Mplus Short Courses Topic 2

Regression Analysis, Exploratory Factor Analysis, Confirmatory Factor Analysis, And Structural Equation Modeling For Categorical, Censored, And Count Outcomes

> Linda K. Muthén Bengt Muthén

Copyright © 2009 Muthén & Muthén www.statmodel.com 08/06/2009

Table Of Contents	
	_
General Latent Variable Modeling Framework	7
Analysis With Categorical Observed And Latent Variables	11
Categorical Observed Variables	13
Logit And Probit Regression	18
British Coal Miner Example	25
Logistic Regression And Adjusted Odds Ratios	39
Latent Response Variable Formulation Versus Probability Curve Formulation	46
Ordered Polytomous Regression	49
Alcohol Consumption Example	55
Unordered Polytomous Regression	58
Censored Regression	65
Count Regression	67
Poisson Regression	68
Negative Binomial Regression	70
Path Analysis With Categorical Outcomes	73
Occupational Destination Example	81
- •	
	2

Categorical Observed And Continuous Latent Variables	86
Item Response Theory	89
Exploratory Factor Analysis	113
Practical Issues	129
CFA With Covariates	142
Antisocial Behavior Example	147
Multiple Group Analysis With Categorical Outcomes	167
Exploratory Structural Equation Modeling	172
Multi-Group EFA Of Male And Female Aggressive Behavior	185
Technical Issues For Weighted Least Squares Estimation	199
References	206

Statistical Analysis With Latent Variables A General Modeling Framework Statistical Concepts Captured By Latent Variables

Continuous Latent Variables

- Measurement errors
- Factors
- Random effects
- Frailties, liabilities
- Variance components
- Missing data

Categorical Latent Variables

- Latent classes
- Clusters
- Finite mixtures
- Missing data

- **Topic 1.** August 20, 2009, Johns Hopkins University: Introductory - advanced factor analysis and structural equation modeling with continuous outcomes
- **Topic 2.** August 21, 2009, Johns Hopkins University: Introductory - advanced regression analysis, IRT, factor analysis and structural equation modeling with categorical, censored, and count outcomes
- **Topic 3.** March, 2010, Johns Hopkins University: Introductory and intermediate growth modeling
- **Topic 4.** March, 2010, Johns Hopkins University: Advanced growth modeling, survival analysis, and missing data analysis

		Tw	vo Exai	nples						
Alcohol Dependence And Gender In The NLSY										
	n	Not Dep	Dep	Prop	Odds	(Prop/(1	-Prop))			
Female	4573	4317	256	0.056		0.059				
Male	4603	3904	699	0.152	0.179					
	9176	8221	955							
Exampl	e wording	g: Males a	-			79/0.059 y than f				
to be al	cohol dep	endent.								
		Cold	s And Vi	tamin (С					
		n	No Cold	Cold	Prop	Odds				
	Dlaasha	140	100	21	0 221	0 204				

	n	No Cold	Cold	Prop	Odds
Placebo	140	109	31	0.221	0.284
Vitamin C	139	122	17	0.122	0.139

Probabilities: – Joint: P (<i>u</i> , <i>x</i>)	Al Joint	nple Cor	nditiona	
- Marginal: $P(u)$		Not Dep	Dep	
- Conditional: $P(u x)$	Female	.47	. 03	.06
	Male	.43	. 08	.15
	Marginal	.90	.11	
Distributions: – Bernoulli: $u = 0/1$; $E(u - Binomial: sum or prop V(prop.) = \pi(1 - \pi)/n,– Multinomial (#paramu– Independent multinom$	b. $(u = 1), E(p)$ $\hat{\pi} = prop$ eters = #cells	s – 1)	al)	
– Poisson	<u>.</u>		/	15

Logistic Regression And Log Odds (Continued) • $logit = log \ odds = \beta_0 + \beta_1 x$ • When *x* changes one unit, the *logit (log odds)* changes β_1 units • When *x* changes one unit, the *odds* changes e^{β_1} units

Age (x)	Ν	N Yes	Proportion Yes	OLS Estimated Probability	Logit Estimated Probability	Probit Estimated Probability
22	1,952	16	0.008	-0.053	0.013	0.009
27	1,791	32	0.018	-0.004	0.022	0.018
32	2,113	73	0.035	0.045	0.036	0.034
37	2,783	169	0.061	0.094	0.059	0.060
42	2.274	223	0.098	0.143	0.095	0.100
47	2,393	357	0.149	0.192	0.148	0.156
52	2,090	521	0.249	0.241	0.225	0.231
57	1,750	558	0.319	0.290	0.327	0.322
62	1.136	478	0.421	0.339	0.448	0.425
	18,282	2,427	0.130			
SOURCE: A	shford & Sowde	n (1970), Muthe	^{én (1993)} L	ogit model: χ	$^{2}_{\rm LRT}(7) = 17.1$	13 (p > 0.0
			P ₁	robit model: χ	$\frac{2}{2}$ (7) = 5.1	9

			Coal Miner Data	
x	u	W		_
22	0	1936		
22	1	16		
27	0	1759		
27	1	32		
32	0	2040		
32	1	73		
37	0	2614		
37	1	169		
42	0	2051		
42	1	223		
47	0	2036		
47	1	357		
52	0	1569		
52	1	521		
57	0	1192		
57	1	558		
62	0	658		
62	1	478		28

Input For Logistic Regression Of Coal Miner Data

TITLE:	Logistic regression of coal miner data
DATA:	<pre>FILE = coalminer.dat;</pre>
VARIABLE:	NAMES = x u w;
	CATEGORICAL = u;
	<pre>FREQWEIGHT = w;</pre>
DEFINE:	x = x/10;
ANALYSIS:	ESTIMATOR = ML;
MODEL:	u ON x;
OUTPUT:	TECH1 SAMPSTAT STANDARDIZED;

<section-header><section-header><text><text><text><text><text><text><text><text>

Thresholds	Estimates		Est./S.E.	Std	StdYX
U ON X 0.548 0.013 43.075 0.548 0.549 Thresholds U\$1 3.581 0.062 57.866 3.581 3.583 R-Square Observed Residual R-Square Variable Residual R-Square			Est./S.E.	Std	StdYX
x 0.548 0.013 43.075 0.548 0.54! Thresholds u\$1 3.581 0.062 57.866 3.581 3.58! R-Square Observed Residual R-Square Variable Residual R-Square	0.548	0 01 0			
Thresholds U\$1 3.581 0.062 57.866 3.581 3.583 R-Square Observed Residual R-Square Variable Variance	0.548	0 010			
U\$1 3.581 0.062 57.866 3.581 3.58 R-Square Observed Residual R-Square Variable Variance		0.013	43.075	0.548	0.545
R-Square Observed Residual R-Square Variable Variance					
Observed Residual R-Square Variable Variance	3.581	0.062	57.866	3.581	3.581
Variable Variance					
U 1.000 0.297		R-Squar	e		
	1.000	0.29	7		
					3
		Residual Variance	Residual R-Squar Variance	Residual R-Square Variance	Residual R-Square Variance

Categorical Outcomes: Logit And Probit Regression With One Binary And One Continuous X

$$P(u = 1 | x_1, x_2) = F[\beta_0 + \beta_1 x_1 + \beta_2 x_2],$$
(22)

37

 $P(u = 0 | x_1, x_2) = 1 - P[u = 1 | x_1, x_2]$, where F[z] is either the standard normal ($\Phi[z]$) or logistic ($1/[1 + e^{-z}]$) distribution function.

Example: Lung cancer and smoking among coal miners

- *u* lung cancer (u = 1) or not (u = 0)
- x_1 smoker ($x_1 = 1$), non-smoker ($x_1 = 0$)
- x_2 years spent in coal mine

Logistic Regression And Adjusted Odds Ratios

Binary *u* variable regression on a binary x_1 variable and a continuous x_2 variable:

$$P(u=1|x_1, x_2) = \frac{1}{1+e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2)}},$$
 (62)

which implies

 $\log odds = \log it \left[P \left(u = 1 | x_1, x_2 \right) \right] = \beta_0 + \beta_1 x_1 + \beta_2 x_2.$ (63)

This gives

$$log odds_{\{x_1=0\}} = logit \left[P(u=1 \mid x_1=0, x_2) \right] = \beta_0 + \beta_2 x_2, \quad (64)$$

and

$$log odds_{\{x_1=l\}} = logit \left[P\left(u=1 \mid x_1=1, x_2\right) \right] = \beta_0 + \beta_1 + \beta_2 x_2.$$
(65)

Logistic Regression And Adjusted Odds Ratios (Continued)

The log odds ratio for u and x_1 adjusted for x_2 is

$$\log OR = \log \left[\frac{odds_1}{odds_0}\right] = \log odds_1 - \log odds_0 = \beta_1 \tag{66}$$

so that $OR = exp(\beta_1)$, constant for all values of x_2 . If an interaction term for x_1 and x_2 is introduced, the constancy of the OR no longer holds.

Example wording:

"The odds of lung cancer adjusted for years is OR times higher for smokers than for nonsmokers"

"The odds ratio adjusted for years is OR"

Analysis Of NLSY Data: Odds Ratios For Alcohol Dependence And Gender

Age 1st	Frequency	·	Proporti		
	Female	Male	Female	Male	OR
12 or <	85	223	.071	.233	3.98
13	105	180	.133	.256	2.24
14	198	308	.086	.253	3.60
15	331	534	.106	.185	1.91
16	800	990	.079	.152	2.09
17	725	777	.070	.170	2.72
18 or >	2329	1591	.030	.089	3.16

Adjusting for Age First Started Drinking (n=9176)

Analysis Of NLSY Data: Odds Ratios For Alcohol Dependence And Gender (Continued)

	Logit	_		P	robit	
Age 1st	Female	Male	OR	Female	Male	OR
12 or <	.141	.304	2.66	.152	.298	2.37
13	.117	.260	2.66	.125	.257	2.42
14	.096	.220	2.66	.102	.220	2.48
15	.078	.185	2.66	.082	.186	2.55
16	.064	.154	2.66	.065	.155	2.63
17	.052	.127	2.66	.051	.128	2.72
18 or >	.042	.105	2.66	.040	.104	2.82
				Logit 1	model: χ_p^2	12) = 5

Analysis Of NLSY Data: Odds Ratios For Alcohol Dependence And Gender (Continued)

Dependence on Gender and Age First Started Drinking

	Logit Regression				Probit Regression				Unstd. Coeff
	Unstd. Coeff.	s.e.	t	Std.	Unstd. Coeff.	s.e.	t	Std.	Rescaled To Logit
Intercept	0.84	.32	2.6		-0.42	.18	-2.4		
Male	0.98	.08	12.7	0.51	0.50	.04	13.1	0.48	0.91
Age 1st	-0.22	.02	-11.6	-0.19	-0.12	.01	-11.0	-0.19	-0.22
R ²	0.12				0.08				
	$OR = e^{0.98} = 2.66$			logit $\beta \approx$ probit $\beta * c$					
					where $c = \sqrt{\pi^2 / 3} = 1.81$				

Table 2.2 – Odds ratios below basic levels of rea of school, 1988 to 1990,	ading and math	e students in 198 ematics in 1988	
Variable	Below basic mathematics	Below basic reading	Dropped out
Sex			
Female vs. male	0.81*	0.73**	0.92
Race — ethnicity			
Asian vs. white	0.82	1.42**	0.59
Hispanic vs. white	2.09**	2.29**	2.01**
Black vs. white	2.23**	2.64**	2.23**
Native American vs. white	2.43**	3.50**	2.50**
Socioeconomic status			
Low vs. middle	1.90**	1.91**	3.95**
High vs. middle	0.46**	0.41**	0.39*

NELS 88

Table 2.3 – Adjusted odds ratios of eighth-grade students in 1988 performing below basic levels of reading and mathematics in 1988 and dropping out of school, 1988 to 1990, by basic demographics

Variable	Below basic mathematics	Below basic reading	Dropped out
Sex			
Female vs. male	0.77**	0.70**	0.86
Race — ethnicity			
Asian vs. white	0.84	1.46**	0.60
Hispanic vs. white	1.60**	1.74**	1.12
Black vs. white	1.77**	2.09**	1.45
Native American vs. white	2.02**	2.87**	1.64
Socioeconomic status			
Low vs. middle	1.68**	1.66**	3.74**
High vs. middle	0.49**	0.44**	0.41*

Latent Response Variable Formulation Versus Probability Curve Formulation

Probability curve formulation in the binary *u* case:

$$P(u = 1 | x) = F(\beta_0 + \beta_1 x),$$
(67)

where F is the standard normal or logistic distribution function.

Latent response variable formulation defines a threshold τ on a continuous u^* variable so that u = 1 is observed when u^* exceeds τ while otherwise u = 0 is observed,

Latent Response Variable Formulation Versus Probability Curve Formulation (Continued)

$$P(u = 1 | x) = P(u^* > \tau | x) = 1 - P(u^* \le \tau | x) =$$
(69)

$$= 1 - \Phi[(\tau - \gamma x) V(\delta)^{-1/2}] = \Phi[(-\tau + \gamma x) V(\delta)^{-1/2}].$$
(70)

Standardizing to $V(\delta) = 1$ this defines a probit model with intercept $(\beta_0) = -\tau$ and slope $(\beta_1) = \gamma$.

Alternatively, a logistic density may be assumed for δ ,

$$f[\delta; 0, \pi^2/3] = dF/d\delta = F(1 - F),$$
(71)

47

where in this case *F* is the logistic distribution function $1/(1 + e^{-\delta})$.

Latent Response Variable Formulation: R², Standardization, And Effects On Probabilities $u^* = \gamma x + \delta$ $R^{2}(u^{*}) = \gamma^{2} V(x) / (\gamma^{2} V(x) + c),$ ٠ where c = 1 for probit and $\pi^2 / 3$ for logit (McKelvey & Zavoina, 1975) Standardized γ refers to the effect of x on u^* , • $\hat{\gamma}_s = \hat{\gamma} \text{SD}(x) / \text{SD}(u^*),$ $\uparrow P (u = 1 \mid x)$ SD $(u^*) = \sqrt{\hat{\gamma}^2 V(x) + c}$ Effect of x on P(u = 1)depends on x value weak effect strong effect → x 48 0

Ordered Polytomous Outcome Using A Latent Response Variable Formulation (Continued)

A categorical variable *u* with *C* ordered categories,

$$u = c, if \ \tau_{j,c} < u^* \le \tau_{j,c+1}$$
 (72)

for categories c = 0, 1, 2, ..., C - 1 and $\tau_0 = -\infty, \tau_C = \infty$.

Example: a single *x* variable and a *u* variable with three categories. Two threshold parameters, τ_1 and τ_2 .

Probit:

D/

$u^* = \gamma x + \delta$, with δ normal (7)
--

$$P(u = 0 | x) = \Phi(\tau_1 - \gamma x),$$
(74)

$$P(u = 1 | x) = \Phi(\tau_2 - \gamma x) - \Phi(\tau_1 - \gamma x),$$
(75)
$$P(u = 2 | x) = 1 - \Phi(\tau_2 - \gamma x) = \Phi(-\tau_2 + \gamma x).$$
(76)

$$u - 2 | x) - 1 - \Psi(\tau_2 - \gamma x) - \Psi(-\tau_2 + \gamma x).$$
 (70)

$D(u = 1 \text{ or } 2 \mid v) = D$	P(u = 1 x) + P(u = 2 x)	(77)
(u - 1 or 2 x) - 1	$ \begin{array}{l} (u - 1 x) + I (u - 2 x) \\ = 1 - \Phi (\tau_1 - \gamma x) \end{array} $	(77) (78)
	$= 1 - \Phi (\iota_1 - \gamma x)$ $= \Phi (-\tau_1 + \gamma x)$	(78)
	$= 0 (-t_1 + yx) = 1 - P(u = 0 x),$	(80)
that is, a linear prob	it for,	
P(u =	$= 2 x) = \Phi (-\tau_2 + \gamma x),$	(81)
	$r 2 x) = \Phi (-\tau_1 + \gamma x).$	(82)
Note: same slone v	so parallel probability curves	

 $\begin{aligned} & - Contract Categorical Outcome \\ & - Contract$

Logit For Ordered Categorical Outcome (Continued)

When x is a 0/1 variable,

 $logit [P(u = 2 | x = 1)] - logit [P(u = 2 | x = 0)] = \beta$ (89)

 $logit [P(u = 1 \text{ or } 2 | x = 1)] - logit [P(u = 1 \text{ or } 2 | x = 0)] = \beta$ (90)

showing that the ordered polytomous logistic regression model has constant odds ratios for these different outcomes.

Multinomial Logistic Regression Special Case Of K = 2

$$P(u_{i} = 1 | x_{i}) = \frac{e^{\beta_{01} + \beta_{11} x_{i}}}{e^{\beta_{01} + \beta_{11} x_{i}} + 1}$$
$$= \frac{e^{-(\beta_{01} + \beta_{11} x_{i})}}{e^{-(\beta_{01} + \beta_{11} x_{i})}} * \frac{e^{\beta_{01} + \beta_{11} x_{i}}}{e^{\beta_{01} + \beta_{11} x_{i}} + 1}$$
$$= \frac{1}{1 + e^{-(\beta_{01} + \beta_{11} x_{i})}}$$

which is the standard logistic regression for a binary outcome.

Output Excerpts Multinomial Logistic Regression: 4 Categories Of ASB In The NLSY

		Estimates	S.E.	Est./S.E.	
U#1	ON	ESCIMALES	J.E.	LDL./D.L.	
AGES	94	285	.028	-10.045	
MALI	E	2.578	.151	17.086	
BLAC	CK	.158	.139	1.141	
U#2	ON				
AGES	94	.069	.022	3.182	
MALI	E	.187	.110	1.702	
BLAC	CK	606	.139	-4.357	
U#3	ON				
AGES	94	317	.028	-11.311	
MALI	Ξ	1.459	.101	14.431	
BLAC	CK	.999	.117	8.513	
Interce	epts				
U#1		-1.822	.174	-10.485	
U#2		748	.103	-7.258	
U#3		324	.125	-2.600	

Estimated Probabilities For Multinomial Logistic Regression: 4 Categories Of ASB In The NLSY

	exp	probability = exp/sum
log odds (u=1) = -1.822	0.162	0.069
log odds (u=2) = -0.748	0.473	0.201
log odds (u=3) = -0.324	0.723	0.307
log odds (u=4) = 0	1.0	0.424
sum	2.358	1.001

Zero-Inflated Poisson (ZIP) Regression

A Poisson variable has mean = variance.

Data often have variance > mean due to preponderance of zeros.

 $\pi = P$ (being in the zero class where only u = 0 is seen)

 $1 - \pi = P$ (not being in the zero class with *u* following a Poisson distribution)

69

A mixture at zero:

 $P(u = 0) = \pi + (1 - \pi) \underbrace{e^{-\lambda}}_{\text{Poisson part}}$ The ZIP model implies two regressions: logit $(\pi_i) = \gamma_0 + \gamma_1 x_i$,

 $\ln \lambda_i = \beta_0 + \beta_1 x_i$

11	Iplus Specifications	
Variable command	Type of dependent variable	Variance/ residual variance
CATEGORICAL = u;	Binary, ordered polytomous	No
NOMINAL = u;	Unordered polytomous (nominal)	No
CENSORED = $y(b)$;	Censored normal (Tobit)	Yes
= y (a);	Censored from below or above	
COUNT = $u; u(p);$	Poisson	No
= u (i); u (pi);	Zero-inflated Poisson	No
= u (nb);	Negative binomial	
= u (nbi);	Zero-inflated negative binomial	
= u (nbt);	Zero-truncated negative binomial	
= u (nbh);	Negative binomial hurdle	
		7

Input For A Path Analysis With A Binary Outcome And A Continuous Mediator With Missing Data Using Monte Carlo Integration

TITLE:	Path analysis with a binary outcome and a continuous mediator with missing data using Monte Carlo integration
DATA:	<pre>FILE = lsaydropout.dat;</pre>
VARIABLE:	<pre>NAMES ARE female mothed homeres math7 math10 expel arrest hisp black hsdrop expect lunch droptht7; MISSING = ALL(9999); CATEGORICAL = hsdrop;</pre>
ANALYSIS:	ESTIMATOR = ML; INTEGRATION = MONTECARLO(500);
MODEL:	hsdrop ON female mothed homeres expect math7 math10 lunch expel arrest droptht7 hisp black; math10 ON female mothed homeres expect math7 lunch expel arrest droptht7 hisp black;
OUTPUT:	PATTERNS STANDARDIZED TECH1 TECH8;

Outcome An	d A C		ous Med	liator		•
MISS	SING DA	TA PATTERN	IS FOR Y			
		1	2			
MATH10		x				
FEMALE		x	х			
MOTHED		x	x			
HOMERES		x	x			
MATH7		x	х			
EXPEL		x	x			
ARREST		х	х			
HISP		x	x			
BLACK		x	x			
EXPECT		х	x			
LUNCH		x	x			
DROPTHT7		x	x			
MISSING DA	ATA PATI	TERN FREQU	ENCIES FC	R Y		
Patte	rn I	requency	Pat	tern	Frequency	
	1	1639		2	574	76

Output Excerpts Path Analysis With A Binary Outcome And A Continuous Mediator With Missing Data Using Monte Carlo Integration (Continued)

	H0 Value	-6323.175	
Information	Criteria		
	Number of Free Parameters	26	
	Akaike (AIC)	12698.350	
	Bayesian (BIC)	12846.604	
	Sample-Size Adjusted BIC $(n^* = (n + 2) / 24)$	12763.999	
	Sample-Size Adjusted BIC		

Output Ex	cerpts Path	Analy	sis With	A Bin	arv
Outcome And	-	•			•
Data Using I	Monte Carl	o Inte	gration (Contin	ued)
Model Results					
	Estimates	S.E.	Est./S.E.	Std	StdYX
HSDROP ON					
FEMALE	0.336	0.167	2.012	0.336	0.080
MOTHED	-0.244	0.101	-2.421	-0.244	-0.117
HOMERES	-0.091	0.054	-1.699	-0.091	-0.072
EXPECT	-0.225	0.063	-3.593	-0.225	-0.147
MATH7	-0.012	0.015	-0.831	-0.012	-0.058
MATH10	-0.031	0.011	-2.816	-0.031	-0.201
LUNCH	0.005	0.004	1.456	0.005	-0.053
EXPEL	1.010	0.216	4.669	1.010	0.129
ARREST	0.033	0.314	0.105	0.033	0.003
DROPTHT7	0.679	0.272	2.499	0.679	0.067
HISP	-0.145	0.265	-0.548	-0.145	-0.019
BLACK	0.038	0.234	0.163	0.038	0.006
					7

Output Excerpts Path Analysis With A Binary Outcome And A Continuous Mediator With Missing Data Using Monte Carlo Integration (Continued)

	Estimates	S.E.	Est./S.E.	Std	StdYX
MATH10 ON					
FEMALE	-0.973	0.410	-2.372	-0.973	-0.036
MOTHED	0.343	0.219	1.570	0.343	0.026
HOMERES	0.486	0.140	3.485	0.486	0.059
EXPECT	1.014	0.166	6.111	1.014	0.103
MATH7	0.928	0.023	39.509	0.928	0.687
LUNCH	-0.039	0.011	-3.450	-0.039	-0.059
EXPEL	-1.404	0.851	-1.650	-1.404	-0.028
ARREST	-3.337	1.093	-3.052	-3.337	-0.052
DROPTHT7	-1.077	1.070	-1.007	-1.077	-0.016
HISP	-0.644	0.744	-0.866	-0.644	-0.013
BLACK	-0.809	0.694	-1.165	-0.809	-0.019
					79

Output Excerpts Path Analysis With A Binary Outcome And A Continuous Mediator With Missing Data Using Monte Carlo Integration (Continued)

	Est:	imates	S.E.	Est./S.E.	Std	StdYX
Intercepts						
MATH10	10	.941	1.269	8.621	10.941	0.809
Thresholds						
HSDROP\$1	-1	.207	0.521	-2.319		
Residual Var	iances					
MATH10	65	.128	2.280	28.571	65.128	0.356
Observed						
	D. Contonio					
Variable	R-Square					
HSDROP	0 255					
	0.255					
MATH10	0.644					

(Continued) Table 2. Descriptive Statistics of Discrete Dependent Variables						
Variable		e Meaning	Percent			
S: Current Occupation	0	Non-scientific/engineering	96.4			
	1	Scientific/engineering	3.6			
F: First Job	0	Non-scientific/engineering	98.3			
	1	Scientific/engineering	1.7			
E: Education	0	0-7 years	13.4			
	1	8-11 years	32.6			
	2	12 years	29.0			
	3	13 and more years	25.0			

Differences Between Weighted Least Squares And Maximum Likelihood Model Estimation For Categorical Outcomes In Mplus

- Probit versus logistic regression
 - · Weighted least squares estimates probit regressions
 - Maximum likelihood estimates logistic or probit regressions
- Modeling with underlying continuous variables versus observed categorical variables for categorical outcomes that are mediating variables
 - Weighted least squares uses underlying continuous variables

83

· Maximum likelihood uses observed categorical outcomes

Further Readings On Path Analysis With Categorical Outcomes

MacKinnon, D.P., Lockwood, C.M., Brown, C.H., Wang, W., & Hoffman, J.M. (2007). The intermediate endpoint effect in logistic and probit regression. <u>Clinical Trials</u>, 4, 499-513.

Xie, Y. (1989). Structural equation models for ordinal variables. Sociological Methods & Research, 17, 325-352.

85

Categorical Observed And Continuous Latent Variables

Continuous Latent Variable Analysis With Categorical Outcomes

Model Identification

- EFA, CFA, and SEM the same as for continuous outcomes
- Multiple group and models for longitudinal data require invariance of measurement thresholds and loadings, requiring threshold structure (and scale factor parameters)

Interpretation

- Estimated coefficients sign, significance most important
- · Estimated coefficients can be converted to probabilities

Item Response Theory (Continued)

IRT typically does not use the full SEM model

$$\boldsymbol{u}_{i}^{*} = \boldsymbol{v} + \boldsymbol{\Lambda} \, \boldsymbol{\eta}_{i} \left(+ \boldsymbol{K} \, \mathbf{x}_{i} \right) + \boldsymbol{\varepsilon}_{i} \,, \qquad (127)$$

$$\boldsymbol{\eta}_i = \boldsymbol{\alpha} + (\boldsymbol{B}\boldsymbol{\eta}_i + \boldsymbol{\Gamma} \mathbf{x}_i) + \boldsymbol{\zeta}_i, \qquad (128)$$

91

and typically considers a single η (see, however, Bock, Gibbons, & Muraki, 1988). Aims:

- Item parameter estimation (ML): Calibration
- Estimation of η values: Scoring
- Assessment of information function
- Test equating
- DIF analysis

Translating Factor Analysis Parameters In Mplus To IRT Parameters

- IRT calls the continuous latent variable θ
- 2-parameter logistic IRT model uses

$$P(u=1 \mid \theta) = \frac{1}{1 + e^{-D a(\theta-b)}}$$

with D = 1.7 to make a, b close to those of probit a discrimination b difficulty

2-parameter normal ogive IRT model uses

$$P(u=1 | \theta) = \Phi[a(\theta - b)]$$

• Typically $\theta \sim N(0,1)$

Translating Factor Analysis Parameters To IRT Parameters (Continued)

• The Mplus factor analysis model uses

$$P(u = l | \eta) = \frac{l}{l + e^{-(-\tau + \lambda \eta)}} \quad \text{for logit}$$
$$P(u = l | \eta) = \Phi\left[(-\tau + \lambda \eta)\theta^{-l/2}\right] \text{ for probit}$$

where θ is the residual variance

The logit conversion is: The prob

The probit conversion is:

• Conversion automatically done in Mplus

94

Testing The Model Against Data

Model fit to frequency tables. Overall test against data
 When the model contains only u, summing over the cells,

$$\chi_P^2 = \sum_i \frac{(o_i - e_i)^2}{e_i},$$
(82)

$$\chi_{LR}^2 = 2\sum_i o_i \log o_i / e_i.$$
(83)

A cell that has non-zero observed frequency and expected frequency less than .01 is not included in the χ^2 computation as the default. With missing data on **u**, the EM algorithm described in Little and Rubin (1987; chapter 9.3, pp. 181-185) is used to compute the estimated frequencies in the unrestricted multinomial model. In this case, a test of MCAR for the unrestricted model is also provided (Little & Rubin, 1987, pp. 192-193).

• Model fit to univariate and bivariate frequency tables. Mplus TECH10

Antisocial Behavior (ASB) Data (Continued)

Damaged property Fighting Shoplifting Stole < \$50 Stole > \$50 Seriously threaten Intent to injure Use marijuana Use other drugs Sold marijuana Sold hard drugs "Con" someone Take auto Broken into building Held stolen goods

These items were dichotomized 0/1 with 0 representing never in the last year. An EFA suggested three factors: property offense, person offense, and drug offense.

97

Input For IRT Analysis Of Eight ASB Property Offense Items TITLE: 2-parameter logistic IRT for 8 property offense items DATA: FILE = asb.dat; FORMAT = 34X 54F2.0;VARIABLE: NAMES = property fight shoplift 1t50 gt50 force threat injure pot drug soldpot solddrug con auto bldg goods gambling dsm1-dsm22 sex black hisp single divorce dropout college onset f1 f2 f3 age94 cohort dep abuse; USEVAR = property shoplift 1t50 gt50 con auto bldg goods; CATEGORICAL = property-goods; ANALYSIS: ESTIMATOR = MLR; MODEL: f BY property-goods*; f@1; TECH1 TECH8 TECH10; OUTPUT: PLOT: TYPE = PLOT3; 98

TESTS OF MODEL FIT		
Loglikelihood		
H0 Value	-19758.361	
H0 Scaling Correction Factor for MLR	0.996	
Information Criteria		
Number of Free Parameters	16	
Akaike (AIC)	39548.722	
Bayesian (BIC)	39659.109	
Sample-Size Adjusted BIC	39608.265	
(n* = (n + 2) / 24)		
Chi-Square Test of Model Fit for the Bina Categorical (Ordinal) Outcomes	ary and Ordered	
Pearson Chi-Square		
Value	324.381	
Degrees of Freedom	239	99
P-Value	0.0002	

Like	lihood Rat	io Chi Couero				
		to chi-square				
Valu	le			327.05	3	
Degr	ees of Fre	edom		23	9	
P-Va	lue		0.0001			
MODEL 1	RESULTS				Two-Tailed	
		Estimate	S.E.	Est./S.E.	P-Value	
F	BY					
PR	OPERTY	2.032	0.084	24.060	0.000	
SH	OPLIFT	1.712	0.068	25.115	0.000	
LT	50	1.850	0.076	24.411	0.000	
GT	50	2.472	0.139	17.773	0.000	
CO	N	1.180	0.051	23.148	0.000	
AU	то	1.383	0.070	19.702	0.000	
BL	DG	2.741	0.151	18.119	0.000	
GO	ODS	2.472	0.116	21.339	0.000	100

				Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value
Thresholds				
PROPERTY\$1	2.398	0.073	32.803	0.000
SHOPLIFT\$1	1.529	0.049	31.125	0.000
LT50\$1	2.252	0.065	34.509	0.000
GT50\$1	5.054	0.195	25.912	0.000
CON\$1	1.560	0.041	37.894	0.000
AUTO\$1	3.144	0.079	39.948	0.000
BLDG\$1	5.185	0.208	24.983	0.000
GOODS\$1	3.691	0.126	29.316	0.000
Variances				
F	1.000	0.000	999.000	999.000
				101
				101

Output Excerpts IRT Analysis Of Eight ASB Property Offense Items (Continued)

IRT PARAMETERIZATION IN TWO-PARAMETER LOGISTIC METRIC WHERE THE LOGIT IS 1.7*DISCRIMINATION*(THETA - DIFFICULTY)

Iter	n Discriminations				Two-Tailed
		Estimate	S.E.	Est./S.E.	P-Value
F	ВҮ				
	PROPERTY	1.195	0.050	24.060	0.000
	SHOPLIFT	1.007	0.040	25.115	0.000
	LT50	1.088	0.045	24.411	0.000
	GT50	1.454	0.082	17.773	0.000
	CON	0.694	0.030	23.148	0.000
	AUTO	0.813	0.041	19.702	0.000
	BLDG	1.612	0.089	18.119	0.000
	GOODS	1.454	0.068	21.339	0.000
					102

Item Difficulties				Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value
PROPERTY\$1	1.180	0.031	38.268	0.000
SHOPLIFT\$1	0.893	0.029	31.309	0.000
LT50\$1	1.217	0.033	36.604	0.000
GT50\$1	2.044	0.053	38.588	0.000
CON\$1	1.322	0.048	27.809	0.000
AUTO\$1	2.274	0.081	28.232	0.000
BLDG\$1	1.891	0.045	42.204	0.000
GOODS\$1	1.493	0.035	43.045	0.000
Variances				
F	1.000	0.000	0.000	1.000
				103

Ν	INICAL 10 OU MODEL FIT IN PONSE PATTER	IFORMA	TION FOR TH	E LATE	ENT CLASS	INDIC	ATOR MODEL	PART
No.	Pattern	No.	Pattern	No.	Pattern	No.	Pattern	
1	00000000	2	10100000	3	00001101	4	00000010	
5	01100000	6	00001000	7	10001010	8	00010001	
9	10100010	10	11000000	11	10101110	12	11100010	
13	11010111	14	10000000	15	11110001	16	1000001	
								104

RESPONSE PATTERN FREQUENCIES AND CHI-SQURE CONTRIBUTIONS							
Response	Freq	luency	Standardized	Chi-square	Contribution		
Pattern	Observed	Estimated	Residual	Pearson	Loglikelihood		
			(z-score)				
1	3581.00	3565.17	0.37	0.07	31.73		
2	60.00	57.05	0.39	0.15	6.05		
3	2.00	3.12	-0.77	0.59	-2.14		
4	18.00	17.65	0.08	0.01	0.71		
5	137.00	110.30	2.56	6.46	59.39		
6	476.00	495.86	-0.92	0.80	-38.92		
					105		

BIVARIATE MODEL FI	IT INFORMATION				
			Estimat	ed Proba	bilities
				S	Standardized
VARIABLE	VARIABLE		Hl	HO	Residual
PROPERTY	SHOPLIFT				(z-score)
Category 1	Category	1	0.656	0.655	0.157
Category 1	Category	2	0.159	0.160	-0.176
Category 2	Category	1	0.080	0.081	-0.285
Category 2	Category	2	0.105	0.104	0.222
Bivariate 1	Pearson Chi-Square				0.153
Bivariate 1	Log-Likelihood Chi-	-Squar	e		0.077
					106

			Estimat	ed Proba	bilities	
				St	candardized	
VARIABLE	VARIABLE		Hl	н0	Residual	
PROPERTY	SHOPLIFT				(z-score)	
LT50	GT50					
Category	1 Categor	y 1	0.799	0.795	0.873	
Category	1 Categor	y 2	0.014	0.018	-2.615	
Category	2 Categor	y 1	0.152	0.156	-0.945	
Category	2 Categor	y 2	0.035	0.032	1.912	
Bivariate	Pearson Chi-Squar	е			11.167	
Bivariate	Log-Likelihood Ch	i-Squa	ire		5.806	
					107	

Assumptions Behind ML And WLS

Note that when assuming normal factors and using probit links, ML uses the same model as WLS. This is because normal factors and probit links result in multivariate normal u* variables. For model estimation, WLS uses the limited information of first- and second-order moments, thresholds and sample correlations of the multivariate normal u* variables (tetrachoric, polychoric, and polyserial correlations), whereas ML uses full information from all moments of the data.

	Exploratory Factor Analysis Of 17 ASB Items Using WLSM
TITLE:	EFA using WLSM
DATA:	FILE = asb.dat; FORMAT = 34X 54F2.0;
VARIABLE:	<pre>NAMES = property fight shoplift lt50 gt50 force threat injure pot drug soldpot solddrug con auto bldg goods gambling dsml-dsm22 sex black hisp single divorce dropout college onset f1 f2 f3 age94 cohort dep abuse; USEVAR = property-gambling; CATEGORICAL = property-gambling;</pre>
ANALYSIS:	TYPE = EFA 1 5;
OUTPUT:	MODINDICES;
PLOT:	TYPE = PLOT3;

EFA Of 17 A		
EXPLORATORY FACTOR ANALYSIS WITH 3	FACTOR(S):	
TESTS OF MODEL FIT		
Chi-Square Test of Model Fit		
Value	584.356*	
Degrees of Freedom	88	
P-Value	0.0000	
* The chi-square value for MLM, M cannot be used for chi-square d WLSM chi-square difference test Technical Appendices at www.sta difference testing in the index	lifference tests. MLM, ing is described in th tmodel.com. See chi-s	MLR and e Mplus quare
Chi-Square Test of Model Fit for the	he Baseline Model	
Value	53652.583	
Degrees of Freedom	136	
P-Value	0.0000	12

'I/TLI	
CFI	0.991
TLI	0.986
mber of Free Parameters	48
ISEA (Root Mean Square Error Of App	proximation)
Estimate	0.028
MR (Standardized Root Mean Square	Residual)
Value	0.045
NIMUM ROTATION FUNCTION VALUE	0.08510

Output Excerpts 3- And 4-Factor WLSM EFA Of 17 ASB Items (Continued)

	QUART	IMIN ROTATED LOAI	DINGS
	1	2	3
PROPERTY	0.669	0.179	-0.036
FIGHT	0.266	0.548	-0.121
SHOPLIFT	0.600	-0.028	0.185
LT50	0.818	-0.185	0.046
GT50	0.807	0.003	0.016
FORCE	0.379	0.344	0.000
THREAT	-0.008	0.821	0.049
INJURE	-0.022	0.761	0.101
POT	-0.051	0.001	0.903
DRUG	-0.021	-0.020	0.897
SOLDPOT	0.126	0.058	0.759
SOLDDRUG	0.175	0.083	0.606
CON	0.460	0.228	-0.065

AUTO 0.4	1.50		
	460 0.1	.39 0.0	73
BLDG 0.	797 0.0	0.0	17
GOODS 0.	700 0.1	.09 0.0	66
GAMBLING 0.3	314 0.3	0.0	92
	QUARTIMIN FACTOR	CORRELATIONS	
1 1.	000		
2 0.1	598 1.0	00	
3 0.	614 0.3	1.0	00
5 0.		, 1 1.0	

Output Excerpts 3- And 4-Factor WLSM EFA Of 17 ASB Items (Continued)

1	e Test of Model Fit for th		
	Value	53652.583	
	Degrees of Freedom	136	
	P-Value	0.0000	
FI/TLI			
	CFI	0.996	
	TLI	0.992	
lumber of	Free Parameters	62	
MSEA (Ro	ot Mean Square Error Of Ag	oproximation)	
	Estimate	0.021	
RMR (Sta	ndardized Root Mean Square	e Residual)	
	Value	0.026	

Output Excerpts 3- And 4-Factor WLSM
EFA Of 17 ASB Items (Continued)

		QUARTIMIN RO	TATED LOADINGS	
	1	2	3	4
PROPERTY	0.670	0.191	-0.006	-0.043
FIGHT	0.290	0.537	-0.060	-0.098
SHOPLIFT	0.679	-0.001	0.225	-0.159
LT50	0.817	-0.152	0.066	-0.049
GT50	0.762	-0.008	-0.036	0.154
FORCE	0.257	0.288	-0.195	0.491
THREAT	0.003	0.858	0.101	-0.078
INJURE	-0.036	0.728	0.056	0.162
POT	0.041	0.074	0.923	-0.069
DRUG	0.051	0.007	0.717	0.227
SOLDPOT	0.149	0.070	0.598	0.281
SOLDDRUG	0.065	-0.037	0.269	0.791
CON	0.420	0.223	-0.072	0.081 12

	1	2	3	4
OTUA	0.446	0.138	0.051	0.074
BLDG	0.770	0.042	0.010	0.055
GOODS	0.662	0.109	0.030	0.126
GAMBLING	0.208	0.270	-0.083	0.449
		QUARTIMIN FACTO	R CORRELATIONS	
1	1.000			
2	0.571	1.000		
3	0.485	0.230	1.000	
4	0.481	0.312	0.376	1.000

Practical Issues In The Analysis Of Categorical Outcomes 129

			Pe	arson (Correla		e 1 (P for Tr			ions =	= 0.50			
	D19	D28	D37	D46	D55	D64	D73	D82	D91	3SY	3RE	3NS	3PS	
D19	25	520	20.	2.0	200	201	2.0	202	201		0.12	0.10	0.0	
D28	26	30												
D37	26	30	32											
D46	24	30	32	33										
D55	23	28	31	33	33									
D64	20	26	30	23	33	33								
D73	18	23	27	30	31	32	32							
D82	15	20	23	26	28	30	30	30						
D91	10	15	18	20	22	24	26	26	25					
3SY	26	32	35	36	37	36	35	32	26	41				
3RE	25	31	35	36	37	36	35	31	25	41	41			
3NS	29	33	35	36	35	33	30	26	20	39	39	39		
3PS	20	26	30	33	35	36	35	33	29	39	39	34	39	
4SY	27	33	36	38	38	38	36	33	27	43	43	40	40	
4RE	26	33	36	38	38	38	36	33	26	42	42	40	40	
4NS	30	35	36	36	35	33	30	27	20	40	39	40	34	
3PS	20	27	31	34	35	36	36	35	30	40	39	34	40	
5SY	28	34	37	38	39	38	37	34	28	44	43	41	41	
4RE	27	33	37	38	39	38	37	33	27	43	43	41	41	
5NS	31	35	36	36	35	33	30	26	20	40	39	40	34	
5PS	20	26	30	33	35	36	36	35	31	40	39	34	40	
CON	29	35	38	39	40	39	38	35	29	45	45	42	42	
	D19	D28	D37	D46	D55	D64	D73	D82	D91	3SY	3RE	3NS	3PS	138

4SY 44	4RE	4NS	4PS	5SY					
					5RE	5NS	5PS	CON	
44	44								
41	41	41							
41	41	35	41						
45	45	42	42	46					
45	45	41	41	46	45				
41	40	42	34	42	41	42			
41	41	34	42	42	41	34	42		
47	46	43	43	48	47	44	44	50	
4SY	4RE	4NS	4PS	5SY	5RE	5NS	5PS	CON	
	41 41 45 45 41 41 41	41 41 41 41 45 45 45 45 41 40 41 41 47 46	41 41 41 41 41 35 45 45 42 45 45 41 41 40 42 41 41 34 47 46 43	41 41 41 41 41 35 41 45 45 42 42 45 45 41 41 41 40 42 34 41 41 34 42 47 46 43 43	41 41 41 41 41 35 41 45 45 42 42 46 45 45 41 41 46 41 40 42 34 42 41 41 34 42 42 47 46 43 43 48	41 41 41 41 41 35 41 45 45 42 42 46 45 45 41 41 46 45 41 40 42 34 42 41 41 41 34 42 42 41 47 46 43 43 48 47	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41 41 41 41 35 41 45 45 42 46 45 45 41 46 45 41 40 42 34 42 41 42 41 41 34 42 41 34 42 47 46 43 43 48 47 44 44 50

Further Readings On Factor Analysis Of Categorical Outcomes

- Bock, R.D., Gibbons, R., & Muraki, E.J. (1998). Full information item factor analysis. <u>Applied Psychological Measurement</u>, 12, 261-280.
- Flora, D.B. & Curran, P.J., (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. <u>Psychological Methods</u>, 9, 466-491.
- Muthén, B. (1989). Dichotomous factor analysis of symptom data. In Eaton & Bohrnstedt (Eds.), Latent variable models for dichotomous outcomes:
 Analysis of data from the epidemiological Catchment Area program (pp.19-65), a special issue of <u>Sociological Methods & Research</u>, 18, 19-65.
- Muthen, B. & Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of non-normal Likert variables. <u>British Journal of</u> <u>Mathematical and Statistical Psychology</u>, 38, 171-189.
- Muthen, B. & Kaplan, D. (1992). A comparison of some methodologies for the factor analysis of non-normal Likert variables: A note on the size of the model. <u>British Journal of Mathematical and Statistical Psychology</u>, 45, 19-30.

141

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Antisocial Behavior (ASB) Data (Continued)

Damaged property Fighting Shoplifting Stole < \$50 Stole > \$50 Seriously threaten Intent to injure Use marijuana Use other drugs Sold marijuana Sold hard drugs "Con" someone Take auto Broken into building Held stolen goods

These items were dichotomized 0/1 with 0 representing never in the last year. An EFA suggested three factors: property offense, person offense, and drug offense.

Input For CFA With Covariates With Categorical Outcomes For 15 ASB Items

TITLE:	CFA with covariates with categorical outcomes using	
	15 antisocial behavior items and 3 covariates	
DATA:	FILE IS asb.dat;	
	FORMAT IS 34X 54F2.0;	
VARIABLE:	NAMES ARE property fight shoplift 1t50 gt50 force	
	threat injure pot drug soldpot solddrug con auto bld	.g
	goods gambling dsm1-dsm22 sex black hisp single	
	divorce dropout college onset fhist1 fhist2 fhist3	
	age94 cohort dep abuse;	
	USEV ARE property-gt50 threat-goods sex black age94;	
	CATEGORICAL ARE property-goods;	
		149

Categor	ical Outcomes For 15 ASB Items (Cont	inued)
MODEL:	f1 BY property shoplift-gt50 con- goods;	
	f2 BY fight threat injure;	
	f3 BY pot-solddrug;	
	fl-f3 ON sex black age94;	
	property-goods ON sex-age94@0;	
OUTPUT:	STANDARDIZED MODINDICES;	

Output Excerpts CFA With Covariates With Categorical Outcomes For 15 ASB Items

		Estimates	S.E.	Est./S.E.	Std	StdYX
Fl	BY					
PROP	ERTY	1.000	.000	.000	.791	.760
SHOP	LIFT	.974	.023	42.738	.771	.742
LT50		.915	.023	39.143	.724	.700
GT50		1.055	.031	33.658	.835	.799
CON		.752	.024	31.637	.595	.581
AUTO)	.796	.030	26.462	.629	.613
BLDG	ł	1.084	.030	35.991	.858	.818
GOOD	S	1.071	.025	42.697	.847	.809
						1:

F2	BY					
FIG	HT	1.000	.000	.000	.773	.734
THR	EAT	1.096	.035	31.382	.847	.797
INJ	URE	1.082	.037	28.888	.836	.787
F3	BY					
POT		1.000	.000	.000	.866	.851
DRU	G	1.031	.023	45.818	.893	.876
SOL	DPOT	1.046	.023	45.844	.905	.888
SOL	DDRUG	.923	.036	25.684	.799	.787

		utcomes l				
F1	ON					
SEX		.516	.024	21.206	.653	.326
BLAC	CK	080	.025	-3.168	102	047
AGES	94	054	.006	-9.856	069	150
F2	ON					
SEX		.561	.026	21.715	.726	.363
BLAC	CK	.174	.025	7.087	.225	.103
AGES	94	068	.006	-12.286	087	191
F3	ON					
SEX		.229	.026	8.760	.265	.132
BLAC	CK	272	.029	-9.384	315	144
AGES	94	.039	.006	6.481	.045	.099

Output Excerpts CFA With Covariates With Categorical Outcomes For 15 ASB Items (Continued)

Modification Indices

PROPERTY ON BLACK	4.479	GT50 ON SEX	12.100
PROPERTY ON AGE94	28.229	GT50 ON BLACK	12.879
FIGHT ON SEX	60.599	GT50 ON AGE94	7.413
FIGHT ON BLACK	26.695	THREAT ON SEX	10.221
FIGHT ON AGE94	64.815	THREAT ON BLACK	26.665
SHOPLIFT ON SEX	131.792	THREAT ON AGE94	3.892
SHOPLIFT ON BLACK	0.039	INJURE ON SEX	22.803
SHOPLIFT ON AGE94	0.038	INJURE ON BLACK	0.089
LT50 ON SEX	0.040	INJURE ON AGE94	42.549
LT50 ON BLACK	22.530	POT ON SEX	10.727
LT50 ON AGE94	24.750	POT ON BLACK	12.177
		POT ON AGE94	17.432
			155

Categorical Outc	omes For	15 ASB Items (Co	ontinued)
Modification Indices			
DRUG ON SEX	15.637	AUTO ON SEX	0.735
DRUG ON BLACK	41.202	AUTO ON BLACK	1.414
DRUG ON AGE94	1.583	AUTO ON AGE94	2.936
SOLDPOT ON SEX	51.496	BLDG ON SEX	37.797
SOLDPOT ON BLACK	1.242	BLDG ON BLACK	7.053
SOLDPOT ON AGE94	29.267	BLDG IB AGE94	0.114
SOLDDRUG ON SEX	3.920	GOODS ON SEX	24.664
SOLDDRUG ON BLACK	7.187	GOODS ON BLACK	0.982
SOLDDRUG ON AGE94	2.956	GOODS ON AGE94	6.061
CON ON SEX	31.521		
CON ON BLACK	80.515		
CON ON AGE94	11.259		

With C	Input Excerpts For AS ovariates And Direct Eff	
Tests Of	Model Fit	
Chi-Squ	are Test of Model Fit	
_	Value	946.256 *
	Degrees of Freedom	102 **
	P-Value	0.0000
CFI/TLI		
	CFI	0.959
	TLI	0.972
RMSEA (Root Mean Square Error Of Approxima	ation)
	Estimate	0.034
WRMR (W	Meighted Root Mean Square Residual)	
	Value	2.198
		159

		•	•	For AS		
Vith C	ova	riates A	and Dir	ect Effe	ets (Co	ontinued
		Estimates	S.E.	Est./S.E.	Std	StdYX
F1 SHOPL:	BY IFT	1.002	.024	42.183	.805	.793
F1 SEX	ON	.596	.026	22.958	.742	.371
SHOPLIFT SEX	ON	385	.033	-11.594	385	190
CON BLACK FIGHT	ON ON	.305	.034	8.929	.305	.136
AGE94	011	068	.008	-8.467	068	138
Threshold	ls					
SHOPL	IFT\$1	.558	.033	17.015	.558	.558
R-SQUARE						
	rved able	Residual Variance	R-Square			
SHOPI	LIFT	.461	.552			16

Calculating Item Probabilities (Continued)

The model with a direct effect from x to item u_i ,

$$u_{ij}^* = \lambda_j \,\eta_i + \kappa_j x_i + \varepsilon_{ij}, \qquad (45)$$

gives the conditional probability of a u = 1 response given the factor η_i and the covariate x_i

$$P(u_{ij} = 1 | \eta_i, x_i) = 1 - F[(\tau_j - \lambda_j \eta_i - \kappa_j x_i) \theta_{jj}^{-1/2}], \quad (46)$$

= $F[(-\tau_j + \lambda_j \eta_i + \kappa_j x_i) \theta_{jj}^{-1/2}], \quad (47)$

where F is the normal distribution function and θ is the residual variance.

For example, for the item shoplift, $\tau_j = 0.558$, $\kappa_j = -0.385$, $\theta_{jj} = 0.461$. At $\eta = 0$, the probability is 0.21 for females (x = 0) and 0.08 for males (x = 1).

163	

Calculating Item Probabilities (Con	tinued)
Consider	
$P(u_{ij} = 1 \eta_{ij}, x_i) = 1 - F[(\tau_j - \lambda_j \eta_i - \kappa_j x_i) \theta_{jj}]^{-1/2}],$	(47)
using $\tau_j = 0.558$, $\kappa_j = -0.385$, $\theta_{jj} = 0.461$, and $\eta = 0$.	
Here, $\theta_{jj}^{-1/2} = \frac{1}{\sqrt{\theta_{jj}}} = \frac{1}{\sqrt{0.461}} = 1.473.$	
For females $(x = 0)$:	
1. $(\tau_j - \lambda_j \eta_i - \kappa_j x_i) = 0.558 - 1.002 \times 0 - (-0.385) \times 0 = 0.558.$	
2. $(\tau_j - \lambda_j \eta_i - \kappa_j x_i) \theta_{jj}^{-1/2} = 0.558 \times 1.473 = 0.822.$	
3. $F[0.822] = 0.794$ using a z table	
$4. \ 1 - 0.794 = 0.206.$	
For males $(x = 1)$:	
1. $(\tau_j - \lambda_j \eta_i - \kappa_j x_i) = 0.558 - 1.002 \ge 0.600 \le 0.0000 \le 0.0000 \le 0.00000 \le 0.00000 \le 0.00000000$	
2. $(\tau_j - \lambda_j \eta_i - \kappa_j x_i) \theta_{jj}^{-1/2} = 0.943 \times 1.473 = 1.389.$	
3. <i>F</i> [1.389] = 0.918 using a z table.	
$4.\ 1 - 0.918 = 0.082.$	

Inpu	ts For Multiple Group Analysis Of 15 ASB Items	
Measureme	ent Non-Invariance	
MODEL:	<pre>f1 BY property shoplift-gt50 con-goods; f2 BY fight threat injure; f3 BY pot-solddrug; [f1-f3@0]; {property-goods@1};</pre>	
MODEL male:	<pre>f1 BY shoplift-gt50 con-goods; f2 BY threat injure; f3 BY drug-solddrug; [property\$1-goods\$1];</pre>	
		16

Further Readings On Multiple-Group Analysis Of Categorical Outcomes

Muthén, B. & Asparouhov, T. (2002). Latent variable analysis with categorical outcomes: Multiple-group and growth modeling in Mplus. Mplus Web Note #4 (www.statmodel.com).

Muthén, B., & Christoffersson, A. (1981). Simultaneous factor analysis of dichotomous variables in several groups. <u>Psychometrika</u>, 46, 407-419. (#6)

171

Exploratory Structural Equation Modeling

Structural Equation Model

(1) $Y_i = v + \Lambda \eta_i + K X_i + \varepsilon_i$

(2)
$$\eta_i = \alpha + B \eta_i + \Gamma X_i + \xi_i$$

 Λ is typically specified as having a "simple structure"

Quote From Browne (2001)

"Confirmatory factor analysis procedures are often used for exploratory purposes. Frequently a confirmatory factor analysis, with pre-specified loadings, is rejected and a sequence of modifications of the model is carried out in an attempt to improve fit. The procedure then becomes exploratory rather than confirmatory ---- In this situation the use of exploratory factor analysis, with rotation of the factor matrix, appears preferable. ---- The discovery of misspecified loadings ... is more direct through rotation of the factor matrix than through the examination of model modification indices."

Browne, M.W. (2001). An overview of analytic rotation in exploratory factor analysis. <u>Multivariate Behavioral Research</u>, 36, 111-150

- $\Lambda \Psi \Lambda^T + \Theta$
- Λ is $p \ge m$, so m^2 indeterminacies
- $\Psi = I$ fixes m (m+1)/2 indeterminacies
- ΛΛ^T + Θ = Λ*Λ*^T + Θ for Λ * = Λ H⁻¹, where H is orthogonal
 A starting Λ* can be rotated using a rotation criterion
- A starting Λ^{*} can be rotated using a rotation enterion function that favors simple structure in Λ :

$$f(\Lambda^*) = f(\Lambda H^{-1})$$
 (2a)

$$f(\Lambda) = \sum_{i=1}^{p} \sum_{j=lk\neq j}^{m} \lambda_{ij}^{2} \lambda_{ik}^{2} \qquad (2b)$$

- Common rotation: Quartimin
- Good alternative: Geomin rotation

Transformation Of SEM Parameters Based On Rotated A		
(1) $Y_i = v + \Lambda \eta_i + K X_i + \varepsilon_i$	(2) $\eta_i = \alpha + B\eta_i + \Gamma X_i + \xi_i$	
Transformations:		
(6) $v^* = v$	(10) $\alpha^* = H \alpha$	
$(7) \Lambda^* = \Lambda (H^*)^{-1}$	(11) $B^* = H^* B (H^*)^{-1}$	
(8) $K^* = K$	(12) $\Gamma^* = H^* \Gamma$	
(9) $\theta^* = \theta$	(13) $\Psi^* = (H^*)^T \Psi H^*$	
		182

Example: Aggressive Behavior Male-Female EFA in Baltimore Cohort 3

- 261 males and 248 females in third grade
- Teacher-rated aggressive-disruptive behavior
- Outcomes treated as non-normal continuous variables
- Two types of analyses:
 - EFA in each group separately using Geomin rotation
 - Multiple-group EFA analysis of males and females jointly

EFA-ESEM Variable Scales And Loading Matrix Metrics

- Sample covariance matrix analyzed, not sample correlation matrix
 - Loadings in original indicator scale
 - Standardized solution gives loadings in regular EFA metric
- Multiple-group EFA allows factor variances and covariances to differ across groups as the default
 - Group 1 has a factor correlation matrix, while other groups have factor covariance matrices
 - Group-invariant loadings still give group-varying standardized loadings due to group-varying indicator variances and group-varying factor variances

V	StdYX Lo	adings for	Males	StdYX Lo	adings for	Females
Variables	Verbal	Person	Property	Verbal	Person	Property
Stubborn	0.82	-0.05	0.01	0.88	0.03	-0.22
Breaks Rules	0.47	0.34	0.01	0.76	0.06	-0.17
Harms Others & Property	-0.01	0.63	0.31	0.45	0.03	0.36
Breaks Things	-0.02	0.02	0.66	-0.02	0.19	0.43
Yells At Others	0.66	0.23	-0.03	0.97	-0.23	0.05
Takes Others' Property	0.27	0.08	0.52	0.02	0.79	0.10
Fights	0.22	0.75	-0.00	0.81	-0.01	0.18
Harms Property	0.03	-0.02	0.93	0.27	0.20	0.57
Lies	0.58	0.01	0.27	0.42	0.50	-0.00
Talks Back to Adults	0.61	-0.02	0.30	0.69	0.09	-0.02
Teases Classmates	0.46	0.44	-0.04	0.71	-0.01	0.10
Fights With Classmates	0.30	0.64	0.08	0.83	0.03	0.21
Loses Temper	0.64	0.16	0.04	1.05	-0.29	-0.01
						187

Summary Of Separate Male/Female EFAs

Factors	Factor Correlations	for Males	Factor Correlations	for Females
raciois	Verbal	Person	Verbal	Person
Person	0.57		0.68	
Property	0.56	0.68	0.32	0.22

Multiple-Group EFA Modeling Results Using MLR

Model	LL0	С	# par. 's	Df	χ^2	CFI	RMSEA
M1	-8122	2.61	84	124	241	0.95	0.061
M2	-8087	2.41	94	114	188	0.97	0.050
M3	-8036	2.38	124	84	146	0.97	0.054

- M1: Loadings and intercepts invariance
- M2: Loadings but not intercepts invariance
- M3: Neither loadings nor intercepts invariance
- LL0: Log likelihood for the H0 (multiple-group EFA) model
- c is a non-normality scaling correction factor

189

Multiple-Group EFA Modeling Results Using MLR

- Comparing M2 and M1*:
 - cd = (84*2.61-94*2.41)/(-10) = 0.704
 - TRd = -2(LL0-LL1)/cd = 98.5 with 10 df: Not all intercepts are invariant. Choose M2

Multiple-Group EFA Modeling Results Using MLR

• Comparing M3 and M2*:

- cd = (94*2.41-124*2.38))/(-30) = 2.78

- TRd = -2(LL0-LL1)/cd = 36.6 with 30 df: Loadings are invariant. Choose M2
- LL1 = loglikelihood for unrestricted H1 model (same for all 3) = -7934

* For loglikelihood difference testing with scaling corrections, see http://www.statmodel.com/chidiff.shtml

191

Male EFA Estimates Compared To Female Estimates From Multiple-Group EFA Using M2

Variables	StdYX Lo	adings for	Males	StdYX Loadings for Females		
variables	Verbal	Person	Property	Verbal	Person	Property
Stubborn	0.82	-0.05	0.01	0.86	-0.00	-0.01
Breaks Rules	0.47	0.34	0.01	0.59	0.20	0.01
Harms Others & Property	-0.01	0.63	0.31	0.00	0.56	0.24
Breaks Things	-0.02	0.02	0.66	-0.03	-0.03	0.63
Yells At Others	0.66	0.23	-0.03	0.69	0.18	-0.01
Takes Others' Property	0.27	0.08	0.52	0.39	0.03	0.31
Fights	0.22	0.75	-0.00	0.35	0.61	-0.02
Harms Property	0.03	-0.02	0.93	0.19	0.04	0.68
Lies	0.58	0.01	0.27	0.67	0.00	0.16
Talks Back to Adults	0.61	-0.02	0.30	0.71	-0.02	0.15
Teases Classmates	0.46	0.44	-0.04	0.49	0.30	0.01
Fights With Classmates	0.30	0.64	0.08	0.41	0.53	0.03
Loses Temper	0.64	0.16	0.04	0.74	0.14	-0.29

Factor Correlations For Males Using EFA And For Females Using Multiple-Group Model M2

Fraters	Factor Correlation	s for Males	Factor Correlations	for Females
Factors	Verbal Person Verbal		Person	
Person	0.57		0.75	
Property	0.56	0.68	0.42	0.65

193

Multiple-Group EFA Estimates For M2

		Factor Variances	
Group	Verbal	Person	Property
Males	1	1	1
Females	1.19	2.65	5.33
	(.18)	(.56)	(1.02)

Input Model M1

TITLE:	Cohort 3 Case and Class variables
DATA:	<pre>FILE = Muthen.dat;</pre>
VARIABLE:	<pre>NAMES = id race lunch312 gender y301-y313; MISSING = ALL (999); GROUPING = gender (0=female 1=male); USEVARIABLES = y301-y313;</pre>
ANALYSIS:	PROCESSORS = 4; ESTIMATOR = MLR;
MODEL:	fl-f3 BY y301-y313 (*1);
OUTPUT:	TECH1 SAMPSTAT MODINDICES STANDARDIZED;

Input Model M2 TITLE: Cohort 3 Case and Class variables DATA: FILE = Muthen.dat; NAMES = id race lunch312 gender y301-y313; VARIABLE: MISSING = ALL (999); GROUPING = gender (0=female 1=male); USEVARIABLES = y301-y313; ANALYSIS: PROCESSORS = 4;ESTIMATOR = MLR; MODEL: fl-f3 BY y301-y313 (*1); [f1-f3@0]; MODEL MALE: [y301-y313]; OUTPUT: TECH1 SAMPSTAT MODINDICES STANDARDIZED; 196

Input Model M3

TITLE:	Cohort 3 Case and Class variables
DATA:	<pre>FILE = Muthen.dat;</pre>
VARIABLE:	NAMES = id race lunch312 gender y301-y313; MISSING = ALL (999); GROUPING = gender (0=female 1=male); USEVARIABLES = y301-y313;
ANALYSIS:	PROCESSORS = 4; ESTIMATOR = MLR;
MODEL:	fl-f3 BY y301-y313 (*1); [f1-f3@0];
MODEL MALE:	f1-f3 BY y301-y313 (*1); [y301-y313];
OUTPUT:	TECH1 SAMPSTAT MODINDICES STANDARDIZED;

Latent Response Variable Modeling

- The analysis considers means (thresholds) and correlations because variances do not contribute further information $-E(u) = \pi, V(u) = \pi (1 \pi)$
- For each *u* (see figure)
 - Normality of u^* given x (probit)
 - Residual variance fixed at 1 implies $V(\varepsilon)$ not free,

$$V(u^* \mid x) = \lambda^2 V(\zeta) + V(\varepsilon) = 1,$$
(8)

i.e.
$$V(\varepsilon) = 1 - \lambda^2 V(\zeta)$$
 (9)

- For pairs of *u*'s
 - Multivariate normal u^* 's given x
 - Because residual variances are one, u^* residual correlations are considered, not covariances
 - Normality of u*'s given x is less strong than normal u* and normal x, assumed for polychoric and polyserial correlations

Estimation With Categorical Outcomes

Full information maximum-likelihood estimation is heavy for general models.

Limited-information weighted least squares:

Fitting function: $WLS = 1/2 (s - \sigma)' W^{-1}(s - \sigma)$

Sample statistics:

- s_1 : probit thresholds
- s_2 : probit regression slopes (q > 0)
- s_3 : probit residual correlations
- $s' = (s'_1, s'_2, s'_3)$

Weight matrix:

- Full *W* (GLS/WLS: *W* = asympt *V*(*s*))
- Diagonal *W*(WLSM, WLSMV)

Robust standard errors and chi-square in line with Satorra 203

Further Readings On Technical Aspects Of Weighted Least Squares With Categorical Outcomes

Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. <u>Psychometrika</u>, 49, 115-132. (#11)

Muthén, B. (1989). Latent variable modeling in heterogeneous populations. <u>Psychometrika</u>, 54, 557-585. (#24)

Muthén, B. & Satorra, A. (1995). Technical aspects of Muthén's LISCOMP approach to estimation of latent variable relations with a comprehensive measurement model. <u>Psychometrika</u>, 60, 489-503.

Muthén, B. du Toit, S.H.C. & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Accepted for publication in Psychometrika. (#75)

Levels Of Engagement

- Mplus support for licensed Mplus users
- Mplus Discussion for brief Mplus analysis questions of general interest
- Statistical consulting not available through Mplus
- · Research interaction on topics of common interest
- SEMNET

References (Continued) Long, S. (1997). Regression models for categorical and limited dependent variables. Thousand Oaks: Sage. Maddala, G.S. (1983). Limited-dependent and qualitative variables in econometrics. Cambridge: Cambridge University Press. Tobin, J (1958). Estimation of relationships for limited dependent variables. Econometrica, 26, 24-36. IRT Baker, F.B. & Kim, S.H. (2004). Item response theory. Parameter estimation techniques. Second edition. New York: Marcel Dekker. Bock, R.D. (1997). A brief history of item response theory. Educational Measurement: Issues and Practice, 16, 21-33. du Toit, M. (2003). IRT from SSI. Lincolnwood, IL: Scientific Software International, Inc. (BILOG, MULTILOG, PARSCALE, TESTFACT) Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum. Hambleton, R.K. & Swaminathan, H. (1985). Item response theory. Boston: Kluwer-Nijhoff. MacIntosh, R. & Hashim, S. (2003). Variance estimation for converting MIMIC model parameters to IRT parameters in DIF analysis. <u>Applied</u> Psychological Measurement, 27, 372-379. 207

	References (Continued)
	 Authén, B. & Lehman, J. (1985). Multiple-group IRT modeling: Applications to item bias analysis. Journal of Educational Statistics, 10, 133-142. (#15) Sakane, Y. & DeLeeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. <u>Psychometrika</u>, 52, 393-408.
F	Factor Analysis
В	Bartholomew, D.J. (1987). <u>Latent variable models and factor analysis</u> . New York: Oxford University Press.
B	Bock, R.D., Gibbons, R., & Muraki, E.J. (1988). Full information item factor analysis. <u>Applied Psychological Measurement</u> , 12, 261-280.
В	Blafield, E. (1980). Clustering of observations from finite mixtures with structural information. Unpublished doctoral dissertation, Jyvaskyla studies in computer science, economics, and statistics, Jyvaskyla, Finland.
B	Browne, M.W. (2001). An overview of analytic rotation in exploratory factor analysis. <u>Multivariate Behavioral Research</u> , 36, 111-150
F	Flora, D.B. & Curran P.J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. <u>Psychological Methods</u> , 9, 466-491.

	References (Continued)
1	Lord, F.M. & Novick, M.R. (1968). <u>Statistical theories of mental test scores</u> . Reading, Mass.: Addison-Wesley Publishing Co.
I	Millsap, R.E. & Yun-Tien, J. (2004). Assessing factorial invariance in ordered- categorical measures. <u>Multivariate Behavioral Research</u> , 39, 479-515.
I	Mislevy, R. (1986). Recent developments in the factor analysis of categorical variables. Journal of Educational Statistics, 11, 3-31.
ľ	Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. <u>Psychometrika</u> , 43, 551-560. (#3)
I	Muthén, B. (1989). Dichotomous factor analysis of symptom data. In Eaton & Bohrnstedt (Eds.), Latent variable models for dichotomous outcomes: Analysis of data from the Epidemiological Catchment Area program (pp. 19-65), a special issue of <u>Sociological Methods & Research</u> , 18, 19-65. (#21)
ľ	Muthén, B. (1989). Latent variable modeling in heterogeneous populations. <u>Psychometrika</u> , 54, 557-585. (#24)
I	Muthén, B. (1996). Psychometric evaluation of diagnostic criteria: Application to a two-dimensional model of alcohol abuse and dependence. <u>Drug and</u> <u>Alcohol Dependence</u> , 41, 101-112. (#66)
	210

