Mplus Short Courses
 Topic 2

Regression Analysis, Exploratory Factor Analysis, Confirmatory Factor Analysis, And Structural Equation Modeling For Categorical, Censored, And Count Outcomes

Linda K. Muthén
Bengt Muthén

Copyright © 2009 Muthén \& Muthén
www.statmodel.com
08/06/2009

Table Of Contents

General Latent Variable Modeling Framework	7
Analysis With Categorical Observed And Latent Variables	11
Categorical Observed Variables	13
Logit And Probit Regression	18
British Coal Miner Example	25
Logistic Regression And Adjusted Odds Ratios	39
Latent Response Variable Formulation Versus Probability Curve Formulation	46
Ordered Polytomous Regression	49
Alcohol Consumption Example	55
Unordered Polytomous Regression	58
Censored Regression	65
Count Regression	67
Poisson Regression	68
Negative Binomial Regression	70
Path Analysis With Categorical Outcomes	73
Occupational Destination Example	81

Table Of Contents (Continued)

Categorical Observed And Continuous Latent Variables 86
Item Response Theory 89
Exploratory Factor Analysis 113
Practical Issues 129
CFA With Covariates 142
Antisocial Behavior Example 147
Multiple Group Analysis With Categorical Outcomes 167
Exploratory Structural Equation Modeling 172
Multi-Group EFA Of Male And Female Aggressive Behavior 185
Technical Issues For Weighted Least Squares Estimation 199
References 206

Mplus Background

- Inefficient dissemination of statistical methods:
- Many good methods contributions from biostatistics, psychometrics, etc are underutilized in practice
- Fragmented presentation of methods:
- Technical descriptions in many different journals
- Many different pieces of limited software
- Mplus: Integration of methods in one framework
- Easy to use: Simple, non-technical language, graphics
- Powerful: General modeling capabilities
- Mplus versions
- V1: November 1998 - V2: February 2001
- V3: March 2004
- V4: February 2006
- V5: November 2007 - V5.2: November 2008
- Mplus team: Linda \& Bengt Muthén, Thuy Nguyen, Tihomir Asparouhov, Michelle Conn, Jean Maninger

Statistical Analysis With Latent Variables A General Modeling Framework

Statistical Concepts Captured By Latent Variables

Continuous Latent Variables

- Measurement errors
- Factors
- Random effects
- Frailties, liabilities
- Variance components
- Missing data

Categorical Latent Variables

- Latent classes
- Clusters
- Finite mixtures
- Missing data

Statistical Analysis With Latent Variables A General Modeling Framework (Continued)

Models That Use Latent Variables

Continuous Latent Variables

- Factor analysis models
- Structural equation models
- Growth curve models
- Multilevel models

Categorical Latent Variables

- Latent class models
- Mixture models
- Discrete-time survival models
- Missing data models

Mplus integrates the statistical concepts captured by latent variables into a general modeling framework that includes not only all of the models listed above but also combinations and extensions of these models.

General Latent Variable Modeling Framework

- Observed variables
x background variables (no model structure)
y continuous and censored outcome variables
u categorical (dichotomous, ordinal, nominal) and count outcome variables
- Latent variables
f continuous variables
- interactions among f's
c categorical variables

Mplus

Several programs in one

- Exploratory factor analysis
- Structural equation modeling
- Item response theory analysis
- Latent class analysis
- Latent transition analysis
- Survival analysis
- Growth modeling
- Multilevel analysis
- Complex survey data analysis
- Monte Carlo simulation

Fully integrated in the general latent variable framework

Overview Of Mplus Courses

- Topic 1. August 20, 2009, Johns Hopkins University: Introductory - advanced factor analysis and structural equation modeling with continuous outcomes
- Topic 2. August 21, 2009, Johns Hopkins University: Introductory - advanced regression analysis, IRT, factor analysis and structural equation modeling with categorical, censored, and count outcomes
- Topic 3. March, 2010, Johns Hopkins University: Introductory and intermediate growth modeling
- Topic 4. March, 2010, Johns Hopkins University: Advanced growth modeling, survival analysis, and missing data analysis

Overview Of Mplus Courses (Continued)

- Topic 5. August, 2010, Johns Hopkins University: Categorical latent variable modeling with cross-sectional data
- Topic 6. August 2010, Johns Hopkins University: Categorical latent variable modeling with longitudinal data
- Topic 7. March, 2011, Johns Hopkins University: Multilevel modeling of cross-sectional data
- Topic 8. March 2011, Johns Hopkins University: Multilevel modeling of longitudinal data

Analysis With Categorical Observed And Latent Variables

Categorical Variable Modeling

- Categorical observed variables
- Categorical observed variables, continuous latent variables
- Categorical observed variables, categorical latent variables

Categorical Observed Variables

Two Examples

Alcohol Dependence And Gender In The NLSY

	n	Not Dep	Dep	Prop	Odds (Prop/(1-Prop))
Female	4573	4317	256	0.056	0.059
Male	4603	3904	699	0.152	0.179
	9176	8221	955		

Odds Ratio $=0.179 / 0.059=3.019$
Example wording: Males are three times more likely than females to be alcohol dependent.

Colds And Vitamin C

	n	No Cold	Cold	Prop	Odds
Placebo	140	109	31	0.221	0.284
Vitamin C	139	122	17	0.122	0.139

Categorical Outcomes: Probability Concepts

- Probabilities:

Alcohol Example

- Joint: P (u, x)
- Marginal: P (u)
- Conditional: $\mathrm{P}(u \mid x)$

Joint
Conditional

	Not Dep	Dep	
Female	.47	.03	.06
Male	.43	.08	.15
Marginal	.90	.11	

- Distributions:
- Bernoulli: $u=0 / 1 ; E(u)=\pi$
- Binomial: sum or prop. $(u=1), E($ prop. $)=\pi$, $V($ prop. $)=\pi(1-\pi) / n, \hat{\pi}=$ prop
- Multinomial (\#parameters = \#cells - 1)
- Independent multinomial (product multinomial)
- Poisson

Categorical Outcomes: Probability Concepts (Continued)

- Cross-product ratio (odds ratio):
$\pi_{00} \pi_{11} /\left(\pi_{01} \pi_{10}\right)=\frac{\pi_{11} / \pi_{10}}{\pi_{01} / \pi_{00}}=$

	$u=0$	$u=1$
$x=0$	π_{00}	π_{01}
$x=1$	π_{10}	π_{11}

$P(u=1, x=1) / P(u=0, x=1) / P(u=1, x=0) / P(u=0, x=0)$

- Tests:
- Log odds ratio (approx. normal)
- Test of proportions (approx. normal)
- Pearson $\chi^{2}=\Sigma(O-E)^{2} / E$ (e.g. independence)
- Likelihood Ratio $\chi^{2}=2 \Sigma O \log (O / E)$

Further Readings On Categorical Variable Analysis

Agresti, A. (2002). Categorical data analysis. Second edition. New York: John Wiley \& Sons.
Agresti, A. (1996). An introduction to categorical data analysis. New York: Wiley.
Hosmer, D. W. \& Lemeshow, S. (2000). Applied logistic regression. Second edition. New York: John Wiley \& Sons.
Long, S. (1997). Regression models for categorical and limited dependent variables. Thousand Oaks: Sage.

Logit And Probit Regression

- Dichotomous outcome
- Adjusted log odds
- Ordered, polytomous outcome
- Unordered, polytomous outcome
- Multivariate categorical outcomes

Logs

Logit

Logistic Distribution Function

Logistic Density

Binary Outcome: Logistic Regression

The logistic function $P(u=1 \mid x)=\mathrm{F}\left(\beta_{0}+\beta_{1} x\right)=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x\right)}}$.

Logistic density: $\delta \mathrm{F} / \delta z=\mathrm{F}(1-\mathrm{F})=\mathrm{f}\left(\mathrm{z} ; 0, \pi^{2} / 3\right)$

Binary Outcome: Probit Regression

Probit regression considers

$$
\begin{equation*}
P(u=1 \mid x)=\Phi\left(\beta_{0}+\beta_{1} x\right), \tag{60}
\end{equation*}
$$

where Φ is the standard normal distribution function. Using the inverse normal function Φ^{-1}, gives a linear probit equation

$$
\begin{equation*}
\Phi^{-1}[\mathrm{P}(u=1 \mid x)]=\beta_{0}+\beta_{1} x . \tag{61}
\end{equation*}
$$

Interpreting Logit And Probit Coefficients

- Sign and significance
- Odds and odds ratios
- Probabilities

Logistic Regression And Log Odds

Odds $(u=1 \mid x)=P(u=1 \mid x) / P(u=0 \mid x)$

$$
=P(u=1 \mid x) /(1-P(u=1 \mid x))
$$

The logistic function

$$
P(u=1 \mid x)=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x\right)}}
$$

gives a \log odds linear in x,

$$
\begin{aligned}
\operatorname{logit}= & \log [\operatorname{odds}(u=1 \mid x)]=\log [P(u=1 \mid x) /(1-P(u=1 \mid x))] \\
& =\log \left[\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x\right)}} /\left(1-\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x\right)}}\right)\right] \\
& =\log \left[\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x\right)}} * \frac{1+e^{-\left(\beta_{0}+\beta_{1} x\right)}}{e^{-\left(\beta_{0}+\beta_{1} x\right)}}\right] \\
& =\log \left[e^{\left(\beta_{0}+\beta_{1} x\right)}\right]=\beta_{0}+\beta_{1} x
\end{aligned}
$$

Logistic Regression And Log Odds (Continued)

- $\log i t=\log$ odds $=\beta_{0}+\beta_{1} x$
- When x changes one unit, the logit (log odds) changes β_{1} units
- When x changes one unit, the odds changes $e^{\beta_{1}}$ units

British Coal Miner Data (Continued)						
Age (x)	N	$\stackrel{N}{N e s}$	$\begin{gathered} \text { Proportion } \\ \text { Yes } \end{gathered}$	OLS Estimated Probability	Logit Estimated Probability	Probit Estimated Probability
22	1,952	16	0.008	-0.053	0.013	0.009
27	1,791	32	0.018	-0.004	0.022	0.018
32	2,113	73	0.035	0.045	0.036	0.034
37	2,783	169	0.061	0.094	0.059	0.060
42	2.274	223	0.098	0.143	0.095	0.100
47	2,393	357	0.149	0.192	0.148	0.156
52	2,090	521	0.249	0.241	0.225	0.231
57	1,750	558	0.319	0.290	0.327	0.322
62	1.136	478	0.421	0.339	0.448	0.425
	18,282	2,427	0.130			
SOURCE: Ashford \& Sowden (1970), Mu			Logit model: $\chi_{\text {LRT }}^{2}(7)=17.13(\mathrm{p}>0.01)$			
			Probit model: $\chi_{\text {LRT }}^{2}(7)=5.19$			

Coal Miner Data

x	u	w
22	0	1936
22	1	16
27	0	1759
27	1	32
32	0	2040
32	1	73
37	0	2614
37	1	169
42	0	2051
42	1	223
47	0	2036
47	1	357
52	0	1569
52	1	521
57	0	1192
57	1	558
62	0	658
62	1	478

Mplus Input For Categorical Outcomes

- Specifying dependent variables as categorical - use the CATEGORICAL option

CATEGORICAL ARE u1 u2 u3;

- Thresholds used instead of intercepts - only different in sign
- Referring to thresholds in the model - use $\$$ number added to a variable name - the number of thresholds is equal to the number of categories minus 1
u1\$1 refers to threshold 1 of u1 u1 $\$ 2$ refers to threshold 2 of u1

Mplus Input For Categorical Outcomes (Continued)

u2\$1 refers to threshold 1 of u2
$u 2 \$ 2$ refers to threshold 2 of u2
u $2 \$ 3$ refers to threshold 3 of u2
u3 $\$ 1$ refers to threshold 1 of u3

- Referring to scale factors - use $\}$ to refer to scale factors
\{u1@1 u2 u3\};

Input For Logistic Regression Of Coal Miner Data

TITLE: Logistic regression of coal miner data
DATA: FILE = coalminer.dat;
VARIABLE: NAMES = x u w;
CATEGORICAL $=u ;$
FREQWEIGHT = w ;
DEFINE: $\quad \mathrm{x}=\mathrm{x} / 10$;
ANALYSIS: ESTIMATOR = ML;
MODEL: u ON x;
OUTPUT: TECH1 SAMPSTAT STANDARDIZED;

Input For Probit Regression Of Coal Miner Data

TITLE: Probit regression of coal miner data
DATA: FILE = coalminer.dat;
VARIABLE: NAMES = x u w;
CATEGORICAL $=u$; FREQWEIGHT = w;
DEFINE: $\quad \mathrm{x}=\mathrm{x} / 10$;
MODEL: u ON x;
OUTPUT: TECH1 SAMPSTAT STANDARDIZED;

Output Excerpts Logistic Regression Of Coal Miner Data

Model Results

	Estimates	S.E.	Est./S.E.	Std	StdYX
U ON					
X	1.025	0.025	41.758	1.025	0.556
Thresholds					
U\$1	6.564	0.124	52.873		

Odds: $e^{1.025}=2.79$
As x increases 1 unit (10 years), the odds of breathlessness increases 2.79

Estimated Logistic Regression Probabilities For Coal Miner Data

$$
P(u=1 \mid x)=\frac{1}{1+e^{-L}},
$$

where $L=-6.564+1.025 \times x$
For $x=6.2$ (age 62)
$L=-6.564+1.025 \times 6.2=-0.209$
$\mathrm{P}(\mathrm{u}=1 \mid$ age 62$)=\frac{1}{1+e^{0.209}}=0.448$

Output Excerpts Probit Regression Of Coal Miner Data

Model Results

	Estimates	S.E.	Est./S.E.	Std	StdYX
U ON					
X	0.548	0.013	43.075	0.548	0.545
Thresholds					
U\$1	3.581	0.062	57.866	3.581	3.581

R-Square

Observed
Residual Variance
1.000

R-Square
0.297

Estimated Probit Regression Probabilities For Coal Miner Data

$\mathrm{P}(u=1 \mid x=62)=\Phi\left(\widehat{\beta}_{0}+\widehat{\beta}_{1} x\right)$
$=1-\Phi\left(\hat{\tau}-\widehat{\beta}_{1} x\right)$
$=\Phi\left(-\hat{\tau}+\widehat{\beta}_{1} x\right)$.
$\Phi(-3.581+0.548 * 6.2)=\Phi(-0.1834) \approx 0.427$
Note: $\operatorname{logit} \hat{\beta} \approx \operatorname{probit} \widehat{\beta} * \mathrm{c}$
where $\mathrm{c}=\sqrt{\pi^{2} / 3}=1.81$

Categorical Outcomes: Logit And Probit Regression

 With One Binary And One Continuous X$$
\begin{equation*}
P\left(u=1 \mid x_{1}, x_{2}\right)=F\left[\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}\right], \tag{22}
\end{equation*}
$$

$P\left(u=0 \mid x_{1}, x_{2}\right)=1-P\left[u=1 \mid x_{1}, x_{2}\right]$, where $F[z]$ is either the standard normal $(\Phi[z])$ or logistic $\left(1 /\left[1+e^{-z}\right]\right)$ distribution function.

Example: Lung cancer and smoking among coal miners
$u \quad$ lung cancer $(u=1)$ or not $(u=0)$
$x_{1} \quad$ smoker $\left(x_{1}=1\right)$, non-smoker $\left(x_{1}=0\right)$
x_{2} years spent in coal mine

Categorical Outcomes: Logit And Probit Regression

 With One Binary And One Continuous X$$
\begin{equation*}
P\left(u=1 \mid x_{1}, x_{2}\right)=F\left[\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}\right], \tag{22}
\end{equation*}
$$

Logistic Regression And Adjusted Odds Ratios

Binary u variable regression on a binary x_{1} variable and a continuous x_{2} variable:

$$
\begin{equation*}
P\left(u=1 \mid x_{1}, x_{2}\right)=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}\right)}}, \tag{62}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\log \text { odds }=\operatorname{logit}\left[P\left(u=1 \mid x_{1}, x_{2}\right)\right]=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2} . \tag{63}
\end{equation*}
$$

This gives
$\log \operatorname{odds}_{\left\{x_{1}=0\right\}}=\operatorname{logit}\left[P\left(u=1 \mid x_{1}=0, x_{2}\right)\right]=\beta_{0}+\beta_{2} x_{2}$,
and
$\log \operatorname{odds}_{\left\{x_{1}=1\right\}}=\operatorname{logit}\left[P\left(u=1 \mid x_{1}=1, x_{2}\right)\right]=\beta_{0}+\beta_{1}+\beta_{2} x_{2}$.

Logistic Regression And Adjusted Odds Ratios (Continued)

The log odds ratio for u and x_{1} adjusted for x_{2} is
$\log O R=\log \left[\frac{o d d s_{1}}{\text { odds }_{0}}\right]=\log$ odds $s_{1}-\log$ odds $s_{0}=\beta_{1}$
so that $O R=\exp \left(\beta_{1}\right)$, constant for all values of x_{2}. If an interaction term for x_{1} and x_{2} is introduced, the constancy of the OR no longer holds.

Example wording:
"The odds of lung cancer adjusted for years is OR times higher for smokers than for nonsmokers"
"The odds ratio adjusted for years is OR"

Analysis Of NLSY Data: Odds Ratios For Alcohol Dependence And Gender

Adjusting for Age First Started Drinking (n=9176)

Age 1st	Observed Frequencies, Proportions, and Odds Ratios				OR
	Frequency	Male	Proportion Dependent		
	Female		Female	Male	
12 or $<$	85	223	. 071	. 233	3.98
13	105	180	. 133	. 256	2.24
14	198	308	. 086	. 253	3.60
15	331	534	. 106	. 185	1.91
16	800	990	. 079	. 152	2.09
17	725	777	. 070	. 170	2.72
18 or $>$	2329	1591	. 030	. 089	3.16

Analysis Of NLSY Data: Odds Ratios For Alcohol Dependence And Gender (Continued)

	Estimated Probabilities and Odds Ratios					
	Logit					
Age 1st	Female	Male	OR	Female	Male	OR
12 or <	. 141	. 304	2.66	. 152	. 298	2.37
13	. 117	. 260	2.66	. 125	. 257	2.42
14	. 096	. 220	2.66	. 102	. 220	2.48
15	. 078	. 185	2.66	. 082	. 186	2.55
16	. 064	. 154	2.66	. 065	. 155	2.63
17	. 052	. 127	2.66	. 051	. 128	2.72
18 or $>$. 042	. 105	2.66	. 040	. 104	2.82

Logit model: $\chi_{\mathrm{p}}^{2}(12)=54.2$
Probit model: $\chi_{p}^{2}(12)=46.8$

Analysis Of NLSY Data: Odds Ratios For Alcohol Dependence And Gender (Continued)

Dependence on Gender and Age First Started Drinking

	Logit Regression				Probit Regression				Unstd.
	Unstd. Coeff.	s.e.	t	Std.	Unstd. Coeff.	s.e.	t	Std.	Rescaled To Logit
Intercept	0.84	. 32	2.6		-0.42	. 18	-2.4		
Male	0.98	. 08	12.7	0.51	0.50	. 04	13.1	0.48	0.91
Age 1st	-0.22	. 02	-11.6	-0.19	-0.12	. 01	-11.0	-0.19	-0.22
R^{2}	0.12				0.08				
$\mathrm{OR}=\mathrm{e}^{0.98}=2.66$					$\operatorname{logit} \beta \approx$ probit $\beta * \mathrm{c}$				
where $\mathrm{c}=\sqrt{\pi^{2} / 3}=1.81$									

NELS 88

Table 2.2 - Odds ratios of eighth-grade students in 1988 performing below basic levels of reading and mathematics in 1988 and dropping out of school, 1988 to 1990, by basic demographics

Variable	Below basic mathematics	Below basic reading	Dropped out
Sex	0.81^{*}		
Female vs. male	$0.73^{* *}$	0.92	
Race - ethnicity	0.82		
Asian vs. white	$2.09^{* *}$	$1.42^{* *}$	0.59
Hispanic vs. white	$2.23^{* *}$	$2.29^{* *}$	$2.01^{* *}$
Black vs. white	$2.43^{* *}$	$3.50^{* *}$	$2.23^{* *}$
Native American vs. white			$2.50^{* *}$
Socioeconomic status	$1.90^{* *}$	$1.91^{* *}$	
Low vs. middle	$0.46^{* *}$	$0.41^{* *}$	$3.95^{* *}$
High vs. middle		0.39^{*}	

SOURCE: U.S. Department of Education, National Center for Education Statistics, National Education Longitudinal Study of 1988 (NELS:88), "Base Year and First Follow-Up surveys.

NELS 88

Table 2.3 - Adjusted odds ratios of eighth-grade students in 1988 performing below basic levels of reading and mathematics in 1988 and dropping out of school, 1988 to 1990, by basic demographics

Variable	Below basic mathematics	Below basic reading	Dropped out
Sex	$0.77^{* *}$	$0.70^{* *}$	0.86
Female vs. male			
Race - ethnicity	0.84	$1.46^{* *}$	0.60
Asian vs. white	$1.60^{* *}$	$1.74^{* *}$	1.12
Hispanic vs. white	$1.77^{* *}$	$2.09^{* *}$	1.45
Black vs. white	$2.02^{* *}$	$2.87^{* *}$	1.64
Native American vs. white			
Socioeconomic status	$1.68^{* *}$	$1.66^{* *}$	$3.74^{* *}$
Low vs. middle	$0.49^{* *}$	$0.44^{* *}$	0.41^{*}
High vs. middle			

Latent Response Variable Formulation Versus Probability Curve Formulation

Probability curve formulation in the binary u case:

$$
\begin{equation*}
P(u=1 \mid x)=F\left(\beta_{0}+\beta_{1} x\right), \tag{67}
\end{equation*}
$$

where F is the standard normal or logistic distribution function.
Latent response variable formulation defines a threshold τ on a continuous u^{*} variable so that $u=1$ is observed when u^{*} exceeds τ while otherwise $u=0$ is observed,

$$
\begin{equation*}
u^{*}=\gamma x+\delta \tag{68}
\end{equation*}
$$

where $\delta \sim N(0, V(\delta))$.

Latent Response Variable Formulation Versus Probability Curve Formulation (Continued)

$P(u=1 \mid x)=P\left(u^{*}>\tau \mid x\right)=1-P\left(u^{*} \leq \tau \mid x\right)=$
$=1-\Phi\left[(\tau-\gamma x) V(\delta)^{-1 / 2}\right]=\Phi\left[(-\tau+\gamma x) V(\delta)^{-1 / 2}\right]$.
Standardizing to $V(\delta)=1$ this defines a probit model with intercept $\left(\beta_{0}\right)=-\tau$ and slope $\left(\beta_{1}\right)=\gamma$.

Alternatively, a logistic density may be assumed for δ,

$$
\begin{equation*}
f\left[\delta ; 0, \pi^{2} / 3\right]=d F / d \delta=F(1-F) \tag{71}
\end{equation*}
$$

where in this case F is the logistic distribution function $1 /\left(1+e^{-\delta}\right)$.

Latent Response Variable Formulation: \mathbf{R}^{2}, Standardization, And Effects On Probabilities

$$
u^{*}=\gamma x+\delta
$$

- $\mathbf{R}^{2}\left(u^{*}\right)=\gamma^{2} V(x) /\left(\gamma^{2} V(x)+c\right)$,
where $c=1$ for probit and $\pi^{2} / 3$ for logit (McKelvey \& Zavoina, 1975)
- Standardized γ refers to the effect of x on u^{*},

$$
\begin{aligned}
\hat{\gamma}_{s} & =\hat{\gamma} \mathrm{SD}(x) / \mathrm{SD}\left(u^{*}\right), \\
\mathrm{SD}\left(u^{*}\right) & =\sqrt{\hat{\gamma}^{2} \mathrm{~V}(x)+\mathrm{c}} f_{1}{ }_{\mathrm{P}(\mathrm{u}=1 \mid \mathrm{x})}
\end{aligned}
$$

- Effect of x on $P(u=1)$ depends on x value

Modeling With An Ordered Polytomous u Outcome

u polytomous with 3 categories
(1) $\uparrow P(u \mid x)$

(2) $\uparrow \mathrm{P}(\mathrm{u} \mid \mathrm{x})$

(3)

Proportional odds model (Agresti, 2002)

Ordered Polytomous Outcome Using A Latent Response Variable Formulation

Latent response variable regression:
$u_{i}^{*}=\gamma x_{i}+\delta_{i}$

Ordered Polytomous Outcome Using A Latent Response Variable Formulation (Continued)

A categorical variable u with C ordered categories,

$$
\begin{equation*}
u=c, \text { if } \tau_{j, c}<u^{*} \leq \tau_{j, c+1} \tag{72}
\end{equation*}
$$

for categories $c=0,1,2, \ldots, C-1$ and $\tau_{0}=-\infty, \tau_{C}=\infty$.
Example: a single x variable and a u variable with three categories.
Two threshold parameters, τ_{1} and τ_{2}.
Probit:

$$
\begin{array}{r}
u^{*}=\gamma x+\delta, \text { with } \delta \text { normal } \\
P(u=0 \mid x)=\Phi\left(\tau_{1}-\gamma x\right), \\
P(u=1 \mid x)=\Phi\left(\tau_{2}-\gamma x\right)-\Phi\left(\tau_{1}-\gamma x\right), \\
P(u=2 \mid x)=1-\Phi\left(\tau_{2}-\gamma x\right)=\Phi\left(-\tau_{2}+\gamma x\right) . \tag{76}
\end{array}
$$

Ordered Polytomous Outcome Using A Latent Response Variable Formulation (Continued)

$$
\begin{align*}
P(u=1 \text { or } 2 \mid x)=P(u=1 \mid & x)+P(u=2 \mid x) \tag{77}\\
& =1-\Phi\left(\tau_{1}-\gamma x\right) \tag{78}\\
& =\Phi\left(-\tau_{1}+\gamma x\right) \tag{79}\\
= & 1-P(u=0 \mid x), \tag{80}
\end{align*}
$$

that is, a linear probit for,

$$
\begin{array}{r}
P(u=2 \mid x)=\Phi\left(-\tau_{2}+\gamma x\right) \\
P(u=1 \text { or } 2 \mid x)=\Phi\left(-\tau_{1}+\gamma x\right) . \tag{82}
\end{array}
$$

Note: same slope γ, so parallel probability curves

Logit For Ordered Categorical Outcome

$$
\begin{array}{r}
P(u=2 \mid x)=\frac{1}{1+e^{-\left(\beta_{2}+\beta x\right)}}, \\
P(u=1 \text { or } 2 \mid x)=\frac{1}{1+e^{-\left(\beta_{1}+\beta x\right)}} . \tag{84}
\end{array}
$$

Log odds for each of these two events is a linear expression,
$\operatorname{logit}[P(u=2 \mid x)]=$
$=\log [P(u=2 \mid x) /(1-P(u=2 \mid x))]=\beta_{2}+\beta x$,
$\operatorname{logit}[P(u=1$ or $2 \mid x)]=$
$=\log [P(u=1$ or $2 \mid x) /(1-P(u=1$ or $2 \mid x))]=\beta_{1}+\beta x$.
Note: same slope β, so parallel probability curves

Logit For Ordered Categorical Outcome (Continued)

When x is a $0 / 1$ variable,

$$
\begin{array}{r}
\operatorname{logit}[P(u=2 \mid x=1)]-\operatorname{logit}[P(u=2 \mid x=0)]=\beta \\
\operatorname{logit}[P(u=1 \text { or } 2 \mid x=1)]-\operatorname{logit}[P(u=1 \text { or } 2 \mid x=0)]=\beta \tag{90}
\end{array}
$$

showing that the ordered polytomous logistic regression model has constant odds ratios for these different outcomes.

Alcohol Consumption: Ordered Polytomous Regression

u : "On the days that you drink, how many drinks do you have per day, on the average?"

Ordinal u:
("Alameda Scoring")
0 non-drinker
1 1-2 drinks per day
2 3-4 drinks per day
35 or more drinks per day
x's: Age: whole years $20-64$
Income: $1 \leq \$ 4,999$
2 \$5,000 - \$9,999
3 \$10,000 - \$14,999
4 \$15,000 - \$24,999
$5 \geq \$ 25,000$
$\mathrm{N}=713$ Males with regular physical activity levels
Source: Golden (1982), Muthén (1993)

Alcohol Consumption: Ordered Polytomous Regression (Continued)

$$
\begin{align*}
& P(u=0 \mid x)=\Phi\left(\tau_{1}-\gamma^{\prime} x\right) \tag{11}\\
& P(u=1 \mid x)=\Phi\left(\tau_{2}-\gamma^{\prime} x\right)-\Phi\left(\tau_{1}-\gamma^{\prime} x\right), \\
& P(u=2 \mid x)=\Phi\left(\tau_{3}-\gamma^{\prime} x\right)-\Phi\left(\tau_{2}-\gamma^{\prime} x\right), \\
& P(u=3 \mid x)=\Phi\left(-\tau_{3}+\gamma^{\prime} x\right) .
\end{align*}
$$

Ordered u gives a single slope

Alcohol Consumption: Ordered Polytomous Regression (Continued)

Polytomous Outcome: Unordered Case

Multinomial logistic regression:

$$
\begin{equation*}
P\left(u_{i}=c \mid x_{i}\right)=\frac{e^{\beta_{0 \mathrm{c}}+\beta_{1 \mathrm{c}} x_{\mathrm{i}}}}{\sum_{k=1}^{K} e^{\beta_{0 \mathrm{k}}+\beta_{1 \mathrm{k}} x_{\mathrm{i}}}}, \tag{91}
\end{equation*}
$$

for $c=1,2, \ldots, K$, where we standardize to

$$
\begin{align*}
& \beta_{0 K}=0, \tag{92}\\
& \beta_{1 K}=0, \tag{93}
\end{align*}
$$

which gives the log odds

$$
\begin{equation*}
\log \left[P\left(u_{i}=c \mid x_{i}\right) / P\left(u_{i}=K \mid x_{i}\right)\right]=\beta_{0 c}+\beta_{1 c} x_{i}, \tag{94}
\end{equation*}
$$

for $c=1,2, \ldots, K-1$.

Multinomial Logistic Regression Special Case Of K = 2

$$
\begin{aligned}
P\left(u_{i}=1 \mid x_{i}\right) & =\frac{e^{\beta_{01}+\beta_{11} x_{i}}}{e^{\beta_{01}+\beta_{11} x_{i}}+1} \\
& =\frac{e^{-\left(\beta_{01}+\beta_{11} x_{i}\right)}}{e^{-\left(\beta_{01}+\beta_{11} x_{i}\right)}} * \frac{e^{\beta_{01}+\beta_{11} x_{i}}}{e^{\beta_{01}+\beta_{11} x_{i}}+1} \\
& =\frac{1}{1+e^{-\left(\beta_{01}+\beta_{11} x_{i}\right)}}
\end{aligned}
$$

which is the standard logistic regression for a binary outcome.

Input For Multinomial Logistic Regression

```
TITLE: multinomial logistic regression
DATA: FILE = nlsy.dat;
VARIABLE: NAMES = u x1-x3;
    NOMINAL = u;
MODEL: u ON x1-x3;
```


Output Excerpts

 Multinomial Logistic Regression: 4 Categories Of ASB In The NLSYU\#1 ON
AGE94
MALE
BLACK
U\#2
AGE94
MALE
BLACK
U\#3
AGE94
MALE
BLACK
Intercepts
U\#1
U\#2
U\#3

Estimates S.E. Est./S.E.

-.285	.028	-10.045
2.578	.151	17.086
.158	.139	1.141
.069	.022	3.182
.187	.110	1.702
-.606	.139	-4.357
-.317	.028	-11.311
1.459	.101	14.431
.999	.117	8.513
-1.822	.174	-10.485
-.748	.103	-7.258
-.324	.125	-2.600

Estimated Probabilities For Multinomial Logistic Regression: 4 Categories Of ASB In The NLSY

Example 1: x 's = 0
exp probability $=\exp /$ sum
\log odds $(u=1)=-1.822$
\log odds $(u=2)=-0.748$
\log odds $(u=3)=-0.324$
\log odds $(u=4)=0$

0.162	0.069
0.473	0.201
0.723	0.307
1.0	0.424
$\overline{2.358}$	$\overline{1.001}$

Estimated Probabilities
 For Multinomial Logistic Regression: 4 Categories Of ASB In The NLSY (Continued)

Example 2: $\mathbf{x}=1,1,1$

Estimated Probabilities For Multinomial
Logistic Regression: 4 Categories Of ASB In The NLSY (Continued)

Censored-Normal (Tobit) Regression

$$
y^{*}=\pi_{0}+\pi x+\delta \quad V(\delta) \text { identifiable }
$$

Continuous - unlimited: $\quad y=y^{*}$
Continuous-censored: $\quad y=\left\{\begin{array}{l}c_{L}, \text { if } y^{*} \leq c_{L} \\ y^{*}, \text { if } c_{L}<y^{*}<c_{U} \\ c_{U}, \text { if } y^{*} \geq c_{U}\end{array}\right.$
Censoring from below, $c_{L}=0, c_{U}=\infty$:
$P(y>0 \mid x)=F\left(\frac{\pi_{0}+\pi x}{\sqrt{V(\delta)}}\right) \quad$ (Probit Regression)
$E(y \mid y>0, x)=\pi_{0}+\pi x+f / F \sqrt{V(\delta)}$

Classical Tobit

OLS v. Tobit Regression For Censored y

 But Normal y*

Regression With A Count Dependent Variable

Poisson Regression

A Poisson distribution for a count variable u_{i} has

$$
P\left(u_{\mathrm{i}}=r\right)=\frac{\lambda_{i}^{r} e^{-\lambda_{i}}}{r!}, \text { where } u_{\mathrm{i}}=0,1,2, \ldots
$$

Regression equation for the log rate:

$$
{ }^{\mathrm{e}} \log \lambda_{i}=\ln \lambda_{i}=\beta_{0}+\beta_{1} x_{i}
$$

Zero-Inflated Poisson (ZIP) Regression

A Poisson variable has mean $=$ variance .
Data often have variance $>$ mean due to preponderance of zeros.
$\pi=P$ (being in the zero class where only $u=0$ is seen)
$1-\pi=P$ (not being in the zero class with u following a Poisson distribution)

A mixture at zero:

$$
P(u=0)=\pi+(1-\pi) \underbrace{e^{-\lambda}}_{\text {Poisson part }}
$$

The ZIP model implies two regressions:

$$
\operatorname{logit}\left(\pi_{i}\right)=\gamma_{0}+\gamma_{1} x_{i},
$$

$$
\ln \lambda_{i}=\beta_{0}+\beta_{1} x_{i}
$$

Negative Binomial Regression

Unobserved heterogeneity ε_{i} is added to the Poisson model

$$
\ln \lambda_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}, \text { where } \exp (\varepsilon) \sim \Gamma
$$

Poisson assumes

$$
\begin{aligned}
& E\left(u_{i} \mid x_{i}\right)=\lambda_{i} \\
& V\left(u_{i} \mid x_{i}\right)=\lambda_{i}
\end{aligned}
$$

Negative binomial assumes

$$
E\left(u_{i} \mid x_{i}\right)=\lambda_{i}
$$

$$
V\left(u_{i} \mid x_{i}\right)=\lambda_{i}\left(1+\lambda_{i} \alpha\right)
$$

NB with $\alpha=0$ gives Poisson. When the dispersion parameter $\alpha>0$, the NB model gives substantially higher probability for low counts and somewhat higher probability for high counts than Poisson.

Further variations are zero-inflated NB and zero-truncated NB (hurdle model or two-part model).

Mplus Specifications

Variable command	Type of dependent variable	Variance/ residual variance
CATEGORICAL $=\mathrm{u}$;	Binary, ordered polytomous	No
NOMINAL = u ;	Unordered polytomous (nominal)	No
CENSORED = y (b);	Censored normal (Tobit)	Yes
$=\mathrm{y}(\mathrm{a})$;	Censored from below or above	
COUNT = u; u p$)$;	Poisson	No
$=\mathrm{u}(\mathrm{i}) ; \mathrm{u}(\mathrm{pi})$;	Zero-inflated Poisson	No
$=\mathrm{u}(\mathrm{nb})$;	Negative binomial	
$=\mathrm{u}$ (nbi);	Zero-inflated negative binomial	
$=\mathrm{u}$ (nbt);	Zero-truncated negative binomial	
$=\mathrm{u}(\mathrm{nbh})$;	Negative binomial hurdle	

Further Readings On Censored and Count Regressions

Hilbe, J. M. (2007). Negative binomial regression. Cambridge, UK: Cambridge University Press.
Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34, 113.

Long, S. (1997). Regression models for categorical and limited dependent variables. Thousand Oaks: Sage.
Maddala, G.S. (1983). Limited-dependent and qualitative variables in econometrics. Cambridge: Cambridge University Press.
Tobin, J (1958). Estimation of relationships for limited dependent variables. Econometrica, 26, 24-36.

Path Analysis With Categorical Outcomes

Path Analysis With A Binary Outcome And A Continuous Mediator With Missing Data

Logistic Regression

Input For A Path Analysis With A Binary Outcome And A Continuous Mediator With Missing Data Using Monte Carlo Integration

TITLE: Path analysis with a binary outcome and a continuous mediator with missing data using Monte Carlo integration
DATA: FILE = lsaydropout.dat;
VARIABLE: NAMES ARE female mothed homeres math7 math10 expel arrest hisp black hsdrop expect lunch droptht7; MISSING = ALL(9999); CATEGORICAL = hsdrop;
ANALYSIS: ESTIMATOR = ML;
INTEGRATION = MONTECARLO(500);
MODEL: hsdrop ON female mothed homeres expect math7 math10 lunch expel arrest droptht7 hisp black; math10 ON female mothed homeres expect math7 lunch expel arrest droptht7 hisp black;
OUTPUT: PATTERNS STANDARDIZED TECH1 TECH8;

Output Excerpts Path Analysis With A Binary Outcome And A Continuous Mediator With Missing Data Using Monte Carlo Integration

Output Excerpts Path Analysis With A Binary Outcome And A Continuous Mediator With Missing Data Using Monte Carlo Integration (Continued)

Tests Of Model Fit

Loglikelihood

H0 Value
Information Criteria

Number of Free Parameters	26
Akaike (AIC)	12698.350
Bayesian (BIC)	12846.604
Sample-Size Adjusted BIC	12763.999

-6323.175
12763.999

Output Excerpts Path Analysis With A Binary Outcome And A Continuous Mediator With Missing Data Using Monte Carlo Integration (Continued)

Model Results

	Estimates	S.E. Est./S.E.		Std	StdYX
HSDROP ON					
FEMALE	0.336	0.167	2.012	0.336	0.080
MOTHED	-0.244	0.101	-2.421	-0.244	-0.117
HOMERES	-0.091	0.054	-1.699	-0.091	-0.072
EXPECT	-0.225	0.063	-3.593	-0.225	-0.147
MATH7	-0.012	0.015	-0.831	-0.012	-0.058
MATH10	-0.031	0.011	-2.816	-0.031	-0.201
LUNCH	0.005	0.004	1.456	0.005	-0.053
EXPEL	1.010	0.216	4.669	1.010	0.129
ARREST	0.033	0.314	0.105	0.033	0.003
DROPTHT7	0.679	0.272	2.499	0.679	0.067
HISP	-0.145	0.265	-0.548	-0.145	-0.019
BLACK	0.038	0.234	0.163	0.038	0.006

Output Excerpts Path Analysis With A Binary Outcome And A Continuous Mediator With Missing Data Using Monte Carlo Integration (Continued)

	Estimates	S.E. Est./S.E.	Std	StdYX	
MATH10 ON					
FEMALE	-0.973	0.410	-2.372	-0.973	-0.036
MOTHED	0.343	0.219	1.570	0.343	0.026
HOMERES	0.486	0.140	3.485	0.486	0.059
EXPECT	1.014	0.166	6.111	1.014	0.103
MATH7	0.928	0.023	39.509	0.928	0.687
LUNCH	-0.039	0.011	-3.450	-0.039	-0.059
EXPEL	-1.404	0.851	-1.650	-1.404	-0.028
ARREST	-3.337	1.093	-3.052	-3.337	-0.052
DROPTHT7	-1.077	1.070	-1.007	-1.077	-0.016
HISP	-0.644	0.744	-0.866	-0.644	-0.013
BLACK	-0.809	0.694	-1.165	-0.809	-0.019

Output Excerpts Path Analysis With A Binary

 Outcome And A Continuous Mediator With Missing Data Using Monte Carlo Integration (Continued)| | Estimates | S.E. | Est./S.E. | Std | StdYX |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Intercepts | | | | | |
| MATH10 | 10.941 | 1.269 | 8.621 | 10.941 | 0.809 |
| Thresholds | | | | | |
| HSDROP\$1 | -1.207 | 0.521 | -2.319 | | |
| Residual Variances | | | | | |
| MATH10 | 65.128 | 2.280 | 28.571 | 65.128 | 0.356 |
| Observed | | | | | |
| Variable R-Square | | | | | |
| HSDROP | 0.255 | | | | |
| MATH10 | 0.644 | | | | |

Path Analysis Of Occupational Destination

Figure 3: Structural Modeling of the Occupational Destination of Scientist or Engineer, Model 1

Reference: Xie (1989)
Data source: 1962 OCG Survey. The sample size is 14,401 .
V: Father's Education. X: Father's Occupation (SEI)

Path Analysis Of Occupational Destination (Continued)

Table 2. Descriptive Statistics of Discrete Dependent Variables

Variable	Code	Meaning	Percent
S: Current Occupation	0	Non-scientific/engineering	96.4
	1	Scientific/engineering	3.6
F: First Job	0	Non-scientific/engineering	98.3
	1	Scientific/engineering	1.7
E: Education	0	$0-7$ years	13.4
	1	$8-11$ years	32.6
	2	12 years	29.0
	3	13 and more years	25.0

Differences Between Weighted Least Squares And Maximum Likelihood Model Estimation For Categorical Outcomes In Mplus

- Probit versus logistic regression
- Weighted least squares estimates probit regressions
- Maximum likelihood estimates logistic or probit regressions
- Modeling with underlying continuous variables versus observed categorical variables for categorical outcomes that are mediating variables
- Weighted least squares uses underlying continuous variables
- Maximum likelihood uses observed categorical outcomes

Differences Between Weighted Least Squares And Maximum Likelihood Model Estimation For Categorical Outcomes In Mplus (Continued)

- Delta versus Theta parameterization for weighted least squares
- Equivalent in most cases
- Theta parameterization needed for models where categorical outcomes are predicted by categorical dependent variables while predicting other dependent variables
- Missing data
- Weighted least squares allows missingness predicted by covariates
- Maximum likelihood allows MAR
- Testing of nested models
- WLSMV uses DIFFTEST
- Maximum likelihood (ML, MLR) uses regular or special approaches

Further Readings On Path Analysis With Categorical Outcomes

MacKinnon, D.P., Lockwood, C.M., Brown, C.H., Wang, W., \& Hoffman, J.M. (2007). The intermediate endpoint effect in logistic and probit regression. Clinical Trials, 4, 499-513.
Xie, Y. (1989). Structural equation models for ordinal variables. Sociological Methods \& Research, 17, 325-352.

Categorical Observed And Continuous Latent Variables

Continuous Latent Variable Analysis With Categorical Outcomes

Model Identification

- EFA, CFA, and SEM the same as for continuous outcomes
- Multiple group and models for longitudinal data require invariance of measurement thresholds and loadings, requiring threshold structure (and scale factor parameters)

Interpretation

- Estimated coefficients - sign, significance most important
- Estimated coefficients can be converted to probabilities

Continuous Latent Variable Analysis With Categorical Outcomes (Continued)

Estimation

- Maximum likelihood computational burden increases significantly with number of factors
- Weighted least squares computation burden increases significantly with the number of variables

Model Fit

- Only chi-square studied
- Simulation studies needed for TLI, CFI, RMSEA, SRMR, and WRMR (see, however, Yu, 2002)
Item Response Theory

Item Response Theory

Latent trait modeling
Factor analysis with categorical outcomes

Item Response Theory (Continued)

IRT typically does not use the full SEM model

$$
\begin{align*}
& u_{i}^{*}=\boldsymbol{v}+\boldsymbol{\Lambda} \boldsymbol{\eta}_{i}\left(+\boldsymbol{K} \mathbf{x}_{i}\right)+\varepsilon_{i}, \tag{127}\\
& \boldsymbol{\eta}_{i}=\boldsymbol{\alpha}+\left(\boldsymbol{B} \boldsymbol{\eta}_{i}+\boldsymbol{\Gamma} \mathbf{x}_{i}\right)+\zeta_{i}, \tag{128}
\end{align*}
$$

and typically considers a single η (see, however, Bock, Gibbons, \& Muraki, 1988). Aims:

- Item parameter estimation (ML): Calibration
- Estimation of η values: Scoring
- Assessment of information function
- Test equating
- DIF analysis

IRT Models And Estimators In Mplus

- ML (full information estimation): Logit and probit links
- WLS (limited information estimation): Probit link

Translating Factor Analysis Parameters In Mplus To IRT Parameters

- IRT calls the continuous latent variable θ
- 2-parameter logistic IRT model uses

$$
P(u=l \mid \theta)=\frac{1}{1+e^{-D a(\theta-b)}}
$$

with $D=1.7$ to make a, b close to those of probit
a discrimination
b difficulty

- 2-parameter normal ogive IRT model uses

$$
P(u=l \mid \theta)=\Phi[a(\theta-b)]
$$

- Typically $\theta \sim N(0,1)$

Translating Factor Analysis Parameters To IRT Parameters (Continued)

- The Mplus factor analysis model uses

$$
\begin{gathered}
P(u=l \mid \eta)=\frac{1}{1+e^{-(-\tau+\lambda \eta)}} \quad \text { for logit } \\
P(u=l \mid \eta)=\Phi\left\lfloor(-\tau+\lambda \eta) \theta^{-1 / 2}\right\rfloor \text { for probit }
\end{gathered}
$$

where θ is the residual variance
The logit conversion is: The probit conversion is:
$a=\lambda \sqrt{\psi} / D$
$a=\lambda \sqrt{\psi} \theta^{-1 / 2}$
$b=(\tau-\lambda \alpha) / \lambda \sqrt{\psi}$
$b=(\tau-\lambda \alpha) / \lambda \sqrt{\psi}$

- Conversion automatically done in Mplus

Testing The Model Against Data

- Model fit to frequency tables. Overall test against data
- When the model contains only \mathbf{u}, summing over the cells,

$$
\begin{gather*}
\chi_{P}^{2}=\sum_{i} \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}}, \tag{82}\\
\chi_{L R}^{2}=2 \sum_{i} o_{i} \log o_{i} / e_{i} . \tag{83}
\end{gather*}
$$

A cell that has non-zero observed frequency and expected frequency less than .01 is not included in the χ^{2} computation as the default. With missing data on \mathbf{u}, the EM algorithm described in Little and Rubin (1987; chapter 9.3, pp. 181-185) is used to compute the estimated frequencies in the unrestricted multinomial model. In this case, a test of MCAR for the unrestricted model is also provided (Little \& Rubin, 1987, pp. 192-193).

- Model fit to univariate and bivariate frequency tables. Mplus TECH10

Antisocial Behavior (ASB) Data

The Antisocial Behavior (ASB) data were taken from the National Longitudinal Survey of Youth (NLSY) that is sponsored by the Bureau of Labor Statistics. These data are made available to the public by Ohio State University. The data were obtained as a multistage probability sample with oversampling of blacks, Hispanics, and economically disadvantaged non-blacks and nonHispanics.

Data for the analysis include 15 of the 17 antisocial behavior items that were collected in 1980 when respondents were between the ages of 16 and 23 and the background variables of age, gender and ethnicity. The ASB items assessed the frequency of various behaviors during the past year. A sample of 7,326 respondents has complete data on the antisocial behavior items and the background variables of age, gender, and ethnicity. Following is a list of the 15 items:

Antisocial Behavior (ASB) Data (Continued)

Damaged property	Use other drugs
Fighting	Sold marijuana
Shoplifting	Sold hard drugs
Stole $<\$ 50$	"Con" someone
Stole $>\$ 50$	Take auto
Seriously threaten	Broken into building
Intent to injure	Held stolen goods
Use marijuana	

These items were dichotomized $0 / 1$ with 0 representing never in the last year. An EFA suggested three factors: property offense, person offense, and drug offense.

Input For IRT Analysis Of Eight ASB Property Offense Items

TITLE: 2-parameter logistic IRT for 8 property offense items
DATA: FILE = asb.dat;
FORMAT = 34X 54F2.0;
VARIABLE: NAMES = property fight shoplift lt50 gt50 force threat injure pot drug soldpot solddrug con auto bldg goods gambling
dsm1-dsm22 sex black hisp single divorce dropout college onset f1 f2 f3 age94 cohort dep abuse;
USEVAR = property shoplift lt50 gt50 con auto bldg goods;
CATEGORICAL = property-goods;
ANALYSIS: ESTIMATOR = MLR;
MODEL: f BY property-goods*; f@1;
OUTPUT: TECH1 TECH8 TECH10;
PLOT: TYPE = PLOT3;

Output Excerpts IRT Analysis Of Eight ASB Property Offense Items

```
TESTS OF MODEL FIT
Loglikelihood
    H0 Value -19758.361
    H0 Scaling Correction Factor for MLR 0.996
Information Criteria
    Number of Free Parameters
        16
    Akaike (AIC)
    Bayesian (BIC)
    39548.722
    Bayesian (BIC) (30659.109
    Sample-Size Adjusted BIC 39608.265
        (n* = (n + 2) / 24)
Chi-Square Test of Model Fit for the Binary and Ordered
    Categorical (Ordinal) Outcomes
    Pearson Chi-Square
    Value 324.381
    Degrees of Freedom 239
    P-Value 0.0002

\section*{Output Excerpts IRT Analysis Of Eight ASB Property Offense Items (Continued)}
\begin{tabular}{|c|c|c|c|c|}
\hline Value & & \multicolumn{3}{|c|}{327.053} \\
\hline Degrees of & & \multicolumn{3}{|c|}{239} \\
\hline P-Value & & \multicolumn{3}{|c|}{0.0001} \\
\hline \multirow[t]{2}{*}{MODEL RESULTS} & & \multicolumn{3}{|r|}{Two-Tailed} \\
\hline & Estimate & S.E. & Est./S.E. & P-Value \\
\hline \(F \quad B Y\) & & & & \\
\hline PROPERTY & 2.032 & 0.084 & 24.060 & 0.000 \\
\hline SHOPLIFT & 1.712 & 0.068 & 25.115 & 0.000 \\
\hline LT50 & 1.850 & 0.076 & 24.411 & 0.000 \\
\hline GT50 & 2.472 & 0.139 & 17.773 & 0.000 \\
\hline CON & 1.180 & 0.051 & 23.148 & 0.000 \\
\hline AUTO & 1.383 & 0.070 & 19.702 & 0.000 \\
\hline BLDG & 2.741 & 0.151 & 18.119 & 0.000 \\
\hline GOODS & 2.472 & 0.116 & 21.339 & 0.000 \\
\hline
\end{tabular}

\section*{Output Excerpts IRT Analysis Of Eight ASB Property Offense Items (Continued)}
\begin{tabular}{lrrrr} 
& & & & Two-Tailed \\
Thresholds & Estimate & S.E. & Est./S.E. & P-Value \\
PROPERTY\$1 & 2.398 & 0.073 & 32.803 & 0.000 \\
SHOPLIFT\$1 & 1.529 & 0.049 & 31.125 & 0.000 \\
LT50\$1 & 2.252 & 0.065 & 34.509 & 0.000 \\
GT50\$1 & 5.054 & 0.195 & 25.912 & 0.000 \\
CON\$1 & 1.560 & 0.041 & 37.894 & 0.000 \\
AUTO\$1 & 3.144 & 0.079 & 39.948 & 0.000 \\
BLDG\$1 & 5.185 & 0.208 & 24.983 & 0.000 \\
GOODS\$1 & 3.691 & 0.126 & 29.316 & 0.000 \\
Variances & & & & \\
F & 1.000 & 0.000 & 999.000 & 999.000
\end{tabular}

\section*{Output Excerpts IRT Analysis Of Eight ASB Property Offense Items (Continued)}

IRT PARAMETERIZATION IN TWO-PARAMETER LOGISTIC METRIC WHERE THE LOGIT IS 1.7*DISCRIMINATION*(THETA - DIFFICULTY)
\begin{tabular}{lrrrr} 
Item Discriminations & & & & Two-Tailed
\end{tabular}

\section*{Output Excerpts IRT Analysis Of Eight ASB Property Offense Items (Continued)}
\begin{tabular}{crrrr} 
Item Difficulties & & & Two-Tailed \\
& Estimate & S.E. & Est./S.E. & P-Value \\
PROPERTY\$1 & 1.180 & 0.031 & 38.268 & 0.000 \\
SHOPLIFT\$1 & 0.893 & 0.029 & 31.309 & 0.000 \\
LT50\$1 & 1.217 & 0.033 & 36.604 & 0.000 \\
GT50\$1 & 2.044 & 0.053 & 38.588 & 0.000 \\
CON\$1 & 1.322 & 0.048 & 27.809 & 0.000 \\
AUT0\$1 & 2.274 & 0.081 & 28.232 & 0.000 \\
BLDG\$1 & 1.891 & 0.045 & 42.204 & 0.000 \\
GOODS\$1 & 1.493 & 0.035 & 43.045 & 0.000 \\
Variances & 1.000 & 0.000 & & 0.000
\end{tabular}

\section*{Output Excerpts IRT Analysis Of Eight ASB Property Offense Items (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
TECHNICAL 10 OUTPUT \\
MODEL FIT INFORMATION FOR THE LATENT CLASS INDICATOR M
\end{tabular}} \\
\hline \multicolumn{8}{|l|}{RESPONSE PATTERNS} \\
\hline No. & Pattern & No. & Pattern & No. & Pattern & No. & Pattern \\
\hline 1 & 00000000 & 2 & 10100000 & 3 & 00001101 & 4 & 00000010 \\
\hline 5 & 01100000 & 6 & 00001000 & 7 & 10001010 & 8 & 00010001 \\
\hline 9 & 10100010 & 10 & 11000000 & 11 & 10101110 & 12 & 11100010 \\
\hline 13 & 11010111 & 14 & 10000000 & 15 & 11110001 & 16 & 10000001 \\
\hline
\end{tabular}

\section*{Output Excerpts IRT Analysis Of Eight ASB Property Offense Items (Continued)}

RESPONSE PATTERN FREQUENCIES AND CHI-SQURE CONTRIBUTIONS
\begin{tabular}{rrrrrr} 
Response \\
Pattern & \multicolumn{2}{c}{ Frequency } & \begin{tabular}{r} 
Standardized \\
Residual
\end{tabular} & \begin{tabular}{r} 
Chi-square \\
Pearson \\
(z-score)
\end{tabular} & \begin{tabular}{r} 
Contribution \\
Loglikelihood
\end{tabular} \\
1 & 3581.00 & 3565.17 & 0.37 & 0.07 & 31.73 \\
2 & 60.00 & 57.05 & 3.12 & 0.39 & 0.15
\end{tabular}

\section*{Output Excerpts IRT Analysis Of Eight ASB Property Offense Items (Continued)}

BIVARIATE MODEL FIT INFORMATION
\begin{tabular}{lcrrr} 
& & \multicolumn{2}{c}{ Estimated Probabilities } \\
VARIABLE & VARIABLE & H1 & H0 & \begin{tabular}{r} 
Standardized \\
Residual \\
(z-score)
\end{tabular} \\
PROPERTY & SHOPLIFT & & & 0.157 \\
Category 1 & Category 1 & 0.656 & 0.655 & -0.176 \\
Category 1 & Category 2 & 0.159 & 0.160 & -0.285 \\
Category 2 & Category 1 & 0.080 & 0.081 & 0.222 \\
Category 2 & Category 2 & 0.105 & 0.104 & 0.153 \\
Bivariate Pearson Chi-Square & & & 0.077
\end{tabular}

\section*{Output Excerpts IRT Analysis Of Eight ASB Property Offense Items (Continued)}




\section*{Histogram For Estimated Factor Scores Using The Expected A Posteriori Method}

Prior \((\) normal \()+\) Data \(=\) Posterior


\section*{Further Readings On IRT}

Baker, F.B. \& Kim, S.H. (2004). Item response theory. Parameter estimation techniques. Second edition. New York: Marcel Dekker.
Bock, R.D. (1997). A brief history of item response theory. Educational Measurement: Issues and Practice, 16, 21-33.
du Toit, M. (2003). IRT from SSI. Lincolnwood, IL: Scientific Software International, Inc. (BILOG, MULTILOG, PARSCALE, TESTFACT)
Embretson, S. E., \& Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum.
Hambleton, R.K. \& Swaminathan, H. (1985). Item response theory. Boston: Kluwer-Nijhoff.
MacIntosh, R. \& Hashim, S. (2003). Variance estimation for converting MIMIC model parameters to IRT parameters in DIF analysis. Applied Psychological Measurement, 27, 372-379.
Muthén, B., Kao, Chih-Fen, \& Burstein, L. (1991). Instructional sensitivity in mathematics achievement test items: Applications of a new IRT-based detection technique. Journal of Educational Measurement, 28, 1-22. (\#35)

\section*{Further Readings On IRT (Continued)}

Muthén, B. \& Asparouhov, T. (2002). Latent variable analysis with categorical outcomes: Multiple-group and growth modeling in Mplus. Mplus Web Note \#4 (www.statmodel.com).
Takane, Y. \& DeLeeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393-408.

\section*{Exploratory Factor Analysis}

\section*{Exploratory Factor Analysis For Outcomes That Are Categorical, Censored, Counts}

Rotation of the factor loading matrix as with continuous outcomes
- Maximum-likelihood estimation
- Computationally feasible for only a few factors, but can handle many items
- Frequency table testing typically not useful
- Limited-information weighted least square estimation
- Computationally feasible for many factors, but not huge number of items
- Testing against bivariate tables
- Modification indices for residual correlations

\section*{Assumptions Behind ML And WLS}

Note that when assuming normal factors and using probit links, ML uses the same model as WLS. This is because normal factors and probit links result in multivariate normal \(u\) * variables. For model estimation, WLS uses the limited information of first- and second-order moments, thresholds and sample correlations of the multivariate normal \(u^{*}\) variables (tetrachoric, polychoric, and polyserial correlations), whereas ML uses full information from all moments of the data.

\section*{Latent Response Variable Formulation Of A Factor Model}


\section*{Latent Response Variable Correlations}


\section*{Sample Statistics With Categorical Outcomes And Weighted Least Squares Estimation}
- Types of \(u^{*}\) correlations (normality assumed)
- Both dichotomous - tetrachoric
- Both polytomous - polychoric
- One dichotomous, one continuous - biserial
- One polytomous, one continuous - polyserial
- Analysis choices
- Case A - no \(x\) variables - use \(u^{*}\) correlations
- Case \(\mathrm{B}-x\) variables present
- Use \(u^{*}\) correlations (full normality of \(u^{*}\) and \(x\) assumed)
- Use regression-based statistics (conditional normality of \(u^{*}\) given \(x\) assumed)
```

 Exploratory Factor Analysis
 Of 17 ASB Items Using WLSM
 TITLE: EFA using WLSM
 DATA: FILE = asb.dat;
FORMAT = 34X 54F2.0;
VARIABLE: NAMES = property fight shoplift lt50 gt50 force threat
injure pot drug
soldpot solddrug con auto bldg goods gambling
dsm1-dsm22 sex black hisp single divorce dropout
college onset f1 f2 f3
age94 cohort dep abuse;
USEVAR = property-gambling;
CATEGORICAL = property-gambling;
ANALYSIS: TYPE = EFA 1 5;
OUTPUT: MODINDICES;
PLOT: TYPE = PLOT3;

```

\section*{Eigenvalue Plot For Tetrachoric Correlations Among 17 ASB Items}


\section*{Output Excerpts 3- And 4-Factor WLSM EFA Of 17 ASB Items}

EXPLORATORY FACTOR ANALYSIS WITH 3 FACTOR(S):
TESTS OF MODEL FIT

Chi-Square Test of Model Fit
\begin{tabular}{lr} 
Value & \(584.356^{*}\) \\
Degrees of Freedom & 88 \\
P-Value & 0.0000
\end{tabular}
* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference tests. MLM, MLR and WLSM chi-square difference testing is described in the Mplus Technical Appendices at www.statmodel.com. See chi-square difference testing in the index of the Mplus User's Guide.

Chi-Square Test of Model Fit for the Baseline Model
\begin{tabular}{lr} 
Value & 53652.583 \\
Degrees of Freedom & 136 \\
P-Value & 0.0000
\end{tabular}

\section*{Output Excerpts 3- And 4-Factor WLSM EFA Of 17 ASB Items (Continued)}

CFI/TLI
\begin{tabular}{ll} 
CFI & 0.991 \\
TLI
\end{tabular}

Number of Free Parameters
48
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.028
SRMR (Standardized Root Mean Square Residual)
Value 0.045
MINIMUM ROTATION FUNCTION VALUE 0.08510

\section*{Output Excerpts 3- And 4-Factor WLSM EFA Of 17 ASB Items (Continued)}
\begin{tabular}{|c|c|c|c|}
\hline & 1 & 2 & 3 \\
\hline PROPERTY & 0.669 & 0.179 & -0.036 \\
\hline FIGHT & 0.266 & 0.548 & -0.121 \\
\hline SHOPLIFT & 0.600 & -0.028 & 0.185 \\
\hline LT50 & 0.818 & -0.185 & 0.046 \\
\hline GT50 & 0.807 & 0.003 & 0.016 \\
\hline FORCE & 0.379 & 0.344 & 0.000 \\
\hline THREAT & -0.008 & 0.821 & 0.049 \\
\hline inJure & -0.022 & 0.761 & 0.101 \\
\hline POT & -0.051 & 0.001 & 0.903 \\
\hline DRUG & -0.021 & -0.020 & 0.897 \\
\hline SOLDPOT & 0.126 & 0.058 & 0.759 \\
\hline SOLDDRUG & 0.175 & 0.083 & 0.606 \\
\hline CON & 0.460 & 0.228 & -0.065 \\
\hline
\end{tabular}

\section*{Output Excerpts 3- And 4-Factor WLSM EFA Of 17 ASB Items (Continued)}
\begin{tabular}{llll} 
& 1 & 2 & 3 \\
\cline { 2 - 3 } AUTO & \(\mathbf{0 . 4 6 0}\) & 0.139 & 0.073 \\
BLDG & \(\mathbf{0 . 7 9 7}\) & 0.033 & 0.017 \\
GOODS & 0.700 & 0.109 & 0.066 \\
GAMBLING & 0.314 & 0.327 & 0.092 \\
& \multicolumn{4}{c}{ QUARTIMIN } & FACTOR CORRELATIONS \\
& 1 & 1.000 & \\
& 2 & 0.598 & 1.000 \\
& 3 & 0.614 & 0.371
\end{tabular}

\section*{Output Excerpts 3- And 4-Factor WLSM EFA Of 17 ASB Items (Continued)}

EXPLORATORY FACTOR ANALYSIS WITH 4 FACTOR(S):
TESTS OF MODEL FIT
Chi-Square Test of Model Fit
Value
303.340*

Degrees of Freedom 74
P-Value 0.0000
* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference tests. MLM, MLR and WLSM chi-square difference testing is described in the Mplus Technical Appendices at Www.statmodel.com. See chi-square difference testing in the index of the Mplus User's Guide

\section*{Output Excerpts 3- And 4-Factor WLSM EFA Of 17 ASB Items (Continued)}


\section*{Output Excerpts 3- And 4-Factor WLSM EFA Of 17 ASB Items (Continued)}

QUARTIMIN ROTATED LOADINGS
\begin{tabular}{lr} 
& \multicolumn{1}{c}{1} \\
\cline { 2 - 2 } PROPERTY & \(\mathbf{0 . 6 7 0}\) \\
FIGHT & 0.290 \\
SHOPLIFT & \(\mathbf{0 . 6 7 9}\) \\
LT50 & \(\mathbf{0 . 8 1 7}\) \\
GT50 & \(\mathbf{0 . 7 6 2}\) \\
FORCE & 0.257 \\
THREAT & 0.003 \\
INJURE & -0.036 \\
POT & 0.041 \\
DRUG & 0.051 \\
SOLDPOT & 0.149 \\
SOLDDRUG & 0.065 \\
CON & 0.420
\end{tabular}
\begin{tabular}{r}
\multicolumn{1}{c}{\begin{tabular}{r}
2 \\
0.191 \\
0.537 \\
-0.001 \\
-0.152 \\
-0.008 \\
0.288 \\
0.858 \\
0.728 \\
0.074 \\
0.007 \\
0.070 \\
-0.037 \\
0.223
\end{tabular}}
\end{tabular}
\begin{tabular}{r}
\multicolumn{1}{c}{3} \\
\hline-0.006 \\
-0.060 \\
0.225 \\
0.066 \\
-0.036 \\
-0.195 \\
0.101 \\
0.056 \\
\(\mathbf{0 . 9 2 3}\) \\
\(\mathbf{0 . 7 1 7}\) \\
\(\mathbf{0 . 5 9 8}\) \\
0.269 \\
-0.072
\end{tabular}
\begin{tabular}{c}
4 \\
\hline-0.043 \\
-0.098 \\
-0.159 \\
-0.049 \\
0.154 \\
0.491 \\
-0.078 \\
0.162 \\
-0.069 \\
0.227 \\
0.281 \\
0.791 \\
0.081 \\
\end{tabular}

\section*{Output Excerpts 3- And 4-Factor WLSM EFA Of 17 ASB Items (Continued)}
\begin{tabular}{lcccc} 
& 1 & & 2 & 3 \\
\cline { 2 - 2 } AUTO & 0.446 & & 0.138 & 0.051 \\
BLDG & 0.770 & & 0.042 & 0.010
\end{tabular}

\section*{Practical Issues In The Analysis Of Categorical Outcomes}

\section*{Overview Of Practical Issues In The Analysis Of Categorical Outcomes}
- When Is A Variable Best Treated As Categorical?
- Less dependent on number of categories than the presence of floor and ceiling effects
- When the aim is to estimate probabilities or odds
- What's Wrong With Treating Categorical Variables As Continuous Variables?
- Correlations will be attenuated particularly when there are floor and ceiling effects
- Can lead to factors that reflect item difficulty extremeness
- Predicted probabilities can be outside the \(0 / 1\) range

\section*{Approaches To Use With Categorical Data}
- Data that lead to incorrect standard errors and chi-square under normality assumption

- Transform variable and treat as a continuous variable
- Treat as a continuous variable and use non-normality robust maximum likelihood estimation

\section*{Approaches To Use With Categorical Data (Continued)}
- Data that lead to incorrect standard errors, chi-square, and parameter estimates under normality assumption

- Treat as a categorical variable

\section*{Latent Response Variable Correlations}


\section*{Distortions Of Underlying Correlation Structure}

Pearson product-moment correlations unsuited to categorical variables due to limitation in range.

Example: \(\quad P\left(u_{1}\right)=0.5, \quad P\left(u_{2}=1\right)=0.2\)
Gives max Pearson correlation \(=0.5\)
\begin{tabular}{cc|c|c|} 
& & \multicolumn{2}{c}{ Variable 1 } \\
& & \multicolumn{1}{c}{0} & 1 \\
Variable & 2 & 0 & 50 \\
\cline { 3 - 4 } & 30 & \\
& 1 & 0 & 20 \\
& & & 50 \\
& & & 100 \\
\hline
\end{tabular}

\section*{Distortions Of Underlying Correlation Structure (Continued)}

Phi coefficient (Pearson correlation):
\(\mathrm{R}=\frac{\operatorname{Cov}\left(u_{1}, u_{2}\right)}{\operatorname{SD}\left(u_{1}\right) \operatorname{SD}\left(u_{2}\right)}=\)
\(\frac{\mathrm{P}\left(u_{1}=1 \text { and } u_{2}=1\right)-\mathrm{P}\left(u_{1}=1\right) \mathrm{P}\left(u_{2}=1\right)}{\sqrt{\mathrm{P}\left(u_{1}=1\right)\left[1-\mathrm{P}\left(u_{1}=1\right)\right]} \sqrt{\mathrm{P}\left(u_{2}=1\right)\left[1-\mathrm{P}\left(u_{2}=1\right)\right]}}\)
\(\mathrm{R}_{\max .}=\frac{0.2-0.5 \times 0.2}{\sqrt{.5 \times .5} \sqrt{.2 \times .8}}=\frac{0.1}{0.2}=0.5\)

\section*{Correlational Attenuation}

Correlation between underlying continuous \(u^{*}\) variables \(=0.5\)


Three Categories


\section*{Correlational Attenuation (Continued)}

Four Categories


Five Categories

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{13}{|c|}{Pearson Correlations for True Correlations \(=0.50\)} & \\
\hline & D19 & D28 & D37 & D46 & D55 & D64 & D73 & D82 & D91 & \(3 S Y\) & 3RE & 3NS & 3PS & \\
\hline D19 & 25 & & & & & & & & & & & & & \\
\hline D28 & 26 & 30 & & & & & & & & & & & & \\
\hline D37 & 26 & 30 & 32 & & & & & & & & & & & \\
\hline D46 & 24 & 30 & 32 & 33 & & & & & & & & & & \\
\hline D55 & 23 & 28 & 31 & 33 & 33 & & & & & & & & & \\
\hline D64 & 20 & 26 & 30 & 23 & 33 & 33 & & & & & & & & \\
\hline D73 & 18 & 23 & 27 & 30 & 31 & 32 & 32 & & & & & & & \\
\hline D82 & 15 & 20 & 23 & 26 & 28 & 30 & 30 & 30 & & & & & & \\
\hline D91 & 10 & 15 & 18 & 20 & 22 & 24 & 26 & 26 & 25 & & & & & \\
\hline 3SY & 26 & 32 & 35 & 36 & 37 & 36 & 35 & 32 & 26 & 41 & & & & \\
\hline 3RE & 25 & 31 & 35 & 36 & 37 & 36 & 35 & 31 & 25 & 41 & 41 & & & \\
\hline 3NS & 29 & 33 & 35 & 36 & 35 & 33 & 30 & 26 & 20 & 39 & 39 & 39 & & \\
\hline 3PS & 20 & 26 & 30 & 33 & 35 & 36 & 35 & 33 & 29 & 39 & 39 & 34 & 39 & \\
\hline 4SY & 27 & 33 & 36 & 38 & 38 & 38 & 36 & 33 & 27 & 43 & 43 & 40 & 40 & \\
\hline 4RE & 26 & 33 & 36 & 38 & 38 & 38 & 36 & 33 & 26 & 42 & 42 & 40 & 40 & \\
\hline 4NS & 30 & 35 & 36 & 36 & 35 & 33 & 30 & 27 & 20 & 40 & 39 & 40 & 34 & \\
\hline 3PS & 20 & 27 & 31 & 34 & 35 & 36 & 36 & 35 & 30 & 40 & 39 & 34 & 40 & \\
\hline 5SY & 28 & 34 & 37 & 38 & 39 & 38 & 37 & 34 & 28 & 44 & 43 & 41 & 41 & \\
\hline 4RE & 27 & 33 & 37 & 38 & 39 & 38 & 37 & 33 & 27 & 43 & 43 & 41 & 41 & \\
\hline 5NS & 31 & 35 & 36 & 36 & 35 & 33 & 30 & 26 & 20 & 40 & 39 & 40 & 34 & \\
\hline 5PS & 20 & 26 & 30 & 33 & 35 & 36 & 36 & 35 & 31 & 40 & 39 & 34 & 40 & \\
\hline CON & 29 & 35 & 38 & 39 & 40 & 39 & 38 & 35 & 29 & 45 & 45 & 42 & 42 & \\
\hline & D19 & D28 & D37 & D46 & D55 & D64 & D73 & D82 & D91 & 3 SY & 3RE & 3NS & 3PS & 138 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{Pearson Correlations for True Correlations \(=0.50\)} & \\
\hline & 4SY & 4RE & 4NS & 4PS & 5 SY & 5RE & 5NS & 5PS & CON & \\
\hline 4SY & 44 & & & & & & & & & \\
\hline 4RE & 44 & 44 & & & & & & & & \\
\hline 4NS & 41 & 41 & 41 & & & & & & & \\
\hline 4PS & 41 & 41 & 35 & 41 & & & & & & \\
\hline 5SY & 45 & 45 & 42 & 42 & 46 & & & & & \\
\hline 5RE & 45 & 45 & 41 & 41 & 46 & 45 & & & & \\
\hline 5NS & \[
41
\] & 40 & 42 & \[
34
\] & 42 & 41 & 42 & & & \\
\hline 5PS & \[
41
\] & 41 & 34 & 42 & 42 & 41 & 34 & 42 & & \\
\hline CON & \[
47
\] & \[
46
\] & \[
43
\] & \[
43
\] & \[
48
\] & \[
47
\] & \[
44
\] & & \[
50
\] & \\
\hline & \[
4 S Y
\] & 4RE & 4NS & 4PS & \[
5 S Y
\] & 5RE & 5NS & 5PS & \[
\mathrm{CON}
\] & \\
\hline
\end{tabular}

\section*{Approaches To Use With Categorical Outcomes}
- Items, Testlets, Sums, Or Factor Scores?
- A sum of at least 15 unidimensional items is reliable
- Testlets can be used as continuous indicators
- Factor scores can be estimated as in IRT
- Sample Size
- Larger than for continuous variables
- Univariate and bivariate distributions should contain several observations per cell

\section*{Further Readings On Factor Analysis Of Categorical Outcomes}

Bock, R.D., Gibbons, R., \& Muraki, E.J. (1998). Full information item factor analysis. Applied Psychological Measurement, 12, 261-280.
Flora, D.B. \& Curran, P.J., (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466-491.
Muthén, B. (1989). Dichotomous factor analysis of symptom data. In Eaton \& Bohrnstedt (Eds.), Latent variable models for dichotomous outcomes: Analysis of data from the epidemiological Catchment Area program (pp.1965), a special issue of Sociological Methods \& Research, 18, 19-65.

Muthen, B. \& Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of non-normal Likert variables. British Journal of Mathematical and Statistical Psychology, 38, 171-189.
Muthen, B. \& Kaplan, D. (1992). A comparison of some methodologies for the factor analysis of non-normal Likert variables: A note on the size of the model. British Journal of Mathematical and Statistical Psychology, 45, 19-30.

\section*{CFA With Covariates (MIMIC)}

\section*{CFA With Covariates Using WLS}

\(u_{i j}^{*}=\lambda_{j} f_{i}+\varepsilon_{i j},(j=1,2)\)
\(f_{i}=\gamma x_{i}+\zeta_{i}\)
Estimate CFA model by fitting to probit / logit regression estimates

\section*{CFA With Covariates (MIMIC)}

Used to study the effects of covariates or background variables on the factors and outcome variables to understand measurement invariance and heterogeneity
- Measurement non-invariance - direct relationships between the covariates and outcome variables that are not mediated by the factors - if they are significant, this indicates measurement non-invariance due to differential item functioning (DIF)
- Population heterogeneity - relationships between the covariates and the factors - if they are significant, this indicates that the factor means are different for different levels of the covariates.

\section*{Model Assumptions}
- Same factor loadings and observed residual variances / covariances for all levels of the covariates
- Same factor variances and covariances for all levels of the covariates

\section*{Steps In CFA With Covariates}
- Establish a CFA or EFA/CFA model
- Add covariates - check that factor structure does not change and study modification indices for possible direct effects
- Add direct effects suggested by modification indices - check that factor structure does not change
- Interpret the model
- Factors
- Effects of covariates on factors
- Effects of covariates on factor indicators

\section*{Antisocial Behavior (ASB) Data}

The Antisocial Behavior (ASB) data were taken from the National Longitudinal Survey of Youth (NLSY) that is sponsored by the Bureau of Labor Statistics. These data are made available to the public by Ohio State University. The data were obtained as a multistage probability sample with oversampling of blacks, Hispanics, and economically disadvantaged non-blacks and nonHispanics.

Data for the analysis include 15 of the 17 antisocial behavior items that were collected in 1980 when respondents were between the ages of 16 and 23 and the background variables of age, gender and ethnicity. The ASB items assessed the frequency of various behaviors during the past year. A sample of 7,326 respondents has complete data on the antisocial behavior items and the background variables of age, gender, and ethnicity. Following is a list of the 15 items:

\section*{Antisocial Behavior (ASB) Data (Continued)}

Damaged property
Fighting
Shoplifting
Stole \(<\$ 50\)
Stole > \$50
Seriously threaten
Intent to injure
Use other drugs
Sold marijuana
Sold hard drugs
"Con" someone
Take auto
Broken into building
Held stolen goods
Use marijuana
These items were dichotomized \(0 / 1\) with 0 representing never in the last year. An EFA suggested three factors: property offense, person offense, and drug offense.


\section*{Input For CFA With Covariates With Categorical Outcomes For 15 ASB Items}
```

TITLE: CFA with covariates with categorical outcomes using
1 5 antisocial behavior items and 3 covariates
DATA: FILE IS asb.dat;
FORMAT IS 34X 54F2.0;
VARIABLE: NAMES ARE property fight shoplift lt50 gt50 force
threat injure pot drug soldpot solddrug con auto bldg
goods gambling dsm1-dsm22 sex black hisp single
divorce dropout college onset fhist1 fhist2 fhist3
age94 cohort dep abuse;
USEV ARE property-gt50 threat-goods sex black age94;
CATEGORICAL ARE property-goods;

```
```

MODEL: f1 BY property shoplift-gt50 con-
goods;
f2 BY fight threat injure;
f3 BY pot-solddrug;
f1-f3 ON sex black age94;
property-goods ON sex-age94@0;
OUTPUT: STANDARDIZED MODINDICES;

```

\section*{Output Excerpts CFA With Covariates With Categorical Outcomes For 15 ASB Items}

\section*{Model Results}
\begin{tabular}{lrrrrr} 
& \multicolumn{2}{c}{ Estimates } & \multicolumn{2}{c}{ S.E. Est./S.E. } & Std
\end{tabular} StdYX

Output Excerpts CFA With Covariates With Categorical Outcomes For 15 ASB Items (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline F2 & & BY & & & & & \\
\hline & FIGHT & & 1.000 & . 000 & . 000 & . 773 & . 734 \\
\hline & THREAT & & 1.096 & . 035 & 31.382 & . 847 & . 797 \\
\hline & INJURE & & 1.082 & . 037 & 28.888 & . 836 & . 787 \\
\hline F3 & & BY & & & & & \\
\hline & POT & & 1.000 & . 000 & . 000 & . 866 & . 851 \\
\hline & DRUG & & 1.031 & . 023 & 45.818 & . 893 & . 876 \\
\hline & SOLDPOT & & 1.046 & . 023 & 45.844 & . 905 & . 888 \\
\hline & SOLDDRUG & & . 923 & . 036 & 25.684 & . 799 & . 787 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Output Excerpts CFA With Covariates With Categorical Outcomes For 15 ASB Items (Continued)} \\
\hline F1 & ON & & & & & \\
\hline SEX & & . 516 & . 024 & 21.206 & . 653 & . 326 \\
\hline BLACK & & -. 080 & . 025 & -3.168 & -. 102 & -. 047 \\
\hline AGE94 & & -. 054 & . 006 & -9.856 & -. 069 & -. 150 \\
\hline F2 & ON & & & & & \\
\hline SEX & & . 561 & . 026 & 21.715 & . 726 & . 363 \\
\hline BLACK & & . 174 & . 025 & 7.087 & . 225 & . 103 \\
\hline AGE94 & & -. 068 & . 006 & -12.286 & -. 087 & -. 191 \\
\hline F3 & ON & & & & & \\
\hline SEX & & . 229 & . 026 & 8.760 & . 265 & . 132 \\
\hline BLACK & & -. 272 & . 029 & -9.384 & -. 315 & -. 144 \\
\hline AGE94 & & . 039 & . 006 & 6.481 & . 045 & . 099 \\
\hline
\end{tabular}

\section*{Output Excerpts CFA With Covariates With} Categorical Outcomes For 15 ASB Items (Continued)

\section*{Tests Of Model Fit}
\begin{tabular}{|c|c|c|}
\hline i-Square
Test of Model Fit
Value & Value & 1225.266* \\
\hline & Degrees of Freedom & 105** \\
\hline & P -Value & 0.0000 \\
\hline \multicolumn{3}{|l|}{CFI / TLI} \\
\hline & CFI & 0.945 \\
\hline & TLI & 0.964 \\
\hline \multicolumn{3}{|l|}{RMSEA (Root Mean Square Error Of Approximation)} \\
\hline & Estimate & 0.038 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{WRMR (Weighted Root Mean Square Residual)
Value}} \\
\hline & & \\
\hline
\end{tabular}

\section*{Output Excerpts CFA With Covariates With Categorical Outcomes For 15 ASB Items (Continued)}

\section*{Modification Indices}
\begin{tabular}{lrlr} 
PROPERTY ON BLACK & 4.479 & GT50 ON SEX & 12.100 \\
PROPERTY ON AGE94 & 28.229 & GT50 ON BLACK & 12.879 \\
FIGHT ON SEX & 60.599 & GT50 ON AGE94 & 7.413 \\
FIGHT ON BLACK & 26.695 & THREAT ON SEX & 10.221 \\
FIGHT ON AGE94 & \(\mathbf{6 4 . 8 1 5}\) & THREAT ON BLACK & 26.665 \\
SHOPLIFT ON SEX & 131.792 & THREAT ON AGE94 & 3.892 \\
SHOPLIFT ON BLACK & 0.039 & INJURE ON SEX & 22.803 \\
SHOPLIFT ON AGE94 & 0.038 & INJURE ON BLACK & 0.089 \\
LT50 ON SEX & 0.040 & INJURE ON AGE94 & 42.549 \\
LT50 ON BLACK & 22.530 & POT ON SEX & 10.727 \\
LT50 ON AGE94 & 24.750 & & POT ON BLACK
\end{tabular}

\section*{Output Excerpts CFA With Covariates With Categorical Outcomes For 15 ASB Items (Continued)}

\section*{Modification Indices}
\begin{tabular}{lrlr} 
DRUG ON SEX & 15.637 & AUTO ON SEX & 0.735 \\
DRUG ON BLACK & 41.202 & AUTO ON BLACK & 1.414 \\
DRUG ON AGE94 & 1.583 & AUTO ON AGE94 & 2.936 \\
SOLDPOT ON SEX & 51.496 & BLDG ON SEX & 37.797 \\
SOLDPOT ON BLACK & 1.242 & BLDG ON BLACK & 7.053 \\
SOLDPOT ON AGE94 & 29.267 & BLDG IB AGE94 & 0.114 \\
SOLDDRUG ON SEX & 3.920 & GOODS ON SEX & 24.664 \\
SOLDDRUG ON BLACK & 7.187 & GOODS ON BLACK & 0.982 \\
SOLDDRUG ON AGE94 & 2.956 & GOODS ON AGE94 & 6.061 \\
CON ON SEX & 31.521 & & \\
CON ON BLACK & \(\mathbf{8 0 . 5 1 5}\) & & \\
CON ON AGE94 & 11.259 & &
\end{tabular}


\section*{Input Excerpts For ASB CFA With Covariates And Direct Effects}

MODEL: f1 BY property shoplift-gt50 con-goods;
f2 BY fight threat injure;
f3 BY pot-solddrug;
f1-f3 ON sex black age94;
shoplift ON sex;
con ON black;
fight ON age94;

\section*{Input Excerpts For ASB CFA With Covariates And Direct Effects (Continued)}

\section*{Tests Of Model Fit}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Chi-Square Test of Model Fit} \\
\hline Value & 946.256 * \\
\hline Degrees of Freedom & 102 ** \\
\hline P-Value & 0.0000 \\
\hline \multicolumn{2}{|l|}{CFI/TLI} \\
\hline CFI & 0.959 \\
\hline TLI & 0.972 \\
\hline RMSEA (Root Mean Square Error Of Approximation) Estimate & 0.034 \\
\hline WRMR (Weighted Root Mean Square Residual) Value & 2.198 \\
\hline
\end{tabular}


\section*{Interpretation Of Direct Effects}

\section*{Shoplift On Gender}
- Indirect effect of gender on shoplift
- F1 has a positive relationship with gender - males have a higher mean than females on the fl factor
- Shoplift has a positive loading on the fl factor
- Conclusion: males are expected to have a higher probability of shoplifting
- Effect of gender on shoplift
- Direct effect is negative - for a given factor value, males have a lower probability of shoplifting than females
- Conclusion - shoplift is not invariant

\section*{Calculating Item Probabilities}


Graph can be done in Mplus using the PLOT command and the option "Item characteristic curves".

\section*{Calculating Item Probabilities (Continued)}

The model with a direct effect from \(x\) to item \(u_{j}\),
\[
\begin{equation*}
u_{i j}^{*}=\lambda_{j} \eta_{i}+\kappa_{j} x_{i}+\varepsilon_{i j}, \tag{45}
\end{equation*}
\]
gives the conditional probability of a \(u=1\) response given the factor \(\eta_{i}\) and the covariate \(x_{i}\)
\[
\begin{align*}
P\left(u_{i j}=1 \mid \eta_{i}, x_{i}\right) & =1-F\left[\left(\tau_{j}-\lambda_{j} \eta_{i}-\kappa_{j} x_{i}\right) \theta_{j j}^{-1 / 2}\right],  \tag{46}\\
& =F\left[\left(-\tau_{j}+\lambda_{j} \eta_{i}+\kappa_{j} x_{i}\right) \theta_{j j}^{-1 / 2}\right], \tag{47}
\end{align*}
\]
where \(F\) is the normal distribution function and \(\theta\) is the residual variance.

For example, for the item shoplift, \(\tau_{j}=0.558, \kappa_{j}=-0.385\), \(\theta_{j j}=0.461\). At \(\eta=0\), the probability is 0.21 for females \((x=0)\) and 0.08 for males \((x=1)\).

\section*{Calculating Item Probabilities (Continued)}

Consider
\[
\begin{equation*}
P\left(u_{i j}=1 \mid \eta_{i j}, x_{i}\right)=1-F\left[\left(\tau_{j}-\lambda_{j} \eta_{i}-\kappa_{j} x_{i}\right) \theta_{j j}^{-1 / 2}\right], \tag{47}
\end{equation*}
\]
using \(\tau_{j}=0.558, \kappa_{j}=-0.385, \theta_{j j}=0.461\), and \(\eta=0\).
Here, \(\theta_{j j}^{-1 / 2}=\frac{1}{\sqrt{\theta_{i j}}}=\frac{1}{\sqrt{0.461}}=1.473\).
For females \((\boldsymbol{x}=\mathbf{0})\) :
1. \(\left(\tau_{j}-\lambda_{j} \eta_{i}-\kappa_{j} x_{i}\right)=0.558-1.002 \times 0-(-0.385) \times 0=0.558\).
2. \(\left(\tau_{j}-\lambda_{j} \eta_{i}-\kappa_{j} x_{i}\right) \theta_{j j}^{-1 / 2}=0.558 \times 1.473=0.822\).
3. \(F[0.822]=0.794\) using a z table
\(4.1-0.794=0.206\).
For males ( \(\boldsymbol{x}=\mathbf{1}\) ):
1. \(\left(\tau_{j}-\lambda_{j} \eta_{i}-\kappa_{j} x_{i}\right)=0.558-1.002 \times 0-(-0.385) \times 1=0.943\).
2. \(\left(\tau_{j}-\lambda_{j} \eta_{i}-\kappa_{j} x_{i}\right) \theta_{i j}^{-1 / 2}=0.943 \times 1.473=1.389\).
3. \(F[1.389]=0.918\) using a z table.
4. \(1-0.918=0.082\).

\section*{Further Readings On Factor Analysis And MIMIC Analysis With Categorical Outcomes}

Gallo, J.J., Anthony, J. \& Muthen, B. (1994). Age differences in the symptoms of depression: a latent trait analysis. Journals of Gerontology: Psychological Sciences, 49, 251-264. (\#52)
Mislevy, R. (1986). Recent developments in the factor analysis of categorical variables. Journal of Educational Statistics, 11, 3-31.
Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551-560. (\#3)
Muthén, B. (1989). Dichotomous factor analysis of symptom data. In Eaton \& Bohrnstedt (Eds.), Latent variable models for dichotomous outcomes: Analysis of data from the Epidemiological Catchment Area Program (pp. 19-65), a special issue of Sociological Methods \& Research, 18, 19-65. (\#21)

\section*{Further Readings On Factor Analysis And MIMIC Analysis With Categorical Outcomes (Continued)}

Muthén, B. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557-585. (\#24)
Muthén, B., Tam, T., Muthén, L., Stolzenberg, R. M., \& Hollis, M. (1993). Latent variable modeling in the LISCOMP framework: Measurement of attitudes toward career choice. In D. Krebs, \& P. Schmidt (Eds.), New directions in attitude measurement, Festschrift for Karl Schuessler (pp. 277-290). Berlin: Walter de Gruyter. (\#46)

\section*{Multiple Group Analysis With Categorical Outcomes}

\section*{Steps In Multiple Group Analysis}
- Fit the model separately in each group
- Fit the model in all groups allowing all parameters to be free except factor means which are fixed to zero in all groups and scale factors which are fixed to one in all groups
- Fit the model in all groups holding factor loadings and thresholds equal across groups with factor means fixed to zero in the first group and free in the other groups and scale factors fixed to one in the first group and free in the other groups
- Add covariates
- Modify the model

\section*{Inputs For Multiple Group Analysis Of 15 ASB Items}

\section*{Measurement Non-Invariance}
```

MODEL: f1 BY property shoplift-gt50 con-goods;
f2 BY fight threat injure;
f3 BY pot-solddrug;
[f1-f3@0];
{property-goods@1};
MODEL male: f1 BY shoplift-gt50 con-goods;
f2 BY threat injure;
f3 BY drug-solddrug;
[property\$1-goods\$1];

```

\section*{Inputs For Multiple Group Analysis Of 15 ASB Items (Continued)}

\section*{Measurement Invariance}

MODEL: f1 BY property shoplift-gt50 con-goods;
f2 BY fight threat injure;
f3 BY pot-solddrug;

\section*{Partial Measurement Invariance}
```

MODEL: f1 BY property shoplift-gt50 con-goods;
f2 BY fight* threat@1 injure;
f3 BY pot-solddrug;
MODEL f1 BY con lt50;
male: f2 BY fight;
f3 BY soldpot pot solddrug;
[con\$1 lt50\$1 fight\$1 soldpot\$1 pot\$1 solddrug\$1];
{con@1 lt50@1 fight@1 soldpot@1 pot@1 solddrug@1};

```

\section*{Further Readings On Multiple-Group Analysis Of Categorical Outcomes}

Muthén, B. \& Asparouhov, T. (2002). Latent variable analysis with categorical outcomes: Multiple-group and growth modeling in Mplus. Mplus Web Note \#4 (www.statmodel.com).
Muthén, B., \& Christoffersson, A. (1981). Simultaneous factor analysis of dichotomous variables in several groups. Psychometrika, 46, 407-419. (\#6)

\section*{Overview}
- Brief overview of EFA, CFA, and SEM for continuous outcomes
- New approach to structural equation modeling
- Examples

\section*{Factor Analysis And Structural Equation Modeling}
- Exploratory factor analysis (EFA) is one of the most frequently used multivariate analysis technique in statistics
- 1966 Jennrich solved a significant EFA rotation problem by deriving the direct quartimin rotation
- Jennrich was the first to develop standard errors for rotated solutions although these have still not made their way into most statistical software programs
- 1969 development of confirmatory factor analysis (CFA) by Joreskog
- Joreskog developed CFA further into structural equation modeling (SEM) in LISREL where CFA was used for the measurement part of the model

\section*{Structural Equation Model}
(1) \(Y_{i}=v+\Lambda \eta_{i}+K X_{i}+\varepsilon_{i}\)
(2) \(\eta_{i}=\alpha+B \eta_{i}+\Gamma X_{i}+\xi_{i}\)
\(\Lambda\) is typically specified as having a "simple structure"

\section*{CFA Simple Structure \(\boldsymbol{\Lambda}\)}
\(\Lambda=\left(\begin{array}{cc}\mathrm{X} & 0 \\ \mathrm{X} & 0 \\ \mathrm{X} & 0 \\ 0 & \mathrm{X} \\ 0 & \mathrm{X} \\ 0 & \mathrm{X}\end{array}\right)\)
where X is a factor loading parameter to be estimated
- CFA simple structure is often too restrictive in practice

\section*{Quote From Browne (2001)}
"Confirmatory factor analysis procedures are often used for exploratory purposes. Frequently a confirmatory factor analysis, with pre-specified loadings, is rejected and a sequence of modifications of the model is carried out in an attempt to improve fit. The procedure then becomes exploratory rather than confirmatory --- In this situation the use of exploratory factor analysis, with rotation of the factor matrix, appears preferable. --- The discovery of misspecified loadings ... is more direct through rotation of the factor matrix than through the examination of model modification indices."

Browne, M.W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111-150

\section*{A New Approach: Exploratory SEM}
- Allow EFA measurement model parts (EFA sets)
- Integrated with CFA measurement parts
- Allowing EFA sets access to other SEM parameters, such as
- Correlated residuals
- Regressions on covariates
- Regressions between factors of different EFA sets
- Regressions between factors of EFA and CFA sets
- Multiple groups
- EFA loading matrix equalities across time or group
- Mean structures
- Available for continuous, categorical, and censored outcomes

\section*{Factor Indeterminacy And Rotations}
- \(\Lambda \Psi \Lambda^{T}+\Theta\)
- \(\Lambda\) is \(p \times m\), so \(m^{2}\) indeterminacies
- \(\Psi=I\) fixes \(m(m+1) / 2\) indeterminacies
- \(\Lambda \Lambda^{T}+\Theta=\Lambda^{*} \Lambda^{*^{T}}+\Theta\)
for \(\Lambda^{*}=\Lambda H^{-1}\), where \(H\) is orthogonal
- A starting \(\Lambda^{*}\) can be rotated using a rotation criterion function that favors simple structure in \(\Lambda\) :
\[
\begin{align*}
& f\left(\Lambda^{*}\right)=f\left(\Lambda H^{-l}\right)  \tag{2a}\\
& f(\Lambda)=\sum_{i=1}^{p} \sum_{j=l l}^{m} \sum_{k \neq j}^{m} \lambda_{i j}^{2} \lambda_{i k}^{2} \tag{2b}
\end{align*}
\]
- Common rotation: Quartimin
- Good alternative: Geomin rotation

\section*{Rotation Methods}

Choice of rotation important when not relying on CFA measurement structure:
- With variable complexity > 1 ("cross-loadings") Geomin is better than conventional methods such as varimax, promax, quartimin
- Target rotation

\section*{Target Rotation}

Target rotation:
- Between mechanical rotation and CFA: Rotation guided by judgment
- Choose rotation by specifying target loading values (typically zero)
- Target values not fixed as in CFA - zero targets can come out big if misspecified
- \(m-1\) zeros in each loading column gives EFA ( \(\mathrm{m}=\) = factors)
- Mplus language:

> f1 BY y1-y10 y1~0 (*t);
f2 BY y1-y10 y5~0 (*t);
References: Browne (1972 a, b; Tucker, 1944)

\section*{Transformation Of SEM Parameters Based On Rotated \(\Lambda\)}
(1) \(Y_{i}=v+\Lambda \eta_{i}+K X_{i}+\varepsilon_{i}\)
(2) \(\eta_{i}=\alpha+B \eta_{i}+\Gamma X_{i}+\xi_{i}\)

Transformations:
(6) \(v^{*}=v\)
(10) \(\alpha^{*}=H \alpha\)
(7) \(\Lambda^{*}=\Lambda\left(H^{*}\right)^{-1}\)
(11) \(B^{*}=H^{*} B\left(H^{*}\right)^{-1}\)
(8) \(K^{*}=K\)
(12) \(\Gamma^{*}=H^{*} \Gamma\)
(9) \(\theta^{*}=\theta\)
(13) \(\Psi^{*}=\left(H^{*}\right)^{T} \Psi H^{*}\)

\section*{Maximum-Likelihood Estimation And Testing}
- ML estimation in several steps
- Compute the unstandardized starting values for \(\Lambda, \Psi\), and \(\Theta\) with identifying restrictions
- Use the \(\Delta\) method to estimate the asymptotic distribution of the standardized starting value for \(\Lambda\)
- Find the asymptotic distribution of the rotated standardized solution (cf Jennrich, 2003)
- Standard errors for rotated solution of the full SEM
- Pre-specified testing sequence: EFA followed by CFA
\(\square\)

\section*{Examples}
- MIMIC with cross-loadings (see Web Talks)
- Longitudinal EFA (test-retest) (see Web Talks)
- Multiple-group EFA

\section*{Example: Aggressive Behavior Male-Female EFA in Baltimore Cohort 3}
- 261 males and 248 females in third grade
- Teacher-rated aggressive-disruptive behavior
- Outcomes treated as non-normal continuous variables
- Two types of analyses:
- EFA in each group separately using Geomin rotation
- Multiple-group EFA analysis of males and females jointly

\section*{EFA-ESEM Variable Scales And Loading Matrix Metrics}
- Sample covariance matrix analyzed, not sample correlation matrix
- Loadings in original indicator scale
- Standardized solution gives loadings in regular EFA metric
- Multiple-group EFA allows factor variances and covariances to differ across groups as the default
- Group 1 has a factor correlation matrix, while other groups have factor covariance matrices
- Group-invariant loadings still give group-varying standardized loadings due to group-varying indicator variances and group-varying factor variances

\section*{Summary Of Separate Male/Female EFAs}
\begin{tabular}{|l|rrr|rrr|}
\hline \multirow{2}{*}{ Variables } & \multicolumn{3}{|c|}{ StdYX Loadings for Males } & \multicolumn{3}{c|}{ StdYX Loadings for Females } \\
\cline { 2 - 7 } & Verbal & Person & Property & Verbal & Person & Property \\
\hline Stubborn & 0.82 & -0.05 & 0.01 & 0.88 & 0.03 & -0.22 \\
Breaks Rules & 0.47 & 0.34 & 0.01 & 0.76 & 0.06 & -0.17 \\
Harms Others \& Property & \(\mathbf{- 0 . 0 1}\) & \(\mathbf{0 . 6 3}\) & \(\mathbf{0 . 3 1}\) & \(\mathbf{0 . 4 5}\) & \(\mathbf{0 . 0 3}\) & \(\mathbf{0 . 3 6}\) \\
Breaks Things & -0.02 & 0.02 & 0.66 & -0.02 & 0.19 & 0.43 \\
Yells At Others & 0.66 & 0.23 & -0.03 & 0.97 & -0.23 & 0.05 \\
Takes Others' Property & \(\mathbf{0 . 2 7}\) & \(\mathbf{0 . 0 8}\) & \(\mathbf{0 . 5 2}\) & \(\mathbf{0 . 0 2}\) & \(\mathbf{0 . 7 9}\) & \(\mathbf{0 . 1 0}\) \\
Fights & 0.22 & 0.75 & -0.00 & 0.81 & -0.01 & 0.18 \\
Harms Property & 0.03 & -0.02 & 0.93 & 0.27 & 0.20 & 0.57 \\
Lies & \(\mathbf{0 . 5 8}\) & \(\mathbf{0 . 0 1}\) & \(\mathbf{0 . 2 7}\) & \(\mathbf{0 . 4 2}\) & \(\mathbf{0 . 5 0}\) & \(\mathbf{- 0 . 0 0}\) \\
Talks Back to Adults & 0.61 & -0.02 & 0.30 & 0.69 & 0.09 & -0.02 \\
Teases Classmates & 0.46 & 0.44 & -0.04 & 0.71 & -0.01 & 0.10 \\
Fights With Classmates & \(\mathbf{0 . 3 0}\) & \(\mathbf{0 . 6 4}\) & \(\mathbf{0 . 0 8}\) & \(\mathbf{0 . 8 3}\) & \(\mathbf{0 . 0 3}\) & \(\mathbf{0 . 2 1}\) \\
Loses Temper & 0.64 & 0.16 & 0.04 & 1.05 & -0.29 & -0.01 \\
\hline
\end{tabular}

\section*{Summary Of Separate Male/Female EFAs}
\begin{tabular}{|l|cc|cr|}
\hline \multirow{2}{*}{ Factors } & \multicolumn{2}{|c|}{ Factor Correlations for Males } & Factor Correlations for Females \\
\cline { 2 - 5 } & Verbal & Person & Verbal & Person \\
\hline Person & 0.57 & & 0.68 & \\
Property & 0.56 & 0.68 & 0.32 & 0.22 \\
\hline
\end{tabular}

\section*{Multiple-Group EFA Modeling Results Using MLR}
\begin{tabular}{lccccccc}
\hline Model & LL0 & C & \# par. 's & Df & \(\chi^{2}\) & CFI & RMSEA \\
\hline M1 & -8122 & 2.61 & 84 & 124 & 241 & 0.95 & 0.061 \\
M2 & -8087 & 2.41 & 94 & 114 & 188 & 0.97 & 0.050 \\
M3 & -8036 & 2.38 & 124 & 84 & 146 & 0.97 & 0.054 \\
\hline
\end{tabular}
- M1: Loadings and intercepts invariance
- M2: Loadings but not intercepts invariance
- M3: Neither loadings nor intercepts invariance
- LL0: Log likelihood for the H0 (multiple-group EFA) model
- c is a non-normality scaling correction factor

\section*{Multiple-Group EFA Modeling Results Using MLR}
- Comparing M2 and M1*:
\(-\mathrm{cd}=(84 * 2.61-94 * 2.41) /(-10)=0.704\)
\(-T R d=-2(L L 0-L L 1) / c d=98.5\) with 10 df: Not all intercepts are invariant. Choose M2

\section*{Multiple-Group EFA Modeling Results Using MLR}
- Comparing M3 and M2*:
\(-\mathrm{cd}=(94 * 2.41-124 * 2.38)) /(-30)=2.78\)
\(-\mathrm{TRd}=-2(\mathrm{LL} 0-\mathrm{LL} 1) / \mathrm{cd}=36.6\) with 30 df : Loadings are invariant. Choose M2
- LL1 = loglikelihood for unrestricted H1 model (same for all 3) \(=-7934\)
* For loglikelihood difference testing with scaling corrections, see http://www.statmodel.com/chidiff.shtml

\section*{Male EFA Estimates Compared To Female Estimates From Multiple-Group EFA Using M2}
\begin{tabular}{|l|rrr|rrr|}
\hline \multirow{2}{*}{ Variables } & \multicolumn{3}{|c|}{ StdYX Loadings for Males } & \multicolumn{3}{c|}{ StdYX Loadings for Females } \\
\cline { 2 - 7 } & Verbal & Person & Property & Verbal & Person & Property \\
\hline Stubborn & 0.82 & -0.05 & 0.01 & 0.86 & -0.00 & -0.01 \\
Breaks Rules & 0.47 & 0.34 & 0.01 & 0.59 & 0.20 & 0.01 \\
Harms Others \& Property & \(\mathbf{- 0 . 0 1}\) & \(\mathbf{0 . 6 3}\) & \(\mathbf{0 . 3 1}\) & \(\mathbf{0 . 0 0}\) & \(\mathbf{0 . 5 6}\) & \(\mathbf{0 . 2 4}\) \\
Breaks Things & -0.02 & 0.02 & 0.66 & -0.03 & -0.03 & 0.63 \\
Yells At Others & 0.66 & 0.23 & -0.03 & 0.69 & 0.18 & -0.01 \\
Takes Others' Property & \(\mathbf{0 . 2 7}\) & \(\mathbf{0 . 0 8}\) & \(\mathbf{0 . 5 2}\) & \(\mathbf{0 . 3 9}\) & \(\mathbf{0 . 0 3}\) & \(\mathbf{0 . 3 1}\) \\
Fights & 0.22 & 0.75 & -0.00 & 0.35 & 0.61 & -0.02 \\
Harms Property & 0.03 & -0.02 & 0.93 & 0.19 & 0.04 & 0.68 \\
Lies & \(\mathbf{0 . 5 8}\) & \(\mathbf{0 . 0 1}\) & \(\mathbf{0 . 2 7}\) & \(\mathbf{0 . 6 7}\) & \(\mathbf{0 . 0 0}\) & \(\mathbf{0 . 1 6}\) \\
Talks Back to Adults & 0.61 & -0.02 & 0.30 & 0.71 & -0.02 & 0.15 \\
Teases Classmates & 0.46 & 0.44 & -0.04 & 0.49 & 0.30 & 0.01 \\
Fights With Classmates & \(\mathbf{0 . 3 0}\) & \(\mathbf{0 . 6 4}\) & \(\mathbf{0 . 0 8}\) & \(\mathbf{0 . 4 1}\) & \(\mathbf{0 . 5 3}\) & \(\mathbf{0 . 0 3}\) \\
Loses Temper & 0.64 & 0.16 & 0.04 & 0.74 & 0.14 & -0.29 \\
\hline
\end{tabular}

\section*{Factor Correlations For Males Using EFA And For Females Using Multiple-Group Model M2}
\begin{tabular}{|l|rr|rr|}
\hline \multirow{2}{*}{ Factors } & \multicolumn{2}{|c|}{ Factor Correlations for Males } & \multicolumn{2}{|c|}{ Factor Correlations for Females } \\
\cline { 2 - 5 } & Verbal & Person & Verbal & Person \\
\hline Person & 0.57 & & 0.75 & \\
Property & 0.56 & 0.68 & 0.42 & 0.65 \\
\hline
\end{tabular}

\section*{Multiple-Group EFA Estimates For M2}
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{2}{|c|}{ Group } & Verbal & Person \\
\cline { 2 - 4 } & 1 & 1 & Property \\
\hline Males & Females & 1.19 & 2.65 \\
1 \\
& \((.18)\) & \((.56)\) & 5.33 \\
& & & \((1.02)\) \\
\hline
\end{tabular}

\section*{Input Model M1}

TITLE: Cohort 3 Case and Class variables
DATA: \(\quad\) FILE \(=\) Muthen.dat;
VARIABLE: NAMES = id race lunch312 gender y301-y313;
MISSING = ALL (999) ;
GROUPING = gender (0=female 1=male);
USEVARIABLES = y301-y313;
ANALYSIS: \(\quad\) PROCESSORS \(=4\);
ESTIMATOR = MLR;
MODEL: f1-f3 BY y301-y313 (*1);
OUTPUT: TECH1 SAMPSTAT MODINDICES STANDARDIZED;

\section*{Input Model M2}
```

TITLE: Cohort 3 Case and Class variables
DATA: FILE = Muthen.dat;
VARIABLE: NAMES = id race lunch312 gender y301-y313;
MISSING = ALL (999);
GROUPING $=$ gender ($0=$ female $1=$ male);
USEVARIABLES = y301-y313;
ANALYSIS: \quad PROCESSORS $=4$;
ESTIMATOR = MLR;
MODEL: f1-f3 BY y301-y313 (*1);
[f1-f3@0];
MODEL MALE: [y301-y313];
OUTPUT: TECH1 SAMPSTAT MODINDICES STANDARDIZED;

```
```

Input Model M3
TITLE: Cohort 3 Case and Class variables
DATA: FILE = Muthen.dat;
VARIABLE: NAMES = id race lunch312 gender y301-y313;
MISSING = ALL (999);
GROUPING = gender (0=female 1=male);
USEVARIABLES = y301-y313;
ANALYSIS: PROCESSORS = 4;
ESTIMATOR = MLR;
MODEL: f1-f3 BY y301-y313 (*1);
[f1-f3@0];
MODEL MALE: f1-f3 BY y301-y313 (*1);
[y301-y313];
OUTPUT: TECH1 SAMPSTAT MODINDICES STANDARDIZED;

```

\section*{Further Readings On ESEM}

Asparouhov, T. \& Muthén, B. (2008). Exploratory structural equation modeling. Forthcoming in Structural Equation Modeling.
Marsh, H.W., Muthén, B., Asparouhov, A., Lüdtke, O., Robitzsch, A., Morin, A.J.S., \& Trautwein, U. (2009). Exploratory Structural Equation Modeling, Integrating CFA and EFA: Application to Students' Evaluations of University Teaching. Forthcoming in Structural Equation Modeling.

Web talk: Exploratory structural equation modeling. See http://www.statmodel.com/webtalks.shtml

Version 5.1 Language Addendum and Examples Addendum covering ESEM. See http://www.statmodel.com/ugexcerpts.shtml

\section*{Technical Issues For Weighted-Least Squares Estimation}


\section*{Latent Response Variable Modeling}
- The analysis considers means (thresholds) and correlations because variances do not contribute further information
\(-E(u)=\pi, V(u)=\pi(1-\pi)\)
- For each \(u\) (see figure)
- Normality of \(u^{*}\) given \(x\) (probit)
- Residual variance fixed at 1 implies \(V(\varepsilon)\) not free,
\[
\begin{array}{r}
V\left(u^{*} \mid x\right)=\lambda^{2} V(\zeta)+V(\varepsilon)=1, \\
\text { i.e. } V(\varepsilon)=1-\lambda^{2} V(\zeta) \tag{9}
\end{array}
\]
- For pairs of \(u\) 's
- Multivariate normal \(u^{*}\) 's given \(x\)
- Because residual variances are one, \(u^{*}\) residual correlations are considered, not covariances
- Normality of \(u^{*}\) 's given \(x\) is less strong than normal \(u^{*}\) and normal \(x\), assumed for polychoric and polyserial correlations

\section*{Scale Factors With Measurement Invariance}

Problem: Correlations should not be used when comparing relationships for variables with different variances.
Solution: Add scale factors \(\delta\) to the model, \(\delta=1 / \sqrt{V\left(u^{*} \mid x\right)}\).
Example (see figure): Aim is to test measurement invariance, e.g. \(\tau_{2}=\tau_{4}=\tau, \lambda_{2}=\lambda_{4}=\lambda\).
\[
\begin{align*}
& V\left(u_{2}^{*} \mid x\right)=\lambda^{2} V\left(\zeta_{1}\right)+V\left(\varepsilon_{2}\right),  \tag{40}\\
& V\left(u_{4}^{*} \mid x\right)=\lambda^{2} V\left(\zeta_{2}\right)+V\left(\varepsilon_{4}\right), \tag{41}
\end{align*}
\]
showing that \(V\left(\mathrm{u}^{*} \mid x\right)\) varies across the two variables if either \(V(\zeta)\) or \(V(\varepsilon)\) varies, even though \(\lambda\) is invariant.
Fixing both \(V\left(\mathrm{u}_{2}^{*} \mid x\right)\) and \(V\left(\mathrm{u}_{4}^{*} \mid x\right)\) to 1 is therefore wrong under measurement invariance. Instead, use
\[
\begin{gather*}
\delta_{2}=1,  \tag{42}\\
\delta_{4} \text { free. } \tag{43}
\end{gather*}
\]

By letting \(\delta_{4}\) be free, the model allows \(V\left(u_{4}^{*} \mid x\right) \neq V\left(u_{2}^{*} \mid x\right)\), while still modeling the \(\mathrm{u}_{2}^{*}, \mathrm{u}_{4}^{*}\) correlation
\[
\begin{equation*}
\operatorname{Cov}\left(u_{2}^{*}, u_{4}^{*} \mid x\right) \delta_{2} \delta_{4} . \tag{44}
\end{equation*}
\]

\section*{Estimation With Categorical Outcomes}

Full information maximum-likelihood estimation is heavy for general models.

\section*{Limited-information weighted least squares:}

Fitting function:
\(W L S=1 / 2(\boldsymbol{s}-\boldsymbol{\sigma})^{\prime} \boldsymbol{W}^{-1}(\boldsymbol{s}-\boldsymbol{\sigma})\)
Sample statistics:
- \(\boldsymbol{s}_{1}\) : probit thresholds
- \(s_{2}:\) probit regression slopes \((q>0)\)
- \(\boldsymbol{s}_{3}:\) probit residual correlations
- \(\boldsymbol{s}^{\prime}=\left(\boldsymbol{s}_{1}^{\prime}, \boldsymbol{s}_{2}^{\prime}, \boldsymbol{s}_{3}^{\prime}\right)\)

Weight matrix:
- Full \(\boldsymbol{W}(\) GLS/WLS: \(\boldsymbol{W}=\operatorname{asympt} V(\boldsymbol{s}))\)
- Diagonal \(\boldsymbol{W}\) (WLSM, WLSMV)

Robust standard errors and chi-square in line with Satorra

\section*{Further Readings On \\ Technical Aspects Of Weighted Least Squares With Categorical Outcomes}

Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115-132. (\#11)
Muthén, B. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557-585. (\#24)
Muthén, B. \& Satorra, A. (1995). Technical aspects of Muthén's LISCOMP approach to estimation of latent variable relations with a comprehensive measurement model. Psychometrika, 60, 489-503.
Muthén, B. du Toit, S.H.C. \& Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Accepted for publication in Psychometrika. (\#75)

\section*{Levels Of Engagement}
- Mplus support for licensed Mplus users
- Mplus Discussion for brief Mplus analysis questions of general interest
- Statistical consulting not available through Mplus
- Research interaction on topics of common interest
- SEMNET

\section*{References}

\section*{Analysis With Categorical Outcomes}

\section*{General}

Agresti, A. (2002). Categorical data analysis. Second edition. New York: John Wiley \& Sons.
Agresti, A. (1996). An introduction to categorical data analysis. New York: Wiley.
Hosmer, D.W. \& Lemeshow, S. (2000). Applied logistic regression. Second edition. New York: John Wiley \& Sons.
McKelvey, R.D. \& Zavoina, W. (1975). A statistical model for the analysis of ordinal level dependent variables. Journal of Mathematical Sociology, 4, 103-120.

\section*{Censored and Poisson Regression}

Hilbe, J. M. (2007). Negative binomial regression. Cambridge, UK: Cambridge University Press.
Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34, 1-13.

\section*{References (Continued)}

Long, S. (1997). Regression models for categorical and limited dependent variables. Thousand Oaks: Sage.
Maddala, G.S. (1983). Limited-dependent and qualitative variables in econometrics. Cambridge: Cambridge University Press.
Tobin, J (1958). Estimation of relationships for limited dependent variables. Econometrica, 26, 24-36.

\section*{IRT}

Baker, F.B. \& Kim, S.H. (2004). Item response theory. Parameter estimation techniques. Second edition. New York: Marcel Dekker.
Bock, R.D. (1997). A brief history of item response theory. Educational Measurement: Issues and Practice, 16, 21-33.
du Toit, M. (2003). IRT from SSI. Lincolnwood, IL: Scientific Software International, Inc. (BILOG, MULTILOG, PARSCALE, TESTFACT)
Embretson, S. E., \& Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum.
Hambleton, R.K. \& Swaminathan, H. (1985). Item response theory. Boston: Kluwer-Nijhoff.
MacIntosh, R. \& Hashim, S. (2003). Variance estimation for converting MIMIC model parameters to IRT parameters in DIF analysis. Applied Psychological Measurement, 27, 372-379.

\section*{References (Continued)}

Muthén, B. (1985). A method for studying the homogeneity of test items with respect to other relevant variables. Journal of Educational Statistics, 10, 121-132. (\#13)
Muthén, B. (1988). Some uses of structural equation modeling in validity studies: Extending IRT to external variables. In H. Wainer \& H. Braun (Eds.), Test Validity (pp. 213-238). Hillsdale, NJ: Erlbaum Associates. (\#18)
Muthén, B. (1989). Using item-specific instructional information in achievement modeling. Psychometrika, 54, 385-396. (\#30)
Muthén, B. (1994). Instructionally sensitive psychometrics: Applications to the Second International Mathematics Study. In I. Westbury, C. Ethington, L. Sosniak \& D. Baker (Eds.), In search of more effective mathematics education: Examining data from the IEA second international mathematics study (pp. 293-324). Norwood, NJ: Ablex. (\#54)
Muthén, B. \& Asparouhov, T. (2002). Latent variable analysis with categorical outcomes: Multiple-group and growth modeling in Mplus. Mplus Web Note \#4 (www.statmodel.com).
Muthén, B., Kao, Chih-Fen \& Burstein, L. (1991). Instructional sensitivity in mathematics achievement test items: Applications of a new IRT-based detection technique. Journal of Educational Measurement, 28, 1-22. (\#35)

\section*{References (Continued)}

Muthén, B. \& Lehman, J. (1985). Multiple-group IRT modeling: Applications to item bias analysis. Journal of Educational Statistics, 10, 133-142. (\#15)
Takane, Y. \& DeLeeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393-408.

\section*{Factor Analysis}

Bartholomew, D.J. (1987). Latent variable models and factor analysis. New York: Oxford University Press.
Bock, R.D., Gibbons, R., \& Muraki, E.J. (1988). Full information item factor analysis. Applied Psychological Measurement, 12, 261-280.
Blafield, E. (1980). Clustering of observations from finite mixtures with structural information. Unpublished doctoral dissertation, Jyvaskyla studies in computer science, economics, and statistics, Jyvaskyla, Finland.
Browne, M.W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111-150
Flora, D.B. \& Curran P.J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466-491.

\section*{References (Continued)}

Lord, F.M. \& Novick, M.R. (1968). Statistical theories of mental test scores. Reading, Mass.: Addison-Wesley Publishing Co.
Millsap, R.E. \& Yun-Tien, J. (2004). Assessing factorial invariance in orderedcategorical measures. Multivariate Behavioral Research, 39, 479-515.
Mislevy, R. (1986). Recent developments in the factor analysis of categorical variables. Journal of Educational Statistics, 11, 3-31.
Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551-560. (\#3)
Muthén, B. (1989). Dichotomous factor analysis of symptom data. In Eaton \& Bohrnstedt (Eds.), Latent variable models for dichotomous outcomes: Analysis of data from the Epidemiological Catchment Area program (pp. 19-65), a special issue of Sociological Methods \& Research, 18, 19-65. (\#21)
Muthén, B. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557-585. (\#24)
Muthén, B. (1996). Psychometric evaluation of diagnostic criteria: Application to a two-dimensional model of alcohol abuse and dependence. Drug and Alcohol Dependence, 41, 101-112. (\#66)

\section*{References (Continued)}

Muthén, B. \& Asparouhov, T. (2002). Latent variable analysis with categorical outcomes: Multiple-group and growth modeling in Mplus. Mplus Web Note \#4 (www.statmodel.com).
Muthén, B. \& Christoffersson, A. (1981). Simultaneous factor analysis of dichotomous variables in several groups. Psychometrika, 46, 407-419. (\#6)
Muthén, B. \& Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of non-normal Likert variables. British Journal of Mathematical and Statistical Psychology, 38, 171-189.
Muthén, B. \& Kaplan, D. (1992). A comparison of some methodologies for the factor analysis of non-normal Likert variables: A note on the size of the model. British Journal of Mathematical and Statistical Psychology, 45, 1930.

Muthén, B. \& Satorra, A. (1995). Technical aspects of Muthén's LISCOMP approach to estimation of latent variable relations with a comprehensive measurement model. Psychometrika, 60, 489-503.
Takane, Y. \& DeLeeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393408.

Yung, Y.F. (1997). Finite mixtures in confirmatory factor-analysis models. Psychometrika, 62, 297-330.

\section*{References (Continued)}

\section*{MIMIC}

Gallo, J.J., Anthony, J. \& Muthén, B. (1994). Age differences in the symptoms of depression: a latent trait analysis. Journals of Gerontology: Psychological Sciences, 49, 251-264. (\#52)
Muthén, B. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557-585. (\#24)
Muthén, B., Tam, T., Muthén, L., Stolzenberg, R.M. \& Hollis, M. (1993). Latent variable modeling in the LISCOMP framework: Measurement of attitudes toward career choice. In D. Krebs \& P. Schmidt (Eds.), New directions in attitude measurement, Festschrift for Karl Schuessler (pp. 277290). Berlin: Walter de Gruyter. (\#46)

\section*{SEM}

Browne, M.W. \& Arminger, G. (1995). Specification and estimation of meanand covariance-structure models. In G. Arminger, C.C. Clogg \& M.E. Sobel (Eds.), Handbook of statistical modeling for the social and behavioral sciences (pp. 311-359). New York: Plenum Press.

\section*{References (Continued)}

MacKinnon, D.P., Lockwood, C.M., Brown, C.H., Wang, W., \& Hoffman, J.M. (2007). The intermediate endpoint effect in logistic and probit regression. Clinical Trials, 4, 499-513.
Muthén, B. (1979). A structural probit model with latent variables. Journal of the American Statistical Association, 74, 807-811. (\#4)
Muthén, B. (1983). Latent variable structural equation modeling with categorical data. Journal of Econometrics, 22, 48-65. (\#9)
Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115-132. (\#11)
Muthén, B. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557-585. (\#24) Muthén, B. (1993). Goodness of fit with categorical and other non-normal variables. In K.A. Bollen, \& J.S. Long (Eds.), Testing structural equation models (pp. 205-243). Newbury Park, CA: Sage. (\#45).
Muthén, B. \& Speckart, G. (1983). Categorizing skewed, limited dependent variables: Using multivariate probit regression to evaluate the California Civil Addict Program. Evaluation Review, 7, 257-269. (\#3)

\section*{References (Continued)}

Muthén, B. du Toit, S.H.C. \& Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Accepted for publication in Psychometrika. (\#75)
Prescott, C.A. (2004). Using the Mplus computer program to estimate models for continuous and categorical data from twins. Behavior Genetics, 34, 1740.

Xie, Y. (1989). Structural equation models for ordinal variables. Sociological Methods \& Research, 17, 325-352.
Yu, C.-Y. \& Muthén, B. (2002). Evaluation of model fit indices for latent variable models with categorical and continuous outcomes. Technical report.```

