SRMR

Let p be the number of variables in the model. Let $s_{j k}$ and $\sigma_{j k}$ be the sample and the model-estimated covariance between the j-th and k-th variables. The sample covariance matrix is obtained by dividing by N rather than $N-1$. Let m_{j} and μ_{j} be the sample and the model-estimated mean of the $j-$ th variable. The SRMR fit index is defined as follows.

1. Information=Observed (default)

$$
S R M R=\sqrt{S /(p(p+1) / 2+p)}
$$

where S is defined as follows

$$
\begin{gathered}
S=\sum_{j=1}^{p} \sum_{k=1}^{j-1}\left(\frac{s_{j k}}{\sqrt{s_{j j} s_{k k}}}-\frac{\sigma_{j k}}{\sqrt{\sigma_{j j} \sigma_{k k}}}\right)^{2}+ \\
\sum_{j=1}^{p}\left(\frac{m_{j}}{\sqrt{s_{j j}}}-\frac{\mu_{j}}{\sqrt{\sigma_{j j}}}\right)^{2}+ \\
\sum_{j=1}^{p}\left(\frac{s_{j j}-\sigma_{j j}}{s_{j j}}\right)^{2}
\end{gathered}
$$

2. Information=Expected with Meanstructure (default)

$$
S R M R=\sqrt{S /(p(p+1) / 2+p)}
$$

where S is defined as follows

$$
\begin{gathered}
S=\sum_{j=1}^{p} \sum_{k=1}^{j}\left(\frac{s_{j k}}{\sqrt{s_{j j} s_{k k}}}-\frac{\sigma_{j k}}{\sqrt{s_{j j} s_{k k}}}\right)^{2}+ \\
\sum_{j=1}^{p}\left(\frac{m_{j}}{\sqrt{s_{j j}}}-\frac{\mu_{j}}{\sqrt{s_{j j}}}\right)^{2}
\end{gathered}
$$

3. Information=Expected without Meanstructure

$$
S R M R=\sqrt{S /(p(p+1) / 2)}
$$

where S is defined as follows

$$
S=\sum_{j=1}^{p} \sum_{k=1}^{j}\left(\frac{s_{j k}}{\sqrt{s_{j j} s_{k k}}}-\frac{\sigma_{j k}}{\sqrt{s_{j j} s_{k k}}}\right)^{2}
$$

