurement noninvariance pattern is an

important factor in choosing between the two methods. The assumption of

the alignment method that a majority of the parameters should be invariant

and a minority of the parameters should be noninvariant may not be at hand

in all applications. In such situations, the two-level method is preferable.

Information about groups contributing to noninvariance. Measurement invariance

studies benefit from information on which groups contribute to noninvar-

iance. This information is readily obtained by the alignment method. The

two-level method, however, has currently no such counterpart, given that it

only estimates the degree of measurement variance across groups.

Normality of measurement parameter distributions. Normality of the distribution

of measurement parameters across groups is assumed by the two-level

method. In contrast, the alignment method allows any kind of measurement

parameter distribution and is in this sense nonparametric.

Explanatory variables for noninvariance. Group-level variables are sometimes

hypothesized to influence measurement parameters and therefore explain

part of the measurement noninvariance. Such variables can be incorporated

in the two-level analysis, but currently this option is not available with the

alignment method.

Complex survey data. Comparisons of many groups often arise in surveys of

many countries where a complex survey design is used. For instance, with

Programme for International Student Assessment (PISA), Trends in Interna-

tional Mathematics and Science Study (TIMSS), and other surveys of school
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children, sampling of schools is carried out using probability proportional to

size, giving rise to the need to use sampling weights. Complex survey fea-

tures of weights, stratification, and clustering can be taken into account in the

maximum likelihood estimation of the alignment method. To date, however,

Bayesian analysis cannot accommodate complex survey features.

Computational speed. Computational speed is a final important practical con-

sideration. In most cases, the maximum likelihood estimation with the align-

ment method gives much quicker computations than the Bayesian analysis

with the two-level method. This is due to the simple, two-step procedure of

alignment where a configural model is estimated first, followed by a com-

putationally simple optimization of the alignment fit function. In contrast, the

Bayesian analysis needed for the random-intercept, random-slope two-level

model involves a complex model with many random effects.
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