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Abstract

As experience with hierarchical exploratory factor analysis has ac-
cumulated, it has become necessary to revisit, update, and correct
several aspects of this modeling approach, including its estimation,
interpretation, and the expectations of what the model can accom-
plish. With these refinements, the model can assume its rightful place
as a serious alternative to bi-factor EFA models and to EFA models
with high factor correlations.



1 Introduction

Hierarchical Exploratory Factor Analysis (HEFA) was discussed in
Asparouhov and Muthén (2024, 2025) in the context of the Penalized
Structural Equation Modeling (PSEM) framework. The HEFA model
can also be viewed as a second-order EFA model where the first-order
factor analysis is an EFA/CFA model and the second-order factor
model is also an EFA/CFA model where the factors from the first-
order analysis are used as indicators in the second-order analysis. The
model is given by the following equations:

Y=v+MF +e¢, (1)

F=Am+¢, (2)

where A; and Ay can be unconstrained matrices of loadings as in EFA
or be structured as in CFA, F is a vector of first-order factors and 7
is a vector of second order factors.

This note is intended to provide corrections and clarifications to
Section 6.2 of Asparouhov and Muthén (2024), which discusses the es-
timation of HEFA models where the first-order analysis is exploratory.
Additional practical experience with this HEFA model has developed
into an improved PSEM based estimation, better interpretation of
the model, and how it compares to other models. Below we dis-
cuss all of these aspects in detail. The most common model to es-
timate among these HEFA models is the case where there are several
exploratory first-order factors and one second-order factor. We will
primarily discuss this simple case here; however, all conclusions ap-
ply to second-order models with more than one factor, models where
the second-order analysis is also exploratory, and models which also
include observed second-order indicators. This paper also serves as
another illustration of the power of the PSEM framework in Mplus.

In Morin et al. (2016), the HEFA model is discussed with a two-
stage estimation procedure referred to as the EWC approach, formu-
lated within the ESEM framework of Asparouhov and Muthén (2009).
Ironically, that estimation method also required revision for a reason
very similar to the PSEM-based estimation we revise here (see Morin
and Asparouhov, 2018). We currently consider the PSEM-based ap-
proach to be superior to the EWC approach because it is based on a
single step rather than two steps, is less time-consuming to set up, and
is less prone to estimation errors due to its simpler setup. Therefore,



the updates and corrections we provide here are essential and should
result in better utilization of the HEFA model.

2 Estimation

The HEFA model is estimated with PSEM where geomin(A;) is set as
the penalty function. Here geomin is the rotation function associated
with the geomin rotation.

Figure 13 in the supplemental materials of Asparouhov and Muthén
(2024) illustrates how the model can be estimated. Simulation stud-
ies are included in Asparouhov and Muthén (2024), which also show
that model estimation works well. However, some practical experi-
ence with this model has revealed a weakness in the estimation: the
estimation often fails to converge, particularly for smaller sample size
situations. For example, the Figure 13 model has a convergence rate
of 100% with sample size N = 2000, but the convergence rate with
N =500 is 75%, and with N = 300 it is 46%. In this note we propose
a new estimation method which has 100% convergence at N = 2000,
500, and 300. The key change in the estimation is how the first-order
factor scales are set. In Figure 13, the residual variance is fixed to 1,
ie., Var({) = 1. What we propose as a solution to the convergence
issues is to replace that with Var(F') = 1, i.e., the factor scale is set
by fixing the total variance of F to 1 as in single-order EFA.

If we use only the residual variance to set the scale, the penalized
likelihood has multiple local maxima that compete with the true val-
ues. Geomin optimization occurs when loadings are near zero. The
alternate local maxima occurs when, for a particular first-order fac-
tor, the first-order loadings are divided by a large number while the
second-order loadings are multiplied by that large number. In this
process, the overall covariance structure remains the same except that
in the second-order factor model, the second-order factor is identical
to that first-order factor. The data log-likelihood decrease counter-
balances the gain from the penalty optimization. These local maxima
may also be global maxima in some situations, but even if they are
not, it is quite easy for the optimization process to diverge towards
these alternate solutions. If there are m first-order factors, essentially
there are m alternate local maximas that the optimization can di-
verge towards. These problems are easily resolved when we use the
total variance to fix the scales in the factor models. Such a setup



separates the two sets of loadings and no multiplicative constant can
pass through.

Because the total first-order factor variances are not model pa-
rameters, to fix these to 1 we must use model constraints in Mplus.
Assuming one second-order factor with a variance fixed to 1, the total
variance of the first-order factor is

Var(F;) = A3; + Var(&;). (3)

The most efficient way to constrain this total variance to 1 in Mplus
is to constrain the residual variance as

Var(§;) = 1 A3;. (4)

Figure [T]illustrates this setup for a simulation study with four first or-
der factors and one second order factor. Note here that the first-order
factor residual variances’ true values are chosen so that the above con-
straint is satisfied. As in Figure 13 of Asparouhov and Muthén (2024),
PSEM Geomin priors are used for the rotation of A;. The results of
this simulation study for a portion of the first order loadings and all of
the second-order loadings are given in Figure [2l The results indicate
that the parameters are recovered reasonably well with a sample size
of N = 500. As discussed in the next section, the chi-square test of
fit for the second-order EFA with m first-order factors is the same as
the chi-square test of fit for the standard EFA with m factors. In this
example, the average chi-square value is 117, and with 116 degrees of
freedom this yields a rejection rate of 3%.

Figure [3] shows the input file for a single data set that can be used
with real data where starting values are not available. The key feature
that is needed now is the option STARTS=50. Starting values for the
first-order loadings can be obtained from the standard EFA; however,
even without starting values the algorithm will converge given enough
randomly generated starting values. When using random starting val-
ues, neither the sign of the loadings nor the order of the factors is
presented in an organized fashion as it is done in the Mplus EFA
estimator. That means that some factors may appear with all nega-
tive main loadings, and the factors themselves may appear in random
order. Thus, if starting values are available or a structure is hypothe-
sized, the PSEM estimator should be used with starting values. This
is illustrated in the empirical example section.

It is argued in Asparouhov and Muthén (2024) that the second-
order EFA is more difficult to estimate than other EFA models or



bi-factor EFA models. It turns out that this was an artifact of the
suboptimal estimation method used at the time and it is no longer
true when we use the total first-order factor variance to set the scale.
With the new estimation method, the second-order EFA is about as
difficult to estimate as any other EFA model. This appears to be true
not just for simulated data but also in real data analysis.



Figure 1: Simulation study for a second order EFA

MONTECARLO:
NAMES = yl-y20;
NOBSERVATIONS = 500;
NREPS = 100;

MODEL POPULATION:
f1 BY y1*0.7 y2*1.3 y3-y4*0.8 y5*0.3;
f2 BY y5*0.6 y6*0.7 y7*0.5 y8%0.8 y9*1 y10*0.5 ;
f3 BY yl1*0.7 yl12*1 y13-y15*0.4;
f4 BY y15*0.6 yl16*0.7 yl17*1 y18*0.5 y19*1 y20%*0.5;
f1*0.84 2*0.75 f3*0.75 f4*.64;
yl-y20*1;
f0 by f1*0.4 f2*0.5 f3*0.5 f4*0.6; fO@1;

MODEL:
f1 BY y1%@.7 y2*1.3 y3-y4*0.8 y5*0.3 y6-y20*0(al-a20);
f2 BY yl-y4*@ y5*@.6 y6%0.7 y7*0.5 y8*0.8 y9*1 y10*0.5 y1l-y20*0 (a2l-a40);
3 BY yl-yle*0 yl1*0.7 yl12*1 yl13-yl4*0.4 yl5*0.4 y16-y20*0 (a4l-a6@);
f4 BY yl-y14*@ y15%0.6 y16*0.7 y17*1 y18*0.5 y19*1 y20*0.5 (a61-a80);
f1*0.84 f2*0.75 £3*0.75 f4*.64 (vi-v4);
yl-y20*1;
fo by f1*0.4 f2*0.5 f3*0.5 f4*0.6 (11-14); fo@E1;

model constraint:
v1l=1-11*11;
v2=1-12%12;
v3=1-13*13;
v4=1-14*14;

MODEL PRIORS: al-a8@~Geomin(4,0.1);

analysis: iter=10000; conv=0.000001;



Figure 2: Results of simulation study for a second-order EFA
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Figure 3: Second order EFA input file for real data analysis

variable: NAMES = yl-y20;
data: file=1.dat;

MODEL:
f1-f4 BY y1-y20*(al-a80);
fl-f4 (vi-v4);
fo by fl-f4* (11-14); fe@1;

model constraint:
vl=1-11*11;
v2=1-12%*12;
v3=1-13*13;
v4=1-14*14;

MODEL PRIORS: al-a80~Geomin(4,0.1);

analysis: iter=10000; conv=0.000001; starts = 50;



3 Interpretation

A second-order EFA with mq first-order factors and ms second-order
factors has the same fit as the EFA with m, factors, regardless of
whether the second-order model is an EFA or a CFA model. The sec-
ond order EFA model is equivalent to a factor analysis model with a
factor correlation matrix ¥ implied by the second order factor analy-
sis model. It is well known that EFA with m; factors yields the best
data fit among all factor models with m; factors. Thus the second
order EFA with m; first order factors in terms of log-likelihood can
not exceed the log-likelihood of the EFA with my factors. Now we will
show that the opposite is true: the maximum likelihood of the sec-
ond order EFA is at least as high as that for the EFA model. Every
correlation matrix ¥ can be represented as U = HH' where H is an
oblique rotation matrix. If Ag is the loading matrix of the unrotated
EFA solution with unit matrix as the factor correlation matrix, we
can rotate the unrotated model using H, to obtain a factor model,
with factor correlation matrix ¥ = HH” and loading matrix AgH !
Since the loading matrix in the second order EFA is unconstrained,
this solution is among those that are considered in the second order
EFA log-likelihood optimization. To rephrase, for every set of param-
eters in the second order model, there is a loading matrix of the first
order factor model, which yields the same optimal log-likelihood as the
unrotated EFA model with m; factors. We conclude that in terms of
data fit, a second-order EFA with m; first-order factors is equivalent
to the EFA model with m; factors.

Every PSEM model estimation is based on a pair of models in ad-
dition to the penalty function. The first model is the actual PSEM
model we are trying to estimate. This model is typically unidentified
if estimated without the penalty. This means that a multidimen-
sional space of model parameters yields the same optimal data fit. In
that space, we identify the PSEM model estimates by minimizing the
penalty. Usually in that space we can identify a well-known model
that can be used as a reference. The model is identified by other
means not related to the penalty, such as fixing some of the parame-
ters. This model is referred to as the null model and its primary func-
tion is to ensure that the PSEM model yields the same log-likelihood,
while varying the penalty weight, see Asparouhov and Muthén (2024)
for details. For the second-order EFA, the null model is the unro-
tated EFA model. However, since the unrotated EFA model and the



rotated EFA model have the same log-likelihood, we can regard the
EFA model with m; factors as the null model for the second-order
EFA with my first order factors and ms second order factors. This
means that the geomin penalty weight is reduced to the point where
the penalized likelihood optimization yields a data fit comparable with
the EFA model. In the example of Figure [I} a comparable fit is ob-
tained with geomin prior variance of 0.1. It is interesting to note here
that mg does not affect the data fit. The role of mg is only regarding
the allowed rotations. The rotation in the second-order EFA is neither
oblique nor orthogonal. The rotations for the second-order EFA are a
subset of the oblique rotations which conform with the second-order
model. This also means that we cannot evaluate the second-order
model using the data fit, just like we cannot pick between oblique or
orthogonal EFA based on the data fit: they have identical data fit.

The advantage of the oblique EFA over the orthogonal EFA is
that a simpler loading structure can be obtained with the oblique
EFA. The drawback of it is that the factor correlation matrix is unre-
stricted and can be viewed as more complex. This perspective allows
us to place the value of the second-order EFA in that framework. A
second-order EFA will provide a simpler loading structure than an
orthogonal EFA, and it gives us an opportunity to model the first-
order factor correlation structure with a simpler/more parsimonious
and more interpretable second-order factor model. In addition, the
second-order factor can also provide a valuable interpretation for the
entire model as an inherent personal characteristic affecting the first-
order factors. Furthermore, using a second-order factor provides for
a parsimonious model when relating to covariates or when used as a
predictor of other variables.

A second-order EFA lies between the orthogonal EFA and the
oblique EFA on the scale of how simple the loading structure is for the
indicators. It also lies in between the two traditional EFA models in
terms of simplicity of the factor correlation. The main question that
needs to be answered is when a second-order EFA should be preferred
to the traditional orthogonal and oblique EFA. If the second-order
EFA model’s first-order loading structure A; is better and more in-
terpretable than the orthogonal EFA loading structure and is compa-
rable (not substantially worse) than the oblique model, it should be
preferred and be considered the best among the three models.

Consider the example in Figure[3] The data is generated using the
simulation study in Figure There are 22 first-order loadings that
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are not zero. The orthogonal model yields a factor structure with
28 significant loadings. On the other hand, the second-order EFA
and the oblique EFA yield nearly identical loading structure: a total
of 24 significant loadings (2 spurious cross-loadings are found with
both models). We conclude that restricting the oblique rotations to a
second-order factor model does not result in worse loading structure
and therefore this is evidence for the usefulness of the second-order
factor which explains the correlation between the first-order EFA fac-
tors. Thus, in this example, the second-order EFA model should be
preferred.

In Asparouhov and Muthén (2024), it is argued that when (1)) and
are combined, the equation

Y:V+A1§+A1A277—|—8 (5)

resembles a bi-factor model. To some extent this is true because if
the second-order EFA has my first-order factors and ms second-order
factors, we end up with a factor model with mq +ms factors: & and 7,
which are independent, and the £ factors are also independent among
each other. Note that the factors & are the factor residuals of the first
order factors F'. The above model is indeed a bi-factor model with 7
being the general factors and & the specific factors. However, this is
not the bi-factor EFA model with my specific and msy general factors.
This is because the loading matrices are highly structured and not
unrestricted like in EFA. Most importantly, however, if we are looking
for a model fit equivalence, this second-order EFA is equivalent to a
bi-factor EFA with a total of my factors: mj; —1 specific and 1 general,
or mp — 2 specific and 2 general, etc. This equivalence has nothing
to do with the above equation at all. It is simply a conclusion that
we can make from the fact that the second-order EFA is equivalent
in terms of data fit to any EFA model with m; factors, including the
bi-factor model with a total of m; factors.

In summary, second order EFA, just like the orthogonal EFA, com-
pensates for its restrictive factor correlation structure with a few more
cross-loadings (if needed) as compared to the oblique EFA.

In essence, we have three competing models: oblique EFA, second-
order EFA, and bi-factor EFA. A natural question arises: is the preci-
sion of the loading estimates (i.e., MSE) affected by or does it benefit
from a more restrictive factor structure? The answer appears to be
no, or at least any effect is not of substantive importance. For exam-
ple, the simulation study presented in Figure [1] yields identical load-
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ings within each replication (and therefore identical MSE) for geomin
second-order EFA and geomin oblique EFA. This result is expected
because the true data-generating model is a second-order EFA. In gen-
eral, however, this will not be the case, and oblique EFA is expected
to produce a simpler—or at minimum, no more complex—loading ma-
trix than second-order EFA. The converse is also true: if the loadings
between the two models do not change substantially, we can take this
as evidence that the second-order EFA represents the true model.

Oblique EFA may sometimes produce factor correlations that are
too high to reliably distinguish between factors. Second-order EFA
can address this problem by modeling the high factor correlations as
a general feature and obtaining independent and distinguishable factor
residuals £&. EFA with high factor correlations is associated with multi-
ple rotated solutions. That is, multiple local minimums of the geomin
optimization can be found in close proximity. The second-order EFA,
which has a more restrictive domain of rotations to optimize over, will
certainly lead to fewer such local minimum situations. When sample
size is small or moderate, geomin local minimum problems may man-
ifest as lack of replicability. One small sample EFA result may differ
dramatically from another small sample EFA result simply because
small changes in the sample variance covariance may lead to an alter-
native geomin minimum. Thus, we expect that another advantage of
the second-order EFA is the stability of the rotation.

To compare the bi-factor EFA model to the oblique EFA and
second-order EFA models, we conduct the Figure [I] simulation study
with the bi-geomin rotation using three specific factors and one gen-
eral factor (which gives the correct number of factors). The results
are somewhat awkward. The first three factors are recovered as spe-
cific, but the fourth factor is estimated as general, with all indicators
loading on it. The model is awkward because the last five indicators
have no specific factor. Typically, in a bi-factor model, each indica-
tor loads on both a specific factor and a general factor. Thus, if a
bi-factor model leaves many indicators without specific factors, this
can be viewed as evidence that second-order EFA should be explored
instead.

In practice, it is not unusual for bi-factor models to be presented
where certain indicators are considered ”general ability” indicators,
i.e., indicators without specific factors. For example, Harman (1967)
presents a bi-factor model for the Holzinger and Swineford (1939)
data where the last 5 indicators are considered general factor indi-
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cators, see Table 7.6 on page 129. Clearly this topic is somewhat
subjective. One point of view is that general ability indicators would
be hard to define in an unbiased way, and some may find it quite
objectionable if for example items designed as "math ability” factor
indicators, within a bi-factor EFA analysis, end up as ”general abil-
ity” indicators. This would skew the ”general ability” feature in favor
of mathematics. From that perspective, the HEFA model offers an
alternative interpretation that some might find less biased and less
controversial. In addition, the HEFA model structure accommodates
7 general ability” indicators more naturally. If such indicators are truly
designed as ”general ability” indicators, these belong in equation
and not in equation . Such indicators should be used directly as
indicators for the general factor rather than in the rotation measuring
domain specific factors.

For the Figure [ simulation study, a bi-factor model with five fac-
tors does provide a general factor and four correctly loaded specific
factors, but such a model has an incorrect number of factors. This
suggests that an additional advantage of second-order EFA is its abil-
ity to correctly parse a general underlying feature with fewer factors
than a bi-factor model—that is, it provides a simpler model.

The bi-factor method has a long history, dating back to Holzinger
and Swineford (1937), who promoted it as a confirmatory factor analy-
sis (CFA) model that was straightforward to compute manually. More
recently, the method has gained popularity because of its ability to
separate a general factor from specific factors (Reise, 2012). In ex-
ploratory factor analysis (EFA) settings, bifactor estimation has been
available since the work of Jennrich and Bentler (2011, 2012). How-
ever, these advantages of the bi-factor method over the second-order
approach are now largely eliminated. Second-order EFA is more natu-
rally embedded within the structural equation modeling (SEM) frame-
work and may therefore be regarded as the superior method for ex-
tracting a general factor in EFA. A literature review summary and
valuable discussion on the comparison of bi-factor and second-order
modeling strategies is available in Morin et al. (2016). A variety of
different points of view have been presented. Here, we want to reiter-
ate that in EFA settings, the equivalence between these models holds
only under specific and unexpected conditions. A second-order EFA
with m first-order factors and one second-order factor is equivalent to
the bi-factor EFA model with m — 1 specific factors and one general
factor. It is not the equivalent to the bi-factor model with m specific
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factors and one general factor, despite what simple factor counting or
equation substitution might misleadingly suggest.

4 An empirical example

We illustrate the second-order EFA method with data from Holzinger
and Swineford (1939). Test scores on 26 different mental ability mea-
sures were obtained from a total of 301 Tth- and 8th-grade students in
two schools. As in Muthén and Asparouhov (2012), we use 19 of the
items that are hypothesized to measure four domains: spatial abilities,
verbal abilities, speed, and memory. Holzinger and Swineford (1939)
hypothesized the existence of a general factor affecting all test scores,
and thus second-order EFA is a suitable modeling approach.

Figure [4] shows the input file for estimating the model. A larger
number of iterations, stricter convergence criteria, and a larger num-
ber of random starting values specified in the ANALYSIS command are
essential. Alternatively, we can bypass these requirements by using
EFA starting values—that is, the loadings from the EFA geomin ro-
tation as starting values for the second-order EFA. Figure [5] shows
how to obtain such starting values. The figure contains only the com-
mands that differ from Figure 4] This is an EFA model estimation
using the ESEM framework in Mplus. The (*1) label in the mea-
surement model is used to specify EFA. The SVALUES output option
yields an Mplus model command where the model estimates from the
EFA are placed as starting values. The loading parameter labels (a1—
a76) in Figure |5| are essential and will also be included in the SVALUES
output. We need not only the starting values but also the parameter
labels, as these will be used to specify the rotation criteria in MODEL
PRIORS for the second-order EFA. Entering the parameter labels and
starting values manually would be time-consuming, as there are 76
loading parameters. Note that we will use only the loadings portion
of the SVALUES output for the second-order EFA estimation. Using
copy-paste, we construct the alternative second-order EFA estimation
in Figure [6] which yields the same results as Figure 4 without random
starting values and more advanced optimization parameter specifica-
tions. Notably, because we used the EFA as starting values, the factors
are permuted as intended and all factors appear with a positive sign.
When using random starting values, this will not necessarily occur.
It should be noted that Mplus EFA estimation is fine-tuned so that
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larger loadings are always positive, and factors are ordered according
to the order of the indicators they load on—that is, the factor or-
dering is not random. In addition, EFA estimation in Mplus benefits
from specialized starting value procedures. None of these benefits are
directly available for second-order EFA if we use random starting val-
ues. An additional benefit of using Figure [6] over Figure [4] is that the
computation is faster, as a single likelihood optimization is performed.
When using random starting values, separate likelihood optimizations
are performed for each set of random starting values. Ultimately, Fig-
ure [0] is more likely to converge than Figure [l as we do not have
precise understanding of how many random starting values must be
used to reach a converging model.

Figure [7] contains the results for the second-order EFA obtained
with Figure [0 Figure [§] contains the results of the standard oblique
EFA for comparison. The loading structure between the two models is
largely unchanged. EFA and second-order EFA have the same number
of significant cross-loadings and the same number of cross-loadings
greater than 0.2 in absolute value. This implies that the second-order
EFA model is suitable for the Holzinger-Swineford data and possibly
provides a more practical interpretation of a general ability factor and
specific domain factors. The EFA and the second-order EFA have
the same number of free parameters (although not the same number
of all parameters), log-likelihood values and chi-square test of fit as
expected.

For comparison, we have also included the oblique bi-factor EFA
results (the orthogonal bi-factor EFA results are very similar). Figure
[9 contains the results for the bi-factor EFA with 4 factors and Figure
contains the results for 5 factors. The 4 factor model in Figure [9]
is equivalent to the Figure[7] and Figure [§ results in terms of data fit.
These are different rotations of the same unrotated EFA model with
4 factors. We see that with the bi-factor rotation, the spatial factor
is lost. The first four indicators that were the primary indicators
for the spatial factor now load only on the general factor. Using 5
factors, which in principle would allow space for the general factor to
be separated from the specific factors, also does not recover the spatial
factor. Here the last fifth factor does not have any significant loadings.
Clearly, the bi-factor EFA model failed to support the substantive
theory for this example.
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Figure 4: Second order EFA input file for Holzinger and Swineford example

data: file is H-S Combined.txt;
variable:

names = id female grade agey agem school

visual cubes paper flags general paragrap

sentence wordc wordm addition code counting straight wordr
numberr figurer object numberf figurew deduct

numeric problemr series arithmet;

usev = visual-figurew;
define: standardize visual-figurew;

analysis:
estimator = mlr;
iter = 10000; conv = 0.000001; starts = 50;

model:
spatial verbal speed memory by visual-figurew*(al-a76);
spatial-memory (v1-v4);
0 by spatial-memory* (11-14); fo@1;

model constraint:
vl =1 - 11*11;
v2 =1 - 12*%12;
v3 = 1 - 13*13;
vd =1 - 14*%14;

model priors:
al-a76~Geomin(4,0.1);
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Figure 5: Using EFA estimation to obtain starting values for second order
EFA

analysis:
estimator = mlr;

model:
spatial verbal speed memory by visual-figurew(*1);
spatial verbal speed memory by visual-figurew(al-a76);

output: svalues;
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Figure 6: Second order EFA input file with starting values

analysis:
estimator = mlr;

model:
spatial BY visual*0.62097 (al);
spatial BY cubes*0.51635 (a2);
spatial BY paper*0.46566 (a3);
spatial BY flags*@.63592 (a4);

memory BY figurer*0.45286 (a73);
memory BY object*®.52555 (a74);
memory BY numberf*©.39735 (a75);
memory BY figurew*0.30527 (a76);
spatial-memory (v1-v4);

f0 by spatial-memory* (11-14); fe@1;

model constraint:
vl =1 - 11*11;

v2 = 1 - 12%12;
v3 =1 - 13*13;
v4 = 1 - 14*14;

model priors:
al-a76~Geomin(4,0.1);
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Figure 7: Second order EFA results for Holzinger and Swineford

ROTATED LOADINGS (* significant at 5% level)

Spatial Verbal Speed Memory

VISUAL 0.621%* 0.155* 0.024 0.049
CUBES 0.514* 0.048 -0.110 -0.021
PAPER 0.465* 0.099 0.006 -0.070
FLAGS 0.632* -0.091 0.026 0.110
GENERAL -0.011 0.846* 0.040 -0.082
PARAGRAP 0.014 0.802* -0.006 0.068
SENTENCE -0.049 0.908* -0.008 -0.059
WORDC 0.081 0.697* 0.022 0.039
WORDM 0.072 0.820* -0.033 0.026
ADDITION -0.218* 0.014 0.764* 0.062
CODE 0.031 0.174* 0.542* 0.161*
COUNTING 0.108 -0.032 0.674* -0.070
STRAIGHT 0.355* 0.010 0.497* -0.030
WORDR -0.044 0.075 -0.027 0.653*
NUMBERR 0.081 -0.122* -0.004 0.586*
FIGURER 0.317* 0.045 0.014 0.449*
OBJECT -0.141 -0.037 0.334* 0.534*
NUMBERF 0.090 0.011 0.188* 0.401*
FIGUREW 0.081 0.174* 0.060 0.305*

FACTOR CORRELATIONS (* significant at 5% level)

FO BY Spatial Verbal Speed Memory

Spatial 0.620* Spatial 1.000

Verbal 0.538* Verbal 0.333* 1.000

Speed 0.503* Speed 0.312% 0.271*  1.000

Memory  0.431%* Memory  0.267* 0.232*  0.217*  1.000
FO 0.620%* 0.538%  0.503*%  0.431*
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Figure 8: EFA results for Holzinger and Swineford

GEOMIN ROTATED LOADINGS (* significant at 5% level)

Spatial Verbal Speed Memory

VISUAL 0.621* 0.143* 0.032 0.059
CUBES 0.516* 0.037 -0.107 -0.013
PAPER 0.466* 0.090 0.014 -0.067
FLAGS 0.636* -0.107 0.032 0.119
GENERAL -0.016 0.846* 0.045 -0.079
PARAGRAP 0.010 0.803* -0.006 0.076
SENTENCE -0.056 0.909* -0.005 -0.053
WORDC 0.080 0.696* 0.024 0.044
WORDM 0.069 0.818* -0.032 0.035
ADDITION -0.217* 0.025 0.764* 0.040
CODE 0.036 0.180* 0.541* 0.149*
COUNTING 0.115 -0.033 0.681* -0.092
STRAIGHT 0.360* 0.004 0.505* -0.042
WORDR -0.037 0.087 -0.044 0.654*
NUMBERR 0.094 -0.120 -0.018 0.587*
FIGURER 0.325* 0.045 0.008 0.453*
OBJECT -0.138 -0.026 0.325* 0.526*
NUMBERF 0.099 0.015 0.183* 0.397*
FIGUREW 0.087 0.178* 0.056 0.305*

GEOMIN FACTOR CORRELATIONS (* significant at 5% level)

Spatial Verbal Speed Memory

Spatial 1.000
Verbal 0.356%* 1.000
Speed 0.303* 0.267* 1.000

Memory 0.248* 0.215* 0.261* 1.000

Figure 9: Bi-factor EFA results for Holzinger and Swineford with 4 factors

ROTATED LOADINGS (* significant at 5% level)

General Verbal Speed Memory
VISUAL 0.709* 0.028 -0.063 -0.050
CUBES 0.459* -0.044 -0.172* -0.089
PAPER 0.470* 0.010 -0.058 -0.137
FLAGS 0.621%* -0.190* -0.063 0.002
GENERAL 0.406* 0.730* 0.036 -0.074
PARAGRAP 0.452* 0.685* -0.011 0.065
SENTENCE 0.389* 0.790* -0.003 -0.041
WORDC 0.465* 0.584* 0.006 0.023
WORDM 0.487* 0.691* -0.043 0.019
ADDITION 0.178* 0.046 0.713* 0.023
CODE 0.444* 0.141* 0.478* 0.094
COUNTING 0.372* -0.049 0.588* -0.145
STRAIGHT 0.564* -0.053 0.396* -0.128
WORDR 0.270%* 0.061 -0.022 0.598*
NUMBERR 0.273* -0.134* -0.018 0.515*
FIGURER 0.533* -0.023 -0.033 0.354*
OBJECT 0.232%* -0.020 0.320* 0.475*
NUMBERF 0.359* -0.015 0.156* 0.330*
FIGUREW 0.332%* 0.130* 0.041 0.257*
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Figure 10: Bi-factor EFA results for Holzinger and Swineford with 5 factors

ROTATED LOADINGS (* significant at 5% level)

General Verbal Speed Memory Spatial
VISUAL 0.619%* 0.055 -0.339%* -0.011 -0.016
CUBES 0.340%* -0.021 -0.371%* -0.044 0.019
PAPER 0.407* 0.046 -0.249 -0.123 -0.081
FLAGS 0.544%* -0.143 -0.332% 0.021 -0.114
GENERAL 0.420%* 0.748%* 0.057 -0.098 -0.053
PARAGRAP 0.436%* 0.687* 0.001 0.064 0.024
SENTENCE 0.367* 0.763* -0.002 -0.013 0.191
WORDC 0.438%* 0.569* -0.046 0.049 0.103
WORDM 0.464%* 0.730* -0.034 -0.005 -0.095
ADDITION 0.476%* -0.003 0.634%* -0.029 -0.045
CODE 0.595%* 0.054 0.259%* 0.131 0.222
COUNTING 0.564%* -0.105 0.309* -0.130 0.080
STRAIGHT 0.670%* -0.168 0.011 -0.063 0.335
WORDR 0.247* 0.057 -0.002 0.629* 0.053
NUMBERR 0.263* -0.073 -0.010 0.493* -0.209
FIGURER 0.476* -0.011 -0.178* 0.388* 0.016
OBJECT 0.355* -0.029 0.287* 0.450%* -0.042
NUMBERF 0.407* 0.016 0.082 0.308* -0.143
FIGUREW 0.321%* 0.114 -0.038 0.285%* 0.081

5 Adding covariates

A Dbenefit of a single second-order factor is that relations to other
variables such as covariates are greatly simplified to concern only one
factor. We illustrate this with the Holzinger and Swineford data where
there are three covariates that can be used as predictors: grade, school,
and gender. We consider four models. Model M1 is the ESEM model
where all factors are regressed on all covariates. Model M2 is the
second-order EFA with the second-order factor regressed on the co-
variates. In the most typical scenario, this is the model we want to
consider. As it happens, however, real data examples do deviate from
typical examples. If we only consider grade and gender as covariates,
model M2 is easy to estimate and the analysis ends there. The school
covariate, however, complicates the situation as it has an unusually
strong direct effect on the verbal abilities factor. Thus the school co-
variate’s indirect effect on the verbal factor via the general factor is
therefore not sufficient. Estimating the M2 model with the school co-
variate doesn’t converge because of that. We proceed with analyzing
this more complex situation with all three covariates as it offers an op-
portunity to discuss a variety of different aspects of the second-order
EFA as well as the power and complexities of the PSEM methodology.

Model M3 is the second-order EFA with all first- and second-order
factors regressed on the covariates. ALF priors are added for the first-
order factor regression coefficients. Model M3 is used to ensure that
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any possible direct effects from the covariates are included. The model
uses a key building block of the PSEM framework (see Section 4.3 in
Asparouhov and Muthén, 2024). Model M4 is the reduced M3 model,
i.e., only statistically significant (as determined by M3) direct effects
from the covariates to the first-order factors are included.

Model M3 is equivalent to model M1 in terms of data fit. Model
M2 is not equivalent to model M1. Without the covariates, M2 and
M1 are equivalent. However, when the second-order factor is used
for modeling, in terms of being a predictor or being predicted, the
two EFA models diverge. In our example, with 3 covariates and 4
first-order factors, model M1 has 9 more parameters than model M2.
Model M4 is also not equivalent to M1, M2, or M3. M4 is nested
above model M2 and is nested within M1 and M3.

For completeness, we also define model M3 in equation form

Y =v+MAF +e, (6)

F =B X+Am+¢, (7)

n = B X 4 (, (8)

e~ N(0,0),& ~ N(0,1—X3),¢ ~ N(0,1), (9)
Ay ~ Geomin(4,0.1), By ~ ALF(0,1) (10)

The last equation constitutes the definition of the penalty/prior for
the M3 PSEM model.

Figure [11] contains the model statements for all four models. In
our empirical example, the estimation of models M1, M3, and M4
converged, while model M2 did not, even when using EFA loadings as
starting values. Model M3 found a strong direct effect from SCHOOL
to VERBAL. This direct effect is the only direct effect in M3 that is
statistically significant. There are two schools in this data: Grant—White
and Pasteur. Students from the Grant—White school came from homes
where the parents were mostly American born, whereas students from
the Pasteur school came largely from working-class parents of whom
many were foreign born and used their native language at home. This
background information is the explanation for the strong direct effect
from the school covariate to the verbal factor.

Model M4 is almost identical to model M2 but includes this one
direct effect. Models M1 and M3 yield identical model fit. Model M4,
however, yields the best BIC value, and when tested against M1 and
M3, the more restricted model M4 is not rejected with an LRT p-value
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of 0.15. Thus, we conclude that model M4 provides the most complete
explanation for the effect of the covariates on the factors. Figure
shows the covariate effects obtained with M1 and M4. The 12 pa-
rameters estimated with M1 are now summarized with 4 parameters
in M4. In MIl, the effect of the FEMALE predictor is insignificant
for all factors and different in signs. In M4, this effect is summarized
with one parameter decisively pointing towards no FEMALE effect on
the general factor (and therefore on the domain factors). In M1, the
effect of GRADE is uniformly positive and significant on all four fac-
tors. This is summarized in M4 as one significant effect on the general
factor. The average Z-test score for the GRADE effects across the 4
factors in M1 is less than 4, while in M4, the Z-test score for the effect
is more than 6. Here again we see the much more decisive conclusion
that can be obtained with model M4, which accumulates information
across the factors, and the improvement in the power of the model to
detect significant effects. In M1, the effect of the SCHOOL covariate
is completely different from the patterns of the first two covariates:
significantly positive for one factor, significantly negative for another
factor and not significant for the other two factors. In M4, this is
summarized with one marginally significant effect on the general fac-
tor and a very strong direct effect in the opposite direction for the
verbal factor. We conclude that the second-order EFA offers a supe-
rior summary of the covariate effects on the factors when compared to
the general ESEM/EFA analysis with factor specific effect. It yields a
more parsimonious model with more accurate results and more power
to detect significance.

It is also interesting to note that the first order loadings for M4 are
very close to those reported in Figure [7] for the model without the co-
variates. This is evidence that direct effects from the covariates to the
indicators, beyond the one direct effects to the first-order factor, are
not needed. Note however that the PSEM methodology can similarly
be used to explore also direct effects to indicators, beyond the effects
to the second order factors and beyond any potential direct effects to
the first order factors. One such example is discussed in Section 4 in
Asparouhov and Muthén (2025).

If we add covariates in a bi-factor ESEM model we get the gen-
eral factor covariate effects separated from the specific factor covariate
effects. This model directly corresponds to second-order EFA model
M3, which also allows separation of covariates effect for the general
abilities feature and the specific domain features. Similar construction
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exists also for the situation when the general and specific factors in a
bi-factor model are used as predictors of other variables, see Gustafs-
son and Balke (1993). The first and second order factors in the second
order EFA model can also be used as predictors for other variables.
ALF priors must be added for the regression coefficients for the first
order factors here as well for identification purposes. Additionally, if
we want the predictors to be independent as in the orthogonal bi-factor
EFA, the first order factors F' must be replaced by their residuals & as
in the RSEM (residual structural equation modeling) framework, see
Asparouhov and Muthén (2021).

The degrees of freedom in PSEM models is a complex concept.
The quantity is estimated numerically (see Asparouhov and Muthén,
2024). In many cases it is easy to understand, and in some cases it is
not. The EFA model and the second-order EFA model have 108 free
parameters. The EFA model has 120 parameters, and the geomin rota-
tion eliminates (helps identify as constrained parameters) 12 as depen-
dent parameters. The second-order EFA has 122 parameters; model
constraints eliminate 4 as dependent parameters, and the geomin ro-
tation eliminates an additional 10 as dependent parameters. Thus,
the geomin rotation eliminates (helps identify) parameters differently
for different models. Of course, this is already visible in standard EFA
when comparing oblique and orthogonal rotation. In oblique EFA, the
rotation identifies additionally all factor correlations.

Models M1 and M3 both have 120 parameters, as there are an
additional 12 regression coefficients that are free parameters. Model
M4, however, has 117 parameters, which is not as easy to understand.
Here we have added just 4 regression parameters to the EFA model,
but the number of parameters is not 112 as simple arithmetic would
suggest. In reality, the restrictions on the regression coefficients (8
regression coefficients are fixed/constrained) can now act as a par-
tial native model rotation. Native model rotation is a novel concept
that has been discussed in Section 6.7 in Asparouhov and Muthén
(2024). It is not a full native model rotation because without the ge-
omin penalty, the model is not identified. In total, model M4 has 126
parameters (4 additional regression coefficients to the second-order
EFA’s 122 parameters). Four of these parameters are eliminated as
dependent with model constraints. That means that the geomin ro-
tation helps identify 5 additional parameters as dependent, not 10 as
in the model without the covariates. The restriction on the regres-
sion coefficients provides part of the rotation, and part is provided
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by geomin. An exact explanation for how the two rotations combine
to identify parameters is not easy to provide in complex models such
as this one. Such an explanation is also not needed. We can simply
rely on the numerical procedure responsible for counting the number
of parameters, which is based on the rank of the information matrix.
This is automatically provided in the Mplus output.
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Figure 11: Second order EFA with covariates

*%%% Model M1 ****
model:
spatial verbal speed memory by visual-figurew(*1);
spatial verbal speed memory on female grade school;

*kkk Model M2 *kk*

model:
spatial verbal speed memory by visual-figurew*(al-a76);
spatial-memory (v1-v4);
0 by spatial-memory*(11-14); fe@1;
f@ on female grade school;

model constraint: DO(#,1,4) vi#=1-1#*14;

model priors: al-a76~Geomin(4,0.1);

k%% Model M3 **k*

model:
spatial verbal speed memory by visual-figurew*(al-a76);
spatial-memory (v1-v4);
f0 by spatial-memory*(11-14); fo@1;
fo@ on female grade school;
spatial-memory on female grade school (bl-b12);

model constraint: DO(#,1,4) v#=1-1#*14;

model priors: al-a76~Geomin(4,0.1); bl-b12~ALF(0,1);

k%% Model MA **k*

model:
spatial verbal speed memory by visual-figurew*(al-a76);
spatial-memory (v1-v4);
0 by spatial-memory*(11-14); fe@1;
f0 on female grade school;
verbal on school;

model constraint: DO(#,1,4) v#=1-1#*14;

model priors: al-a76~Geomin(4,0.1);
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Figure 12: Results for second order EFA with covariates

Model M1 (ESEM)

Two-Tailed
Estimate S.E. Est./S.E. P-Value
SPATIAL ON
FEMALE 0.187 0.144 1.299 0.194
GRADE 0.478 0.154 3.103 0.002
SCHOOL 0.016 0.174 0.090 0.928
VERBAL ON
FEMALE 0.121 0.123 0.980 0.327
GRADE 0.531 0.121 4.393 0.000
SCHOOL -0.800 0.126 -6.346 0.000
SPEED ON
FEMALE -0.143 0.148 -0.965 0.334
GRADE 0.920 0.167 5.504 0.000
SCHOOL 0.511 0.189 2.700 0.007
MEMORY ON
FEMALE -0.105 0.151 -0.693 0.488
GRADE 0.400 0.159 2.514 0.012
SCHOOL -0.095 0.230 -0.412 0.680

Model M4 (Second-order EFA with covariates and one direct efefct)

Fo ON
FEMALE -0.048 0.164 -0.296 0.767
GRADE 1.190 0.193 6.176 0.000
SCHOOL 0.508 0.219 2.322 0.020
VERBAL  ON
SCHOOL -1.041 0.151 -6.894 0.000
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6 Conclusion

As we have gained more experience with the HEFA /second-order EFA
model, it is now necessary to revisit, update, and correct several as-
pects of this modeling technique: the estimation, the interpretation,
and general expectations of what the modeling can do. It appears that
with these additions, the model can truly take its rightful place as a
serious alternative to bi-factor EFA modeling and general EFA mod-
els with substantial factor correlations that can clearly benefit from
second-order factor modeling.

We have promoted here the view that the HEFA model’s natural
place is the PSEM framework, and not the ESEM framework via the
EWC estimation of Morin et al. (2016) and Morin and Asparouhov
(2018). Nevertheless, currently the HEFA analysis is primarily being
conducted with the EWC approach. Clearly, further practical appli-
cations are needed to compare the two methods, as well as simulation
studies. Our opinion is that the PSEM estimation is easier to set up
and master than the EWC approach; however, others might disagree.
There is no disagreement, however, that we now have much better
tools to pursue the HEFA model, even if the two different approaches
are used simultaneously.

The focus of this paper was to provide an improved estimation for
the case where the first-order model is an EFA model and there are
one or more second order EFA or CFA factors. However, the concepts
we discussed here may apply to some other scenarios. Asparouhov and
Muthén (2025) discuss the model where the first-order analysis is CFA,
while the second order analysis is EFA. For that model estimation,
conceptually a similar issue arises: the geomin rotation function is
affected by how the first order factor scales are set. The solution
used in Asparouhov and Muthén (2025) is to set the scale of the first
order factors by fixing one CFA loading parameter to 1. That way
the scale of the first order factor is tied to the scale of the indicator
and it would be difficult for the geomin optimization to manipulate
the second order loadings into zeros without a substantial loss of fit.
Nevertheless, some additional caution is advised. If the scale is set
using a poor indicator, for example, the first order factor variance
will be small and the second order loadings will be near zero, which
will eliminate the first order factor as a source of information for the
second order EFA analysis.
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