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• Inefficient dissemination of statistical methods:
– Many good methods contributions from biostatistics, 

psychometrics, etc are underutilized in practice
• Fragmented presentation of methods:

– Technical descriptions in many different journals
– Many different pieces of limited software

• Mplus: Integration of methods in one framework
– Easy to use: Simple, non-technical language, graphics
– Powerful: General modeling capabilities

Mplus Background

• Mplus versions

• Mplus team: Linda & Bengt Muthén, Thuy Nguyen, Tihomir 
Asparouhov, Michelle Conn, Jean Maninger
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Mplus Background

‒ V1: November 1998
‒ V3: March 2004
‒ V5: November 2007
‒ V6: April, 2010

‒ V2: February 2001
‒ V4: February 2006
‒ V5.21: May 2009
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Statistical Analysis With Latent Variables
A General Modeling Framework

Statistical Concepts Captured By Latent Variables

• Measurement errors
• Factors
• Random effects
• Frailties, liabilities
• Variance components
• Missing data

• Latent classes
• Clusters
• Finite mixtures
• Missing data

Continuous Latent Variables Categorical Latent Variables

6

Statistical Analysis With Latent Variables
A General Modeling Framework (Continued)

• Factor analysis models
• Structural equation models
• Growth curve models
• Multilevel models

• Latent class models
• Mixture models
• Discrete-time survival models
• Missing data models

Models That Use Latent Variables

Mplus integrates the statistical concepts captured by 
latent variables into a general modeling framework that 
includes not only all of the models listed above but also 
combinations and extensions of these models.

Continuous Latent Variables Categorical Latent Variables
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• Observed variables
x background variables (no model structure)
y continuous and censored outcome variables
u categorical (dichotomous, ordinal, nominal) and 

count outcome variables
• Latent variables

f continuous variables
– interactions among f’s

c categorical variables
– multiple c’s

General Latent Variable Modeling Framework
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General Latent Variable Modeling Framework
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General Latent Variable Modeling Framework
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General Latent Variable Modeling Framework
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General Latent Variable Modeling Framework

• Observed variables
x background variables (no model structure)
y continuous and censored outcome variables
u categorical (dichotomous, ordinal, nominal) and 

count outcome variables
• Latent variables

f continuous variables
– interactions among f’s

c categorical variables
– multiple c’s
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Mplus
Several programs in one 
• Exploratory factor analysis
• Structural equation modeling
• Item response theory analysis
• Latent class analysis
• Latent transition analysis
• Survival analysis
• Growth modeling
• Multilevel analysis
• Complex survey data analysis
• Monte Carlo simulation

Fully integrated in the general latent variable framework
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Overview Of Mplus Courses 

• Topic 1. August 20, 2009, Johns Hopkins University: 
Introductory - advanced factor analysis and structural equation 
modeling with continuous outcomes

• Topic 2. August 21, 2009, Johns Hopkins University: 
Introductory - advanced regression analysis, IRT, factor 
analysis and structural equation modeling with categorical, 
censored, and count outcomes

• Topic 3. March 22, 2010, Johns Hopkins University: 
Introductory and intermediate growth modeling

• Topic 4. March 23, 2010, Johns Hopkins University:
Advanced growth modeling, survival analysis, and missing 
data analysis   
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Overview Of Mplus Courses (Continued)

• Topic 5. August 16, 2010, Johns Hopkins University: 
Categorical latent variable modeling with cross-sectional data
• Topic 6. August 17, 2010, Johns Hopkins University: 
Categorical latent variable modeling with longitudinal data
• Extra Topic. August 18, 2010, Johns Hopkins University: 
What’s new in Mplus version 6?

• Topic 7. March, 2011, Johns Hopkins University:
Multilevel modeling of cross-sectional data

• Topic 8. March, 2011, Johns Hopkins University: Multilevel 
modeling of longitudinal data  
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Typical Examples Of Growth Modeling
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LSAY Data

Longitudinal Study of American Youth (LSAY)

• Two cohorts measured each year beginning in 1987
– Cohort 1 - Grades 10, 11, and 12
– Cohort 2 - Grades 7, 8, 9, 10, 11, and 12

• Each cohort contains approximately 60 schools with 
approximately 60 students per school

• Variables - math and science achievement items, math and 
science attitude measures, and background variables from 
parents, teachers, and school principals

• Approximately 60 items per test with partial item overlap across
grades - adaptive tests
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Maternal Health Project Data

Maternal Health Project (MHP)
• Mothers who drank at least three drinks a week during 

their first trimester plus a random sample of mothers who 
used alcohol less often

• Mothers measured at fourth month and seventh month of 
pregnancy, at delivery, and at 8, 18, and 36 months 
postpartum

• Offspring measured at 0, 8, 18 and 36 months
• Variables for mothers - demographic, lifestyle, current 

environment, medical history, maternal psychological 
status, alcohol use, tobacco use, marijuana use, other illicit 
drug use

• Variables for offspring - head circumference, height, 
weight, gestational age, gender, and ethnicity
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MHP: Offspring Head Circumference
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Loneliness In Twins

Boomsma, D.I., Cacioppo, J.T., Muthen, B., Asparouhov, T., & Clark, S. 
(2007). Longitudinal Genetic Analysis for Loneliness in Dutch Twins.  
Twin Research and Human Genetics, 10, 267-273. 

Age range: 13-85

5 occasions: 1991, 1995, 
1997, 2000, 2002/3
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Loneliness In Twins

Males Females

I feel lonely

Nobody loves me

24

Basic Modeling Ideas
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Longitudinal Data: Three Approaches

Three modeling approaches for the regression of outcome on time 
(n is sample size, T is number of timepoints):

• Use all n x T data points to do a single regression analysis: 
Gives an intercept and a slope estimate common to all 
individuals - does not account for individual differences or lack 
of independence of observations

• Use each individual’s T data points to do n regression 
analyses: Gives an intercept and a slope estimate for each 
individual. Accounts for individual differences, but does not 
account for similarities among individuals

• Use all n x T data points to do a single random effect 
regression analysis: Gives an intercept and a slope estimate for 
each individual. Accounts for similarities among individuals by 
stipulating that all individuals’ random effects come from a 
single, common population and models the non-independence of 
observations as show on the next page
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Individual Development Over Time

(1)      yti =  η0i + η1i xt + εti

t = timepoint        i = individual

y = outcome x = time score

η0 = intercept    η1 = slope

(2a)   η0i = α0 + γ0 wi + ζ0i
(2b)   η1i = α1 + γ1 wi + ζ1i

w = time-invariant covariate

i = 1

i = 2

i = 3

y

x

η1

w

η0

w
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(1)      yti =  η0i + η1i xt + εti

(2a)    η0i = α0 + γ0 wi + ζ0i

(2b)    η1i = α1 + γ1 wi + ζ1i

Individual Development Over Time

y1

w

y2 y3 y4

η0 η1

ε1 ε2 ε3 ε4

t = 1 t = 2 t = 3 t = 4

i = 1

i = 2

i = 3

y

x
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Growth Modeling Frameworks
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Growth Modeling Frameworks/Software

Multilevel Mixed Linear

SEM

Latent Variable Modeling (Mplus)

(SAS PROC Mixed)(HLM)
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Comparison Summary Of Multilevel, 
Mixed Linear, And SEM Growth Models

• Multilevel and mixed linear models are the same
• SEM differs from the multilevel and mixed linear models in two 

ways
• Treatment of time scores

• Time scores are data for multilevel and mixed linear 
models -- individuals can have different times of 
measurement

• Time scores are parameters for SEM growth models --
time scores can be estimated

• Treatment of time-varying covariates
• Time-varying covariates have random effect coefficients 

for multilevel and mixed linear models -- coefficients 
vary over individuals

• Time-varying covariates have fixed effect coefficients 
for SEM growth models -- coefficients vary over time
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Random Effects: Multilevel
And Mixed Linear Modeling

Individual i (i = 1, 2, …, n) observed at time point t (t = 1, 2, … T). 

Multilevel model with two levels (e.g. Raudenbush & Bryk,
2002, HLM).

• Level 1: yti =  η0i + η1i xti + κi wti + εti (39)

• Level 2: η0i =  α0 + γ0 wi + ζ0i (40)
η1i =  α1 + γ1 wi + ζ1i (41)
κi =  α + γ wi + ζi (42)
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Random Effects: Multilevel
And Mixed Linear Modeling (Continued)

Mixed linear model: 

yti =  fixed part + random part (43)
= α0 + γ0 wi + (α1 + γ1 wi) xti + (α + γ wi) wti (44)

+ ζ0i + ζ1i xti + ζi wti + εti . (45)

E.g. “time X wi” refers to γ1 (e.g. Rao, 1958; Laird &
Ware, 1982; Jennrich & Sluchter, 1986; Lindstrom & Bates,
1988; BMDP5V; Goldstein, 2003, MLwiN; SAS PROC
MIXED-Littell et al. 1996 and Singer, 1999).
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Random Effects: SEM And
Multilevel Modeling

SEM (Tucker, 1958; Meredith & Tisak, 1990; McArdle &
Epstein 1987; SEM software):

Measurement part:

yti =  η0i + η1i xt + κt wti + εti . (46)

Compare with level 1 of multilevel:

yti =  η0i + η1i xti + κi wti + εti . (47)

Multilevel approach:
• xti as data: Flexible individually-varying times of 

observation
• Slopes for time-varying covariates vary over individuals 
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Random Effects: SEM And
Multilevel Modeling (Continued)

SEM approach:

• xt as parameters: Flexible growth function form
• Slopes for time-varying covariates vary over time points

Structural part (same as level 2, except for κt):

η0i = α0 + γ0 wi + ζ0i , (48)

η1i = α1 + γ1 wi + ζ1i , (49)

κt not involved (parameter).



35

Random Effects: Mixed
Linear Modeling And SEM

Mixed linear model in matrix form:

yi = (y1i, y2i, …, yTi ) ́ (51)

= Xi α + Zi bi + ei . (52)

Here, X, Z are design matrices with known values, α contains
fixed effects, and b contains random effects. Compare with 
(43) - (45).
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Random Effects: Mixed Linear 
Modeling And SEM (Continued)

SEM in matrix form:

yi = v + Λ ηi + Κ xi + εi , (53)
ηi = α + Β ηi + Γ xi + ζi . (54)

yi =  fixed part + random part
= v + Λ (Ι – Β)-1 α + Λ (Ι – Β)-1 Γ xi + Κ xi

+ Λ (Ι – Β)-1 ζi + εi .

Assume xti = xt, κi = κt in (39). Then (39) is handled by
(53) and (40) – (41) are handled by (54), putting xt in Λ and
wti, wi in xi.

Need for Λi, Κi, Βi, Γi.
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yti = ii + si
x timeti + εti

ii regressed on wi
si regressed on wi

• Wide: Multivariate, Single-Level Approach

• Long: Univariate, 2-Level Approach (CLUSTER = id)
Within Between

time ys i

Growth Modeling Approached In Two Ways:
Data Arranged As Wide Versus Long

y

i s

w

w

i

s

The intercept i is called y in Mplus

Pros And Cons Of Wide Versus Long

• Advantages of the wide approach:
– Modeling flexibility

• Unequal residual variances and covariances
• Testing of measurement invariance with multiple 

indicator growth
• Allowing partial measurement non-invariance

– Missing data modeling
– Reduction of the number of levels by one (or more)

• Advantages of the long approach 
– Many time points
– Individually-varying times of observation with missingness

38
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Advantages Of Growth Modeling 
In A Latent Variable Framework

• Flexible curve shape
• Individually-varying times of observation
• Regressions among random effects
• Multiple processes
• Modeling of zeroes
• Multiple populations
• Multiple indicators
• Embedded growth models
• Categorical latent variables: growth mixtures
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Alternative Models For Longitudinal Data

y1 y2 y3 y4

i s

Growth Curve Model

y1 y2 y3 y4

Auto-Regressive Model

Hybrid Models

Curran & Bollen (2001)
McArdle & Hamagami (2001)

Bollen & Curran (2006)
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The Latent Variable Growth Model In Practice

42

Individual Development Over Time

(1)      yti =  η0i + η1i xt + εti

(2a)    η0i = α0 + γ0 wi + ζ0i

(2b)    η1i = α1 + γ1 wi + ζ1i

y1

w

y2 y3 y4

η0 η1

ε1 ε2 ε3 ε4

t = 1 t = 2 t = 3 t = 4

i = 1
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i = 3

y
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Specifying Time Scores For
Linear Growth Models

Linear Growth Model

• Need two latent variables to describe a linear growth 
model: Intercept and slope

• Equidistant time scores 0     1     2     3
for slope: 0    .1    .2    .3

1 2 3 4
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ut
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m

e

Time

or
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Specifying Time Scores For
Linear Growth Models (Continued)

• Nonequidistant time scores 0     1     4     5     6
for slope: 0    .1    .4    .5    .6

1 2 3 4 5 6 7
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ut
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e

Time

or
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Interpretation Of The Linear Growth Factors

Model:
yti =  η0i + η1i xt + εti , (17)

where in the example t = 1, 2, 3, 4 and xt = 0, 1, 2, 3: 

y1i =  η0i + η1i 0 + ε1i , (18)
η0i =  y1i – ε1i, (19)
y2i =  η0i + η1i 1 + ε2i , (20)
y3i =  η0i + η1i 2 + ε3i , (21)
y4i =  η0i + η1i 3 + ε4i . (22)
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Interpretation Of The Linear Growth Factors 
(Continued)

Interpretation of the intercept growth factor
η0i (initial status, level):
Systematic part of the variation in the outcome variable at
the time point where the time score is zero.

• Unit factor loadings

Interpretation of the slope growth factor
η1i (growth rate, trend):
Systematic part of the increase in the outcome variable for a
time score increase of one unit.

• Time scores determined by the growth curve shape
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Interpreting Growth Model Parameters

• Intercept Growth Factor Parameters
• Mean

• Average of the outcome over individuals at the 
timepoint with the time score of zero;

• When the first time score is zero, it is the intercept 
of the average growth curve, also called initial status

• Variance
• Variance of the outcome over individuals at the 

timepoint with the time score of zero, excluding the 
residual variance
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Interpreting Growth Model 
Parameters (Continued)

• Linear Slope Growth Factor Parameters
• Mean – average growth rate over individuals
• Variance – variance of the growth rate over individuals

• Covariance with Intercept – relationship between 
individual intercept and slope values

• Outcome Parameters
• Intercepts – not estimated in the growth model – fixed 

at zero to represent measurement invariance
• Residual Variances – time-specific and measurement 

error variation
• Residual Covariances – relationships between time-

specific and measurement error sources of variation 
across time
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Latent Growth Model Parameters
And Sources Of Model Misfit

y1 y2 y3 y4

η0 η1

ε1 ε2 ε3 ε4
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Latent Growth Model Parameters
For Four Time Points

Linear growth over four time points, no covariates.
Free parameters in the H1 unrestricted model:
• 4 means and 10 variances-covariances
Free parameters in the H0 growth model:
(9 parameters, 5 d.f.):
• Means of intercept and slope growth factors
• Variances of intercept and slope growth factors
• Covariance of intercept and slope growth factors
• Residual variances for outcomes
Fixed parameters in the H0 growth model:
• Intercepts of outcomes at zero
• Loadings for intercept growth factor at one
• Loadings for slope growth factor at time scores
• Residual covariances for outcomes at zero
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Latent Growth Model Sources Of Misfit

Sources of misfit:
• Time scores for slope growth factor
• Residual covariances for outcomes
• Outcome variable intercepts
• Loadings for intercept growth factor

Model modifications:
• Recommended

– Time scores for slope growth factor
– Residual covariances for outcomes

• Not recommended
– Outcome variable intercepts
– Loadings for intercept growth factor
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Latent Growth Model Parameters 
For Three Time Points

Linear growth over three time points, no covariates.
Free parameters in the H1 unrestricted model:
• 3 means and 6 variances-covariances
Free parameters in the H0 growth model
(8 parameters, 1 d.f.)
• Means of intercept and slope growth factors
• Variances of intercept and slope growth factors
• Covariance of intercept and slope growth factors
• Residual variances for outcomes
Fixed parameters in the H0 growth model:
• Intercepts of outcomes at zero
• Loadings for intercept growth factor at one
• Loadings for slope growth factor at time scores
• Residual covariances for outcomes at zero
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Growth Model Means And Variances
yti =  η0i + η1i xt + εti ,

xt = 0, 1, …, T – 1. 

Expectation (mean; E) and variance (V): 

E (yti) = E (η0i ) + E (η1i) xt ,
V (yti) = V (η0i ) + V (η1i) xt

+ 2xt Cov (η0i , η1i) + V (εti) 

V(εti) constant over t
Cov(η0 , η1) = 0

E(yti)

t
0 1 2 3 4

} E(η1i)

}E(η0i)

V(yti)

t
0 1 2 3 4

} V(η1i)

}V(η0i)

2
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Growth Model Covariances
yti =  η0i + η1i xt + εti ,
xt = 0, 1, …, T – 1. 

Cov(yti ,yt ́i ) = V(η0i) + V(η1i) xt xt ́
+ Cov(η0i , η1i) (xt + xt ́)
+ Cov(εti , εt ́i  ).

t

η0 η1

V(η1i ) xt xt   :

t

t

η0 η1

Cov(η0i , η1i) xt :

t t

η0 η1

Cov(η0i , η1i) xt   :

t

t

η0 η1

V(η0t ) :

t
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Growth Model Estimation, Testing, And
Model Modification
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Growth Model Estimation, Testing, And
Model Modification

• Estimation: Model parameters
– Maximum-likelihood (ML) estimation under normality
– ML and non-normality robust s.e.’s
– Quasi-ML (MUML): clustered data (multilevel)
– WLS: categorical outcomes
– ML-EM: missing data, mixtures

• Model Testing
– Likelihood-ratio chi-square testing; robust chi square
– Root mean square of approximation (RMSEA): 

Close fit (≤ .05)
• Model Modification

– Expected drop in chi-square, EPC
• Estimation: Individual growth factor values (factor scores)

– Regression method – Bayes modal – Empirical Bayes
– Factor determinacy
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Estimators
In CFA, a covariance matrix and a mean vector are analyzed.
• ML – minimizes the differences between matrix summaries 

(determinant and trace) of observed and estimated 
variances/covariances

• Robust ML – same estimates as ML, standard errors and chi-
square robust to non-normality of outcomes and non-
independence of observations (MLM, MLR)

Chi-square test of model fit
Tests that the model does not fit significantly worse 
than a model where the variables correlate freely – p-values 
greater than or equal to .05 indicate good fit

H0: Factor model
H1: Free variance-covariance and mean model
If p < .05, H0 is rejected
Note: We want large p

CFA Modeling Estimation And Testing
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Model fit indices (cutoff recommendations for good fit based 
on Yu, 2002 / Hu & Bentler, 1999; see also Marsh et al, 
2004)

• CFI – chi-square comparisons of the target model to the 
baseline model – greater than or equal to .96/.95

• TLI – chi-square comparisons of the target model to the 
baseline model – greater than or equal to .95/.95

• RMSEA – function of chi-square, test of close fit – less than 
or equal to .05 (not good at n=100)/.06

• SRMR – average correlation residuals – less than or equal to 
.07 (not good with binary outcomes)/.08

• WRMR – average weighted residuals – less than or equal to 
1.00 (also good with non-normal and categorical outcomes –
not good with growth models with many timepoints or 
multiple group models)

CFA Modeling Estimation And Testing 
(Continued)
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The p value of the χ2 test gives the probability of obtaining a χ2

value this large or larger if the H0 model is correct (we want high
p values). 

Degrees of Freedom:
(Number of parameters in H1) – (number parameters in H0)

Number of H1 parameters with an unrestricted Σ: p (p + 1)/2

Number of H1 parameters with unrestricted μ and Σ: 
p + p (p + 1)/2

Degrees Of Freedom For Chi-Square 
Testing Against An Unrestricted Model

60

• When a model Ha imposes restrictions on parameters of 
model Hb, Ha is said to be nested within Hb

• To test if the nested model Ha fits significantly worse than Hb, 
a chi-square test can be obtained as the difference in the chi-
square values for the two models (testing against an 
unrestricted model) using as degrees of freedom the 
difference in number of parameters for the two models

• The chi-square difference is the same as 2 times the 
difference in log likelihood values for the two models

• The chi-square theory does not hold if Ha has restricted any of 
the Hb parameters to be on the border of their admissible 
parameter space (e.g. variance = 0)

Chi-Square Difference Testing 
Of Nested Models
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CFA Model Modification

Model modification indices are estimated for all parameters that
are fixed or constrained to be equal.

• Modification Indices – expected drop in chi-square if the 
parameter is estimated

• Expected Parameter Change Indices – expected value of the 
parameter if it is estimated

• Standardized Expected Parameter Change Indices –
standardized expected value of the parameter if it is estimated

Model Modifications

• Residual covariances
• Factor cross loadings
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Alternative Growth Model Parameterizations

Parameterization 1 – for continuous outcomes

yti = 0 + η0i + η1i xt + εti , (32)
η0i = α0 + ζ0i , (33)
η1i = α1 + ζ1i . (34)

Parameterization 2 – for categorical outcomes and
multiple indicators

yti =  v + η0i + η1i xt + εti , (35)
η0i = 0 + ζ0i , (36)
η1i = α1 + ζ1i . (37)
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Alternative Growth Model Parameterizations
Parameterization 1 – for continuous outcomes

• Outcome variable intercepts fixed at zero
• Growth factor means free to be estimated

MODEL: i BY y1-y4@1;
s BY y1@0 y2@1 y3@2 y4@3;
[y1-y4@0 i s];

Parameterization 2 – for categorical outcomes and
multiple indicators

• Outcome variable intercepts constrained to be equal
• Intercept growth factor mean fixed at zero

MODEL: i BY y1-y4@1;
s BY y1@0 y2@1 y3@2 y4@3;
[y1-y4] (1);
[i@0 s];

64

Simple Examples Of Growth Modeling
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Steps In Growth Modeling
• Preliminary descriptive studies of the data: means, 

variances, correlations, univariate and bivariate 
distributions, outliers, etc.

• Determine the shape of the growth curve from theory 
and/or data

• Individual plots

• Mean plot

• Consider change in variance across time

• Fit model without covariates using fixed time scores

• Modify model as needed

• Add covariates
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Input For LSAY TYPE=BASIC Analysis
TITLE: Basic run

DATA: FILE = lsayfull_dropout.dat;

VARIABLE: NAMES = lsayid schcode female mothed homeres math7 
math8 math9 math10 math11 math12 
mthcrs7 mthcrs8 mthcrs9 mthcrs10 mthcrs11 mthcrs12; 

!lsayid = Student id

!schcode = 7th grade school code

!mothed = mother’s education

! (1=LT HS diploma, 2=HS diploma, 3=Some college,

! 4=4yr college degree, 5=advanced degree)

!homeres = Home math and science resources

!mthcrs7-mthcrs12 = Highest math course taken during each grade

! (0 = no course, 1 – low,basic, 2 = average, 3 = high,

! 4 = pre-algebra, 5 = algebra I, 6 = geometry,

! 7 = algebra II, 8 = pre-calc, 9 = calculus)

ANALYSIS: TYPE = BASIC;

PLOT: TYPE = PLOT3;       
SERIES = math7-math10(*);
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Sample Statistics For LSAY Data
n = 3102

Means
MATH7 MATH8 MATH9 MATH10
50.356 53.872 57.962 62.250

Covariances
MATH7 MATH8 MATH9 MATH10

MATH7 103.868
MATH8 93.096 121.294
MATH9 104.328 121.439 161.394
MATH10 110.003 125.355 157.656 189.096

Correlations
MATH7 MATH8 MATH9 MATH10

MATH7 1.000
MATH8 0.829 1.000
MATH9 0.806 0.868 1.000
MATH10 0.785 0.828 0.902 1.000
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math7 math8 math9 math10

i s

70

TITLE: Growth 7 – 10, no covariates

DATA: FILE = lsayfull_dropout.dat;

VARIABLE: NAMES = lsayid schcode female mothed homeres 

math7 math8 math9 math10 math11 math12 

mthcrs7 mthcrs8 mthcrs9 mthcrs10 mthcrs11 mthcrs12; 

USEV = math7-math10;

MISSING = ALL(9999);

MODEL: i BY math7-math10@1; 

s BY math7@0 math8@1 math9@2 math10@3;

[math7-math10@0];
[i s];

OUTPUT: SAMPSTAT STANDARDIZED RESIDUAL MODINDICES (3.84);

Alternative language:

MODEL: i s | math7@0 math8@1 math9@2 math10@3;

Input For LSAY Linear Growth Model
Without Covariates
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I         BY
MATH7 1.000 0.000 999.000 999.000
MATH8 1.000 0.000 999.000 999.000
MATH9 1.000 0.000 999.000 999.000
MATH10 1.000 0.000 999.000 999.000

S         BY
MATH7 0.000 0.000 999.000 999.000
MATH8 1.000 0.000 999.000 999.000
MATH9 2.000 0.000 999.000 999.000
MATH10 3.000 0.000 999.000 999.000

Estimates   S.E.   Est./S.E.  Two-Tailed
P-Value

Model Results

Output Excerpts LSAY Linear Growth
Model Without Covariates (Continued)
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Output Excerpts LSAY Linear Growth
Model Without Covariates (Continued)

Estimates S.E. Est./S.E. Two-tailed
P-value

Means
I 50.202 0.180 279.523 0.000
S 3.939 0.059 66.460 0.000

Intercepts
MATH7 0.000 0.000 999.000 999.000
MATH8 0.000 0.000 999.000 999.000
MATH9 0.000 0.000 999.000 999.000
MATH10 0.000 0.000 999.000 999.000
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Observed 
Variable R-Square

MATH7 0.832
MATH8 0.853
MATH9 0.895
MATH10 0.912

R-Square

Output Excerpts LSAY Linear Growth
Model Without Covariates (Continued)

Estimates S.E. Est./S.E. Two-tailed
P-value

Residual Variances
MATH7 17.430 1.002 17.400 0.000
MATH8 18.440 0.750 24.596 0.000
MATH9 16.184 0.757 20.561 0.000
MATH10 17.219 1.301 13.230 0.000

Variances
I 86.159 2.606 33.067 0.000
S 4.792 0.295 16.262 0.000

I       WITH
S 8.031 0.654 12.276 0.000
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Tests Of Model Fit

Chi-Square Test of Model Fit
Value 86.541
Degrees of Freedom 5
P-Value 0.0000

CFI/TLI
CFI 0.992
TLI 0.990

RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.073
90 Percent C.I. 0.060 0.086
Probability RMSEA <= .05 0.002

SRMR (Standardized Root Mean Square Residual)
Value 0.047

Output Excerpts LSAY Linear Growth
Model Without Covariates (Continued)
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M.I. E.P.C. Std.E.P.C. StdYX E.P.C.

BY Statements

I BY MATH7 18.291 0.013 0.123 0.012

I BY MATH8 15.115 -0.008 -0.073 -0.006

S BY MATH7 22.251 0.178 0.389 0.038

S BY MATH8 24.727 -0.120 -0.263 -0.023

WITH Statements

MATH9 WITH MATH7 18.449 -2.930 -2.930 -0.174

MATH9 WITH MATH8 31.311 4.767 4.767 0.276

MATH10 WITH MATH7 30.282 5.742 5.742 0.331

MATH10 WITH MATH8 54.842 -6.353 -6.353 -0.357

MATH10 WITH MATH9 31.503 14.816 14.816 0.888

Modification Indices

Output Excerpts LSAY Linear Growth
Model Without Covariates (Continued)
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M.I. E.P.C. Std.E.P.C. StdYX E.P.C.

Means/Intercepts/Thresholds

[ MATH7    ] 18.011 0.671 0.671 0.066

[ MATH8    ] 12.506 -0.362 -.362 -0.032

Output Excerpts LSAY Linear Growth
Model Without Covariates (Continued)

Modification Indices
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Linear Growth Model Without Covariates: 
Adding Correlated Residuals

MODEL:

i s | math7@0 math8@1 math9@2 math10@3;
math7-math9 PWITH math8-math10;

math7 math8 math9 math10

i s
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Output Excerpts LSAY Linear Growth Model 
Without Covariates: 

Adding Correlated Residuals

Tests Of Model Fit
Chi-Square Test of Model Fit

Value 18.519
Degrees of Freedom 2
P-Value 0.0000

CFI/TLI
CFI 0.998
TLI 0.995

RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.052
90 Percent C.I. 0.032 0.074
Probability RMSEA <= .05 0.404

SRMR (Standardized Root Mean Square Residual)
Value 0.011
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Output Excerpts LSAY: 
Adding Correlated Residuals (Continued)

Estimates S.E. Est./S.E. Two-tailed
P-value

S       WITH
I 6.133 1.379 4.447 0.000

MATH7   WITH
MATH8 -5.078 2.146 -2.366 0.018

MATH8   WITH
MATH9 4.917 0.916 5.365 0.000

MATH9   WITH
MATH10 17.062 2.983 5.720 0.000

Means
I 50.203 0.180 279.431 0.000
S 3.936 0.059 66.693 0.000
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Estimates S.E. Est./S.E. Two-tailed
P-value

Variances

I 92.038 4.167 22.085 0.000

S 3.043 0.789 3.858 0.000

Residual Variances

MATH7 11.871 3.466 3.425 0.001

MATH8 14.027 1.980 7.085 0.000

MATH9 32.596 2.609 12.492 0.000

MATH10 33.857 4.815 7.032 0.000

Output Excerpts LSAY: 
Adding Correlated Residuals (Continued)
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ESTIMATED MODEL AND RESIDUALS (OBSERVED – ESTIMATED)

Model Estimated Means/Intercepts/Thresholds

MATH7 MATH8 MATH9 MATH10

1 50.203 54.140 58.076 62.012

Residuals for Means/Intercepts/Thresholds

MATH7 MATH8 MATH9 MATH10

1 0.153 -0.267 -0.114 0.238

Standardized Residuals (z-scores) for 
Means/Intercepts/Thresholds

MATH7 MATH8 MATH9 MATH10

1 4.198 -4.109 -1.256 5.199

Normalized Residuals for Means/Intercepts/Thresholds

MATH7 MATH8 MATH9 MATH10

1 0.834 -1.317 -0.478 0.904

Output Excerpts LSAY: 
Adding Correlated Residuals (Continued)
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Model Estimated Covariances/Correlations/Residual 
Correlations

MATH7 MATH8 MATH9 MATH10

MATH7 103.910

MATH8 93.093 121.375

MATH9 104.304 121.441 161.339

MATH10 110.437 125.700 158.025 190.083

Residuals for Covariances/Correlations/Residual Correlations

MATH7 MATH8 MATH9 MATH10

MATH7 -0.041

MATH8 0.002 -0.081

MATH9 0.024 -0.002 0.055

MATH10 -0.434 -0.345 -0.368 -0.987

Output Excerpts LSAY:
Adding Correlated Residuals (Continued)
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Output Excerpts LSAY: 
Adding Correlated Residuals (Continued)

Standardized Residuals (z-scores) for 
Covariances/Correlations/Residual Corr

MATH7 MATH8 MATH9 MATH10

MATH7 999.000

MATH8 999.000 999.000

MATH9 0.279 999.000 0.297

MATH10 999.000 999.000 999.000 999.000

Normalized Residuals for Covariances/Correlations/Residual 
Correlations

MATH7 MATH8 MATH9 MATH10

MATH7 -0.016

MATH8 0.001 -0.025

MATH9 0.008 -0.001 0.012

MATH10 -0.130 -0.092 -0.081 -0.185
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Covariates In The Growth Model
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• Types of covariates

• Time-invariant covariates—vary across individuals not 
time, explain the variation in the growth factors

• Time-varying covariates—vary across individuals and 
time, explain the variation in the outcomes beyond the 
growth factors

Covariates In The Growth Model

86

y1 y2 y3 y4

η0

η1

w a21 a22 a23 a24

Time-Invariant And
Time-Varying Covariates
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LSAY Growth Model With 
Time-Invariant Covariates

math7 math8 math9 math10

i s

mothed homeresfemale
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Input Excerpts For LSAY Linear Growth 
Model With Time-Invariant Covariates

TITLE: Growth 7 – 10, no covariates

DATA: FILE = lsayfull_dropout.dat;

VARIABLE: NAMES = lsayid schcode female mothed homeres 
math7 math8 math9 math10 math11 math12 

mthcrs7 mthcrs8 mthcrs9 mthcrs10 mthcrs11 mthcrs12; 

MISSING = ALL (999);
USEVAR = math7-math10 female mothed homeres;

ANALYSIS: !ESTIMATOR = MLR;

MODEL: i s | math7@0 math8@1 math9@2 math10@3;
i s ON female mothed homeres;

Alternative language:

MODEL: i BY math7-math10@1;
s BY math7@0 math8@1 math9@2 math10@3;
[math7-math10@0];
[i s];
i s ON female mothed homeres;
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Output Excerpts LSAY Growth Model
With Time-Invariant Covariates

Chi-Square Test of Model Fit
Value 33.611
Degrees of Freedom 8
P-Value 0.000

CFI/TLI
CFI 0.998
TLI 0.994

RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.032
90 Percent C.I. 0.021
Probability RMSEA <= .05 0.996

SRMR (Standardized Root Mean Square Residual)
Value 0.010

Tests Of Model Fit for ML
n = 3116

0.044
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Output Excerpts LSAY Growth Model
With Time-Invariant Covariates (Continued)

Tests Of Model Fit for MLR
Chi-Square Test of Model Fit

Value 33.290
Degrees of Freedom 8
P-Value 0.0001
Scaling Correction Factor 1.010

for MLR
CFI/TLI

CFI 0.997
TLI 0.993

RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.015
90 Percent C.I. 0.021
Probability RMSEA <= .05 0.996

SRMR (Standardized Root Mean Square Residual)
Value 0.010

*

0.043
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Selected Estimates For ML

Estimate S.E. Est./S.E. Two-Tailed

P-Value

I        ON

FEMALE 2.123 0.327 6.499 0.000

MOTHED 2.262 0.164 13.763 0.000

HOMERES 1.751 0.104 16.918 0.000

S        ON

FEMALE -0.134 0.116 -1.153 0.249

MOTHED 0.223 0.059 3.771 0.000

HOMERES 0.273 0.037 7.308 0.000

Output Excerpts LSAY Growth Model
With Time-Invariant Covariates (Continued)
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Estimate S.E. Est./S.E. Two-Tailed

P-Value

S      WITH

I 4.131 1.244 3.320 0.001

Residual Variances

I 71.888 3.630 19.804 0.000

S 3.313 0.724 4.579 0.000

Intercepts

I 38.434 0.497 77.391 0.000

S 2.636 0.181 14.561 0.000

Output Excerpts LSAY Growth Model
With Time-Invariant Covariates (Continued)
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Observed 
Variable R-Square

MATH7 0.876
MATH8 0.863
MATH9 0.817
MATH10 0.854

Latent
Variable R-Square

I .204
S .091

R-Square

Output Excerpts LSAY Growth Model
With Time-Invariant Covariates (Continued)
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Output Excerpts LSAY Growth Model
With Time-Invariant Covariates (Continued)
TECHNICAL 4 OUTPUT

ESTIMATES DERIVED FROM THE MODEL

ESTIMATED MEANS FOR THE LATENT VARIABLES

I S FEMALE MOTHED HOMERES

50.219 3.944 0.478 2.347 3.118
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ESTIMATED COVARIANCE MATRIX FOR THE LATENT VARIABLES

I S FEMALE MOTHED HOMERES

I 90.264

S 6.411 3.647

FEMALE 0.350 -0.058 0.250

MOTHED 3.226 0.373 -0.024 1.088

HOMERES 5.901 0.891 -0.071 0.467 2.853

ESTIMATED CORRELATION MATRIX FOR THE LATENT VARIABLES

I S FEMALE MOTHED HOMERES

I 1.000

S 0.353 1.000

FEMALE 0.074 -0.061 1.000

MOTHED 0.326 0.187 -0.047 1.000

HOMERES 0.368 0.276 -0.084 0.265 1.000

Output Excerpts LSAY Growth Model
With Time-Invariant Covariates (Continued)
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Model Estimated Average And Individual
Growth Curves With Covariates

Model:
yti =  η0i + η1i xt + εti , (23)
η0i = α0 + γ0 wi + ζ0i , (24)
η1i = α1 + γ1 wi + ζ1i , (25)

Estimated growth factor means:
Ê(η0i ) = , (26)
Ê(η1i ) = . (27)

Estimated outcome means:
Ê(yti ) = Ê(η0i ) + Ê(η1i ) xt . (28)

Estimated outcomes for individual i :
(29)

where       and        are estimated factor scores. yti can be
used for prediction purposes.

w00 ˆˆ γα  +
w11 ˆˆ γα  +

t1i0iti xηηy ˆˆˆ +=

i0η̂ i1̂η



97

Model Estimated Means With Covariates
Model estimated means are available using the TECH4 and RESIDUAL options of 

the OUTPUT command.

Estimated Intercept Mean = Estimated Intercept +
Estimated Slope (Female)*Sample Mean (Female) +
Estimated Slope (Mothed)*Sample Mean (Mothed) +
Estimated Slope (Homeres)*Sample Mean (Homeres)

38.43 + 2.12*0.48 + 2.26*2.35 + 1.75*3.12 = 50.22

Estimated Slope Mean    = Estimated Intercept +
Estimated Slope (Female)*Sample Mean (Female) + 
Estimated Slope (Mothed)*Sample Mean (Mothed) +
Estimated Slope (Homeres)*Sample Mean (Homeres)

2.64 – 0.13*0.48 + 0.22*2.35 + 0.27*3.11 = 3.94
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Model Estimated Means With Covariates
(Continued)

Estimated Outcome Mean at Timepoint t =

Estimated Intercept Mean  +
Estimated Slope Mean * (Time Score at Timepoint t)

Estimated Outcome Mean at Timepoint 1 =
50.22 + 3.94 * (0)   = 50.22

Estimated Outcome Mean at Timepoint 2 =
50.22 + 3.94 * (1.00) = 54.16

Estimated Outcome Mean at Timepoint 3 =
50.22 + 3.94 * (2.00) = 58.11

Estimated Outcome Mean at Timepoint 4 =
50.22 + 3.94 * (3.00) = 62.05
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Centering

100

Centering
• Centering determines the interpretation of the intercept

growth factor

• The centering point is the timepoint at which the time score is
zero

• A model can be estimated for different centering points
depending on which interpretation is of interest

• Models with different centering points give the same model
fit because they are reparameterizations of the model

• Changing the centering point in a linear growth model with
four timepoints

Timepoints    1    2    3    4
Centering at

Time scores   0    1    2    3       Timepoint 1
-1    0    1    2       Timepoint 2
-2   -1    0    1       Timepoint 3
-3   -2   -1    0      Timepoint 4
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Input Excerpts For LSAY Growth Model 
With Covariates Centered At Grade 10

MODEL: i s | math7@-3 math8@-2 math9@-1 math10@0;
i s ON female mothed homeres;
math7-math9 PWITH math8-math10;

OUTPUT: TECH1 RESIDUAL STANDARDIZED MODINDICES TECH4;

Alternative language:

MODEL: i BY math7-math10@1;
s BY math7@-3 math8@-2 math9@-1 math10@0;
math7-math9 PWITH math8-math10;
[math7-math10@0];
[i s];
i s ON female mothed homeres;
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n = 3116

Tests of Model Fit

CHI-SQUARE TEST OF MODEL FIT

Value 33.611
Degrees of Freedom 8
P-Value 0.000

RMSEA (ROOT MEAN SQUARE ERROR OF APPROXIMATION)

Estimate .032
90 Percent C.I. .021 .044
Probability RMSEA <= .05 .996

Output Excerpts LSAY Growth Model 
With Covariates Centered At Grade 10 
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Output Excerpts LSAY Growth Model 
With Covariates Centered At Grade 10 

(Continued)
SELECTED ESTIMATES

Estimate S.E. Est./S.E. Two-Tailed

P-Value

I        ON

FEMALE 1.723 0.473 3.643 0.000

MOTHED 2.930 0.239 12.249 0.000

HOMERES 2.569 0.151 17.002 0.000

S        ON

FEMALE -0.133 0.116 -1.153 0.249

MOTHED 0.223 0.059 3.771 0.000

HOMERES 0.273 0.037 7.308 0.000
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Further Readings On Introductory Growth Modeling

Bijleveld, C. C. J. H., & van der Kamp, T. (1998).  Longitudinal data 
analysis: Designs, models, and methods. Newbury Park: Sage.

Bollen, K.A. & Curran, P.J. (2006). Latent curve models. A structural 
equation perspective. New York: Wiley.

Duncan, T., Duncan S. & Strycker, L. (2006). An introduction to latent 
variable growth curve modeling. Second edition. Lawrence 
Erlbaum: New York. 

Muthén, B. & Khoo, S.T. (1998).  Longitudinal studies of achievement 
growth using latent variable modeling. Learning and Individual 
Differences, Special issue: latent growth curve analysis, 10, 73-
101.  (#80)

Muthén, B. & Muthén, L. (2000).  The development of heavy drinking 
and alcohol-related problems from ages 18 to 37 in a U.S. national 
sample.  Journal of Studies on Alcohol, 61, 290-300.  (#83)
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Further Readings On Introductory Growth Modeling 
(Continued)

Raudenbush, S.W. & Bryk, A.S. (2002).  Hierarchical linear models: 
Applications and data analysis methods.  Second edition.  Newbury 
Park, CA: Sage Publications.  

Singer, J.D. & Willett, J.B. (2003). Applied longitudinal data analysis.  
Modeling change and event occurrence.  New York, NY:  Oxford 
University Press.

Snijders, T. & Bosker, R. (1999).  Multilevel analysis. An introduction 
to basic and advanced multilevel modeling.  Thousand Oakes, CA: 
Sage Publications.

106

Non-Linear Growth
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Six Ways To Model Non-Linear Growth 

• Estimated time scores 
• Quadratic (cubic) growth model 
• Fixed non-linear time scores 
• Piecewise growth modeling
• Time-varying covariates 
• Non-linearity of random effects

108

Growth Model With Free Time Scores
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Specifying Time Scores For Non-Linear
Growth Models With Estimated Time Scores

Non-linear growth models with estimated time scores

• Need two latent variables to describe a non-linear growth 
model: Intercept and slope

Time scores: 0     1     Estimated Estimated

1 2 3 4

∗

∗

O
ut

co
m

e

O
ut

co
m

e
Time Time

1 2 3 4

∗
∗
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Input Excerpts For LSAY 
Linear Growth Model With Free Time Scores 

Without Covariates

MODEL: i s | math7@0 math8@1 math9@2 math10@3 math11@4 
math12*5;

Alternative language:

MODEL: i BY math7-math12@1;
s BY math7@0 math8@1 math9@2 math10@3 math11@4 
math12*5;
[math7-math12@0];
[i s];
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Output Excerpts LSAY Growth Model
With Free Time Scores Without Covariates

Chi-Square Test of Model Fit
Value 121.095
Degrees of Freedom 10
P-Value 0.0000

CFI/TLI
CFI 0.992
TLI 0.989

RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.060
90 Percent C.I. 0.051
Probability RMSEA <= .05 0.041

SRMR (Standardized Root Mean Square Residual)
Value 0.034

Tests Of Model Fit
n = 3102

0.070

112

Output Excerpts LSAY Growth Model 
With Free Time Scores Without 

Covariates (Continued)
Estimate S.E. Est./S.E. Two-Tailed

P-Value

I         |

MATH7 1.000 0.000 999.000 999.000

MATH8 1.000 0.000 999.000 999.000

MATH9 1.000 0.000 999.000 999.000

MATH10 1.000 0.000 999.000 999.000

MATH11 1.000 0.000 999.000 999.000

MATH12 1.000 0.000 999.000 999.000

S         |

MATH7 0.000 0.000 999.000 999.000

MATH8 1.000 0.000 999.000 999.000

MATH9 2.000 0.000 999.000 999.000

MATH10 3.000 0.000 999.000 999.000
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Output Excerpts LSAY Growth Model 
With Free Time Scores Without 

Covariates (Continued)

Estimate S.E. Est./S.E. Two-Tailed

P-Value

MATH11 4.000 0.000 999.000 999.000

MATH12 4.095 0.042 97.236 0.000

S      WITH

I 4.986 0.741 6.725 0.000

Variances

I 91.374 3.046 29.994 0.000

S 4.001 0.276 14.666 0.000

Means

I 50.323 0.180 279.612 0.000

S 3.752 0.049 76.472 0.000
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• Identification of the model – for a model with two growth 
factors, at least one time score must be fixed to a non-zero 
value (usually one) in addition to the time score that is 
fixed at zero (centering point)

• Interpretation—cannot interpret the mean of the slope 
growth factor as a constant rate of change over all 
timepoints, but as the rate of change for a time score 
change of one.

• Approach—fix the time score following the centering point 
at one

Growth Model With Free Time Scores
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• The slope growth factor mean is the expected change in the 
outcome variable for a one unit change in the time score

• In non-linear growth models, the time scores should be 
chosen so that a one unit change occurs between 
timepoints of substantive interest.

• An example of 4 timepoints representing grades 7, 8, 9, 
and 10

• Time scores of 0 1 * * – slope factor mean refers to 
expected change between grades 7 and 8

• Time scores of 0 * * 1 – slope factor mean refers to 
expected change between grades 7 and 10

Interpretation Of Slope Growth Factor Mean
For Non-Linear Models

116

Specifying Time Scores For 
Quadratic Growth Models

• Linear slope time scores: 0  1  2  3  or  0 .1 .2 .3
• Quadratic slope time scores: 0  1  4  9  or  0  .01  .04  .09

xt
2

1 2 3 4

O
ut

co
m

e

Time

Quadratic growth model

yti = η0i + η1i xt + η2i + εti        or

• Need three latent variables to describe a quadratic growth 
model: Intercept, linear slope, quadratic slope

where c is a centering constant, e.g. 

2
t2iti1i0ti )cx()cx(y −⋅+−⋅+= ηηη

x



Mplus Specification Of Several Growth Factors

• Quadratic:
i s q | y1@0 y2@1 y3@2 y4@3;

or alternatively
i BY y1-y4@1;
s BY y1@0 y2@1 y3@2 y4@3;
q BY y1@0 y2@1 y3@4 y4@9;

• Cubic
i s q c | y1@0 y2@1 y3@2 y4@3;

• Intercept only
i | y1-y4;
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Specifying Time Scores For Non-Linear
Growth Models With Fixed Time Scores

Non-Linear Growth Models with Fixed Time scores
• Need two latent variables to describe a non-linear growth 

model: Intercept and slope

Growth model with a logarithmic growth curve--ln(t)

Time scores: 0   0.69   1.10   1.39

1 2 3 4

O
ut

co
m

e

Time
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Specifying Time Scores For Non-Linear
Growth Models With Fixed Time Scores (Continued)

Growth model with an exponential growth curve–
exp(t-1) - 1

Time scores: 0   1.72   6.39   19.09

1 2 3 4

O
ut

co
m

e

Time

120

Piecewise Growth Modeling
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Piecewise Growth Modeling

• Can be used to represent different phases of development
• Can be used to capture non-linear growth
• Each piece has its own growth factor(s)
• Each piece can have its own coefficients for covariates

20

15

10

5

0
1 2 3 4 5 6

One intercept growth factor, two slope growth factors
s1:          0     1     2     2     2     2     Time scores piece 1
s2:          0     0     0     1     2     3     Time scores piece 2
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Piecewise Growth Modeling (Continued)

20

15

10

5

0
1 2 3 4 5 6

Two intercept growth factors, two slope growth factors
0     1     2     Time scores piece 1

0     1     2     Time scores piece 2

Sequential model
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LSAY Piecewise Linear Growth Modeling: 
Grades 7-10 and 10-12

math7 math8 math9 math10

i s1 s2

321

math11 math12

3 3 21
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Input For LSAY Piecewise Growth Model
With Covariates

MODEL: i s1 | math7@0 math8@1 math9@2 math10@3 math11@3 
math12@3;
i s2 | math7@0 math8@0 math9@0 math10@0 math11@1 
math12@2;
i s1 s2 ON female mothed homeres;

Alternative language:

MODEL: i BY math7-math12@1;
s1 BY math7@0 math8@1 math9@2 math10@3 math11@3 
math12@3;
s2 BY math7@0 math8@0 math9@0 math10@0 math11@1 
math12@2;
[math7-math12@0];
[i s1 s2];
i s1 s2 ON female mothed homeres;
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n = 3116

Tests of Model Fit

CHI-SQUARE TEST OF MODEL FIT

Value 229.22 
Degrees of Freedom 21
P-Value 0.0000

RMSEA (ROOT MEAN SQUARE ERROR OF APPROXIMATION)

Estimate 0.056
90 Percent C.I. 0.050 0.063
Probability RMSEA <= .05 0.051

Output Excerpts LSAY Piecewise Growth Model 
With Covariates
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Output Excerpts LSAY Piecewise Growth Model 
With Covariates (Continued)

SELECTED ESTIMATES

Estimate S.E. Est./S.E. Two-Tailed

P-Value

I        ON

FEMALE 2.126 0.327 6.496 0.000

MOTHED 2.282 0.165 13.867 0.000

HOMERES 1.757 0.104 16.953 0.000

S1       ON

FEMALE -0.121 0.114 -1.065 0.287

MOTHED 0.216 0.058 3.703 0.000

HOMERES 0.269 0.037 7.325 0.000

S2       ON

FEMALE -0.178 0.191 -0.935 0.350

MOTHED 0.071 0.099 0.719 0.472

HOMERES 0.047 0.061 0.758 0.449



127

Intermediate Growth Models

128

Growth Model With Individually-Varying Times
Of Observation And Random Slopes

For Time-Varying Covariates



129

Growth Modeling In Multilevel Terms

Time point t, individual i (two-level modeling, no clustering):

yti : repeated measures of the outcome, e.g. math achievement
a1ti : time-related variable; e.g. grade 7-10
a2ti : time-varying covariate, e.g. math course taking
xi : time-invariant covariate, e.g. grade 7 expectations

Two-level analysis with individually-varying times of observation and 
random slopes for time-varying covariates:

Level 1: yti = π0i + π1i a1ti + π2ti  a2ti + eti , (55)

π 0i = ß00 + ß01 xi + r0i ,
π 1i = ß10 + ß11 xi + r1i , (56)
π 2i = ß20 + ß21 xi + r2i .

Level 2:
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i

s

stvc

mothed

homeres

female

crs7

math7 math8 math9 math10

crs8 crs9 crs10
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TITLE: Growth model with individually varying times of 
observation and random slopes

DATA: FILE IS lsaynew.dat; 
FORMAT IS 3F8.0 F8.4 8F8.2 3F8.0;

VARIABLE: NAMES ARE math7 math8 math9 math10 crs7 crs8 crs9

crs10 female mothed homeres a7-a10; 

! crs7-crs10 = highest math course taken during each
! grade (0=no course, 1=low, basic, 2=average, 3=high.

! 4=pre-algebra, 5=algebra I, 6=geometry,

! 7=algebra II, 8=pre-calc, 9=calculus)

MISSING ARE ALL (9999);

CENTER = GRANDMEAN (crs7-crs10 mothed homeres);
TSCORES = a7-a10;

Input For Growth Model With Individually 
Varying Times Of Observation
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DEFINE: math7 = math7/10;
math8 = math8/10;
math9 = math9/10;
math10 = math10/10;

ANALYSIS: TYPE = RANDOM MISSING;
ESTIMATOR = ML;
MCONVERGENCE = .001;

MODEL: i s | math7-math10 AT a7-a10;
stvc | math7 ON crs7;
stvc | math8 ON crs8;
stvc | math9 ON crs9;
stvc | math10 ON crs10;
i ON female mothed homeres;
s ON female mothed homeres;
stvc ON female mothed homeres;
i WITH s;
stvc WITH i;
stvc WITH s;

OUTPUT: TECH8;

Input For Growth Model With Individually 
Varying Times Of Observation (Continued)
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Output Excerpts For Growth Model With
Individually Varying Times Of Observation

And Random Slopes For Time-Varying Covariates 

n = 2271

Tests of Model Fit

Loglikelihood

H0 Value -8199.311

Information Criteria

Number of Free Parameters          22
Akaike (AIC) 16442.623
Bayesian (BIC) 16568.638
Sample-Size Adjusted BIC    16498.740

(n* = (n + 2) / 24)
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I          ON
FEMALE 0.187 0.036 5.247
MOTHED 0.187 0.018 10.231
HOMERES 0.159 0.011 14.194

S          ON
FEMALE -0.025 0.012 -2.017
MOTHED 0.015 0.006 2.429
HOMERES 0.019 0.004 4.835

STVC       ON
FEMALE -0.008 0.013 -0.590
MOTHED 0.003 0.007 0.429
HOMERES 0.009 0.004 2.167

I          WITH
S 0.038 0.006 6.445

STVC       WITH
I 0.011 0.005 2.087
S 0.004 0.002 2.033

Output Excerpts For Growth Model With Individually 
Varying Times Of Observation And Random Slopes 

For Time-Varying Covariates (Continued)
Model Results Estimates S.E. Est./S.E.
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Intercepts
MATH7 0.000 0.000 0.000
MATH8 0.000 0.000 0.000
MATH9 0.000 0.000 0.000
MATH10 0.000 0.000 0.000
I 4.992 0.025 198.456
S 0.417 0.009 47.275
STVC 0.113 0.010 11.416

Residual Variances
MATH7 0.185 0.011 16.464
MATH8 0.178 0.008 22.232
MATH9 0.156 0.008 18.497
MATH10 0.169 0.014 12.500
I 0.570 0.023 25.087
S 0.036 0.003 12.064
STVC 0.012 0.002 5.055

Output Excerpts For Growth Model With Individually 
Varying Times Of Observation And Random Slopes 

For Time-Varying Covariates (Continued)
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Why No Chi-Square With Random Slopes 
For Random Variables?

The variance of y changes as a function of a1ti values.

Not a constant Σ to test the model fit for.

Consider as an example individually-varying times of observation 
a1ti: 

( ) ( ) ( ) ( ) ( )tii1i0ti1
2
ti1i1i0ti1ti eV  ,Cov a 2a V  V  a|yV +++= ππππ

titi1i1i0ti ea y ++= ππ
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Maximum-Likelihood Alternatives

Note that [y, x] = [y | x] * [x], where the marginal distribution [x] 
is unrestricted.

Normal theory ML for
• [y, x]: Gives the same results as [y | x] when there is no 

missing data (Joreskog & Goldberger, 1975). Typically used in 
SEM
– With missing data on x, the normality assumption for x is 

an additional assumption not used with [y | x]
• [y | x]: Makes normality assumptions for residuals, not for 

x. Typically used outside SEM
– Used with Type = Random, Type = Mixture, and with 

categorical, censored, and count outcomes
– Deletes individuals with missing on any x

• [y, x] versus [y | x] gives different sample sizes and the 
likelihood and BIC values are not on a comparable scale 
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Alternative Models 
With Time-Varying Covariates
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Alternative Models
With Time-Varying Covariates

i

s

stvc

mothed

homeres

female

crs7

math7 math8 math9 math10

crs8 crs9 crs10

i

s

mothed

homeres

female

crs7

math7 math8 math9 math10

crs8 crs9 crs10

Model M1 Model M2
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Input Excerpts Model M1

ANALYSIS: TYPE = RANDOM; ! gives loglikelihood in [y | x] metric

MODEL: i s | math7@0 math8@1 math9@2 math10@3;

i s ON female mothed homeres;

math7 ON mthcrs7;
math8 ON mthcrs8;

math9 ON mthcrs9;

math10 ON mthcrs10;
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Output Excerpts Model M1

TESTS OF MODEL FIT

Chi-Square Test of Model Fit

Value 1143.173*

Degrees of Freedom 23  

P-Value 0.000 

Scaling Correlation Factor 1.058 

for MLR

*  The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and 
WLSMV cannot be used for chi-square difference tests.  MLM, 
MLR and WLSM chi-square difference testing is described in 
the Mplus Technical Appendices at www.statmodel.com.  See 
chi-square difference testing in the index of the Mplus 
User’s Guide. 
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Output Excerpts Model M1 (Continued)

Chi-Square Test of Model Fit for the Baseline Model

Value 8680.167

Degrees of Freedom 34

P-Value 0.000

CFI/TLI

CFI 0.870

TLI 0.808

Loglikelihood

H0 Value -26869.760

H0 Scaling Correlation Factor 1.159

for MLR

H1 Value -26264.830

H1 Scaling Correlation Factor 1.104

for MLR



143

Output Excerpts Model M1 (Continued)

Information Criteria

Number of Free Parameters 19

Akaike (AIC) 53777.520

Bayesian (BIC) 53886.351

Sample-Size Adjusted BIC 53825.985

(n* = (n = 2) / 24)

RMSEA (Root Mean Square Error of Approximation)

Estimate 0.146

SRMR (Standardized Root Mean Square Residual)

Value 0.165
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Output Excerpts Model M1 (Continued)

Estimate S.E. Est./S.E. Two-Tailed

P-Value

I        ON 

FEMALE 1.877 0.357 5.261 0.000

MOTHED 1.926 0.203 9.497 0.000

HOMERES 1.608 0.113 14.181 0.000

S        ON

FEMALE -0.236 0.125 -1.893 0.058

MOTHED 0.167 0.066 2.545 0.011

HOMERES 0.193 0.042 4.556 0.000

MATH7    ON

MTHCRS7 1.042 0.157 6.644 0.000

MATH8    ON

MTHCRS8 0.898 0.102 8.794 0.000
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Output Excerpts Model M1 (Continued)
Estimate S.E. Est./S.E. Two-Tailed

P-Value

MATH9    ON

MTHCRS9 0.929 0.087 10.638 0.000

MATH10   ON

MTHCRS10 0.911 0.102 8.966 0.000

S      WITH

I 4.200 0.687 6.113 0.000

Intercepts

MATH7 0.000 0.000 999.000 999.000

MATH8 0.000 0.000 999.000 999.000

MATH9 0.000 0.000 999.000 999.000

MATH10 0.000 0.000 999.000 999.000

I 50.063 0.263 190.158 0.000

S 4.202 0.096 43.621 0.000
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Output Excerpts Model M1 (Continued)

Estimate S.E. Est./S.E. Two-Tailed

P-Value

Residual Variances

MATH7 18.640 1.341 13.895 0.000

MATH8 18.554 1.002 18.518 0.000

MATH9 16.672 1.010 16.501 0.000

MATH10 17.795 1.671 10.651 0.000

I 58.919 2.393 24.622 0.000

S 3.800 0.359 10.581 0.000
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Output Excerpts Model M1 (Continued)

MODIFICATION INDICES

Minimum M.I. value for printing the modification index     10.000

M.I. E.P.C.

ON/BY Statements

MATH 7 ON I /

I BY MATH7 15.393 0.014

MATH7 ON S /

S BY MATH7 16.813 0.172

MATH8 ON I /

I BY MATH8 11.067 -0.008

MATH8 ON S /

S BY MATH8 15.769 -0.107

S ON I /

I BY S 999.000 0.000
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Output Excerpts Model M1 (Continued)
M.I. E.P.C.

ON Statements

I ON MATH7 60.201 0.718

I ON MATH8 58.550 0.464

I ON MATH9 116.447 0.600

I ON MATH10 118.956 0.786

I ON MTHCRS7 582.970 5.844

I ON MTHCRS8 373.181 3.119

I ON MTHCRS9 475.187 2.540

I ON MTHCRS10 379.535 2.012

S ON MATH7 55.444 0.298

S ON MATH9 118.064 0.322

S ON MATH10 24.355 0.221

S ON MTHCRS7 203.710 1.334

S ON MTHCRS8 86.109 0.543



149

Output Excerpts Model M1 (Continued)
M.I. E.P.C.

S ON MTHCRS9 90.560 0.453

S ON MTHCRS10 118.478 0.559

MATH7 ON MATH7 15.393 0.014

MATH7 ON MATH8 17.359 0.013

MATH7 ON MATH9 14.805 0.011

MATH7 ON MATH10 18.991 0.012

MATH7 ON MTHCRS8 48.865 0.873

MATH7 ON MTHCRS9 63.490 0.676

MATH7 ON MTHCRS10 22.160 0.337

MATH8 ON MATH8 11.438 -0.007

MATH8 ON MATH10 13.204 -0.007

MATH8 ON MTHCRS7 82.739 1.467

MATH8 ON MTHCRS9 12.743 0.321
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Output Excerpts Model M1 (Continued)
M.I. E.P.C.

MATH9 ON MTHCRS7 26.183 0.776

MATH9 ON MTHCRS8 16.027 0.494

MATH9 ON MTHCRS10 69.480 0.781

MATH10 ON MTHCRS8 19.665 0.629

MATH10 ON MTHCRS9 48.678 0.911
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Alternative Models 
With Time-Varying Covariates

Model Loglikelihood # of parameters BIC

M1 -26,870 19 53,886

M2 -26,846 22 53,861

M3 -26,463 26 53,127

n = 2271 (using [y|x] approach)

M1: Fixed slopes for TVCs, varying across grade

M2: Random slope for TVCs, same across grade 

M3: M2 + i and s regressed on TVCs (see model diagram) 
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Time-Varying Covariates: Model M3
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Input Excerpt Model M3

ANALYSIS: TYPE = RANDOM;

MODEL: i s | math7@0 math8@1 math9@2 math10@3;

stvc | math7 ON mthcrs7;

stvc | math8 ON mthcrs8;
stvc | math9 ON mthcrs9;

stvc | math10 ON mthcrs10;

stvc WITH i s;
i s stvc ON female mothed homeres;

i ON mthcrs7;

s ON mthcrs8-mthcrs10;
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Output Excerpts Time-Varying Covariates: 
Model M3

Estimate S.E. Est./S.E. Two-Tailed

P-Value

I        ON

FEMALE 1.444 0.325 4.449 0.000

MOTHED 1.259 0.184 6.860 0.000

HOMERES 1.144 0.104 11.041 0.000

MTHCRS7 5.095 0.188 27.040 0.000

S        ON

FEMALE -0.395 0.123 -3.215 0.001

MOTHED -0.018 0.064 -0.283 0.777

HOMERES 0.052 0.042 1.249 0.212

MTHCRS8 0.099 0.061 1.627 0.104

MTHCRS9 0.254 0.061 4.188 0.000

MTHCRS10 0.341 0.053 6.471 0.000
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Estimate S.E. Est./S.E. Two-Tailed

P-Value

STVC     ON

FEMALE -0.083 0.123 -0.677 0.499

MOTHED 0.009 0.066 0.129 0.898

HOMERES 0.070 0.041 1.710 0.087

STVC   WITH

I -0.078 0.453 -0.173 0.863

S 0.015 0.185 0.083 0.934

S      WITH

I 0.480 0.630 0.762 0.446

Intercepts

MATH7 0.000 0.000 999.000 999.000

MATH8 0.000 0.000 999.000 999.000

Output Excerpts: Model M3 (Continued)
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Estimate S.E. Est./S.E. Two-Tailed

P-Value

MATH9 0.000 0.000 999.000 999.000

MATH10 0.000 0.000 999.000 999.000

I 50.244 0.240 209.085 0.000

S 4.257 0.094 45.071 0.000

STVC 0.231 0.106 2.188 0.029

Residual Variances

MATH7 18.968 1.304 14.541 0.000

MATH8 17.061 0.931 18.322 0.000

MATH9 15.624 0.936 16.690 0.000

MATH10 16.550 1.494 11.074 0.000

I 44.980 1.891 23.792 0.000

S 3.423 0.338 10.118 0.000

STVC 0.615 0.255 2.410 0.016

Output Excerpts: Model M3 (Continued)



157

Time-Varying Covariates 
Representing Status Change

x

y

x1 x2 x3
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Marital Status Change And Alcohol Use
(Curran, Muthen, & Harford, 1998) 

Alcohol
Use

Intercept

Alcohol
Use

Slope

Time 1
Alcohol Use

Time 2
Alcohol Use

Time 3
Alcohol Use

Time 4
Alcohol Use

Time 1
Incremental

Change

Time 2
Incremental

Change

Time 3
Incremental

Change

Time 4
Incremental

Change

Time 1
Status

Time 2
Status

Time 3
Status

Time 4
Status

Age

Gender

Black

Hispanic

Education

.84

.96
-.29 -.28 -.20 -.20

.51 .48 .50 .41

1.0 1.0 1.0

1.0

1.0 1.5* 2.5* 1.0

1.0 1.0

1.0

1.0

1.0 1.0 1.0 1.0

.31

-.21

.23

.14

.11

.08



Input Excerpts Marital Status Change 
And Alcohol Use

MODEL: i s | alcuse1@0 alcuse2@1 alcuse3@2 alcuse4@3;
i s ON age gender black hispanic education;

f1 BY alcuse1-alcuse4@1;
f2 BY alcuse2-alcuse4@1;
f3 BY alcuse3-alcuse4@1;
f4 BY alcuse4@1;
f1-f4@0;

f1 ON status1;
f2 ON status2;
f3 ON status3;
f4 ON status4;
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• Decreasing variances of the observed variables over time may make the 
modeling more difficult

• Scale of observed variables – keep on a similar scale
• Convergence – often related to starting values or the type of model being 

estimated
• Program stops because maximum number of iterations has been reached

• If no negative residual variances, either increase the number of
iterations or use the preliminary parameter estimates as starting values

• If there are large negative residual variances, try better starting values
• Program stops before the maximum number of iterations has been 

reached
• Check if variables are on a similar scale
• Try new starting values

• Starting values – the most important parameters to give starting values to are 
residual variances and the intercept growth factor mean

• Convergence for models using the | symbol
• Non-convergence may be caused by zero random slope variances which 

indicates that the slopes should be fixed rather than random

Computational Issues For Growth Models



161

Advantages Of Growth Modeling 
In A Latent Variable Framework

• Flexible curve shape
• Individually-varying times of observation
• Regressions among random effects
• Multiple processes
• Modeling of zeroes
• Multiple populations
• Multiple indicators
• Embedded growth models
• Categorical latent variables: growth mixtures
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Regressions Among Random Effects
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Regressions Among Random Effects
Standard multilevel model (where xt = 0, 1, …, T):

Level 1: yti =  η0i + η1i xt + εti , (1)
Level 2a: η0i =  α0 + γ0 wi + ζ0i , (2)
Level 2b: η1i =  α1 + γ1 wi + ζ1i . (3)

A useful type of model extension is to replace (3) by the regression equation
η1i = α + β η0i + γ wi + ζi . (4)

Example: Blood Pressure (Bloomqvist, 1977)

η0 η1

w

η0 η1

w
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Growth Model With An Interaction
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b2

b3
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TITLE: growth model with an interaction between a latent and an 
observed variable

DATA: FILE IS lsay.dat;
VARIABLE: NAMES ARE math7 math8 math9 math10 mthcrs7;

MISSING ARE ALL (9999);
CENTERING = GRANDMEAN (mthcrs7);

DEFINE: math7 = math7/10;
math8 = math8/10;
math9 = math9/10;
math10 = math10/10;

ANALYSIS: TYPE=RANDOM MISSING;
MODEL: i s | math7@0 math8@1 math9@2 math10@3;

[math7-math10] (1);    !growth language defaults
[i@0 s];               !overridden

inter | i XWITH mthcrs7;
s ON i mthcrs7 inter;
i ON mthcrs7;

OUTPUT: SAMPSTAT STANDARDIZED TECH1 TECH8;

Input For A Growth Model With An Interaction
Between A Latent And An Observed Variable
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Tests Of Model Fit
Loglikelihood

H0 Value -10068.944
Information Criteria

Number of Free Parameters 12
Akaike (AIC) 20161.887
Bayesian (BIC) 20234.365
Sample-Size Adjusted BIC

(n* = (n + 2) / 24)
20196.236

Output Excerpts Growth Model With An Interaction
Between A Latent And An Observed Variable
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Model Results

I        |
MATH7 1.000 0.000 0.000
MATH8 1.000 0.000 0.000
MATH9 1.000 0.000 0.000
MATH10 1.000 0.000 0.000

S        |
MATH7 0.000 0.000 0.000
MATH8 1.000 0.000 0.000
MATH9 2.000 0.000 0.000
MATH10 3.000 0.000 0.000

Estimates S.E. Est./S.E.

Output Excerpts Growth Model 
With An Interaction Between A Latent And 

An Observed Variable (Continued)
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Output Excerpts Growth Model 
With An Interaction Between A Latent And 

An Observed Variable (Continued)

S       ON
I 0.087 0.012 7.023
INTER -0.047 0.006 -7.301

S       ON
MTHCRS7 0.045 0.013 3.555

I       ON
MTHCRS7 0.632 0.016 40.412

Estimates S.E. Est./S.E.
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Intercepts
MATH7 5.019 0.015 341.587
MATH8 5.019 0.015 341.587
MATH9 5.019 0.015 341.587
MATH10 5.019 0.015 341.587
I 0.000 0.000 0.000
S 0.417 0.007 57.749

Residual Variances
MATH7 0.184 0.011 16.117
MATH8 0.178 0.009 20.109
MATH9 0.164 0.009 18.369
MATH10 0.173 0.015 11.509
I 0.528 0.018 28.935
S 0.037 0.004 10.027

Output Excerpts Growth Model 
With An Interaction Between A Latent And 

An Observed Variable (Continued)

Estimates S.E. Est./S.E.
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• Model equation for slope s
s = a + b1*i + b2*mthcrs7 + b3*i*mthcrs7 + e

or, using a moderator function (Klein & Moosbrugger, 2000) where
i moderates the influence of mthcrs7 on s
s = a + b1*i + (b2 + b3*i)*mthcrs7 + e

• Estimated model

Unstandardized
s = 0.417 + 0.087*i + (0.045 – 0.047*i)*mthcrs7

Standardized with respect to i and mthcrs7
s = 0.42 + 0.08 * i + (0.04-0.04*i)*mthcrs7

Interpreting The Effect Of The Interaction Between
Initial Status Of Growth In Math Achievement

And Course Taking In Grade 6
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• Interpretation of the standardized solution
At the mean of i, which is zero, the slope increases 0.04 for 1 SD 
increase in mthcrs7

At 1 SD below the mean of i, which is zero, the slope increases 
0.08 for 1 SD increase in mthcrs7

At 1 SD above the mean of i, which is zero, the slope does not 
increase as a function of mthcrs7 

Interpreting The Effect Of The Interaction Between
Initial Status Of Growth In Math Achievement

And Course Taking In Grade 6 (Continued)
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Growth Modeling With Parallel Processes
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Advantages Of Growth Modeling 
In A Latent Variable Framework

• Flexible curve shape
• Individually-varying times of observation
• Regressions among random effects
• Multiple processes
• Modeling of zeroes
• Multiple populations
• Multiple indicators
• Embedded growth models
• Categorical latent variables: growth mixtures
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Multiple Processes

• Parallel processes

• Sequential processes
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• Estimate a growth model for each process separately

• Determine the shape of the growth curve
• Fit model without covariates
• Modify the model

• Joint analysis of both processes

• Add covariates

Growth Modeling With Parallel Processes
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The data come from the Longitudinal Study of American Youth
(LSAY). Two cohorts were measured at four time points beginning
in 1987. Cohort 1 was measured in Grades 10, 11, and 12. Cohort 2
was measured in Grades 7, 8, 9, and 10. Each cohort contains
approximately 60 schools with approximately 60 students per
school. The variables measured include math and science
achievement items, math and science attitude measures, and
background information from parents, teachers, and school
principals. There are approximately 60 items per test with partial
item overlap across grades—adaptive tests.

Data for the analysis include the younger females. The variables
include math achievement and math attitudes from Grades 7, 8, 9,
and 10 and mother’s education. 

LSAY Data
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math10
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Correlations Between Processes 

• Through covariates

• Through growth factors (growth factor residuals)

• Through outcome residuals
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TITLE: LSAY For Younger Females With Listwise Deletion 
Parallel Process Growth Model-Math Achievement and 
Math Attitudes

DATA: FILE IS lsay.dat; 
FORMAT IS 3f8 f8.4 8f8.2 3f8 2f8.2;

VARIABLE: NAMES ARE cohort id school weight math7 math8 math9 
math10 att7 att8 att9 att10 gender mothed homeres 

ses3 sesq3;

USEOBS = (gender EQ 1 AND cohort EQ 2); 
MISSING = ALL (999);
USEVAR = math7-math10 att7-att10 mothed;

Input For LSAY Parallel Process Growth Model
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MODEL: im sm | math7@0 math8@1 math9 math10;
ia sa | att7@0 att8@1 att9@2 att10@3;
im-sa ON mothed;

Input For LSAY Parallel Process Growth Model
(Continued)

OUTPUT: MODINDICES STANDARDIZED;

im BY math7-math10@1;
sm BY math7@0 math8@1 math9 math10;

ia BY att7-att10@1;
sa BY att7@0 att8@1 att9@2 att10@3;

[math7-math10@0 att7-att10@0];
[im sm ia sa];

im-sa ON mothed;

Alternative language:
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n = 910

Tests of Model Fit

Chi-Square Test of Model Fit

Value 43.161
Degrees of Freedom 24
P-Value .0095

RMSEA (Root Mean Square Error Of Approximation)

Estimate .030
90 Percent C.I. .015 .044
Probability RMSEA <= .05 .992

Output Excerpts LSAY Parallel
Process Growth Model
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IM        ON
MOTHED 2.462 .280 8.798 .311 .303

SM        ON
MOTHED .145 .066 2.195 .132 .129

IA        ON
MOTHED .053 .086 .614 .025 .024

SA        ON
MOTHED .012 .035 .346 .017 .017

Output Excerpts LSAY Parallel
Process Growth Model (Continued)

Estimates S.E. Est./S.E. Std StdYX
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SM       WITH
IM 3.032 .580 5.224 .350 .350

IA       WITH
IM 4.733 .702 6.738 .282 .282
SM .544 .164 3.312 .235 .235

SA       WITH
IM -.276 .279 -.987 -.049 -.049
SM .130 .066 1.976 .168 .168
IA -.567 .115 -4.913 -.378 -.378

Output Excerpts LSAY Parallel
Process Growth Model (Continued)

Estimates S.E. Est./S.E. Std StdYX
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Categorical Outcomes:
Logistic And Probit Regression
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Probability varies as a function of x variables (here x1, x2)

P(u = 1 | x1, x2) = F[β0 + β1 x1 + β2 x2 ],        (22)

P(u = 0 | x1 , x2) = 1 - P[u = 1 | x1 , x2], where F[z] is either the 
standard normal (Φ[z]) or logistic (1/[1 + e-z]) distribution
function.

Example: Lung cancer and smoking among coal miners
u lung cancer (u = 1) or not (u = 0)
x1 smoker (x1 = 1), non-smoker (x1 = 0)
x2 years spent in coal mine

Categorical Outcomes: Logit And Probit Regression 



187

P(u = 1 | x1, x2) = F [β0 + β1 x1 + β2 x2 ],    (22)

x2

Probit / Logit
x1 = 1

x1 = 0

Categorical Outcomes: Logit And Probit Regression 

P( u = 1   x1 , x2)

0

1

x2

0.5

 x1 = 0

 x1 = 1
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Interpreting Logit And Probit Coefficients

• Sign and significance

• Odds and odds ratios

• Probabilities
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Logistic Regression And Log Odds

Odds (u = 1 | x) = P(u = 1 | x) / P(u = 0 | x)
= P(u = 1 | x) / (1 – P(u = 1 | x)).

The logistic function

gives a log odds linear in x,
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Logistic Regression And Log Odds (Continued)

• logit = log odds = β0 + β1 x

• When x changes one unit, the logit (log odds) changes β1 units

• When x changes one unit, the odds changes        units1βe
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Further Readings On Categorical Variable Analysis

Agresti, A. (2002). Categorical data analysis. Second edition. New 
York: John Wiley & Sons.

Agresti, A. (1996). An introduction to categorical data analysis. New 
York: Wiley.

Hosmer, D. W. & Lemeshow, S. (2000).  Applied logistic regression.  
Second edition.  New York: John Wiley & Sons.

Long, S. (1997). Regression models for categorical and limited 
dependent variables. Thousand Oaks: Sage.

192

Growth Models With
Categorical Outcomes
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Growth Model With Categorical Outcomes

• Individual differences in development of probabilities over time
• Logistic model considers growth in terms of log odds (logits), e.g.

(1)

for a binary outcome using a quadratic model with centering at time 
c.  The growth factors η0i, η1i, and η2i are assumed multivariate 
normal given covariates,

(2a)    η0i = α0 + γ0 wi + ζ0i

(2b)   η1i = α1 + γ1 wi + ζ1i

(2c) η2i = α2 + γ2 wi + ζ2i
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Growth Models With Categorical Outcomes

• Measurement invariance of the outcome over time is 
represented by the equality of thresholds over time (rather than
intercepts)

• Thresholds not set to zero but held equal across timepoints—
intercept factor mean value fixed at zero (parameterization 2)

• Differences in variances of the outcome over time are 
represented by allowing scale parameters to vary over time 
(WLS)
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The NIMH Schizophrenia Collaborative Study

• The Data—The NIMH Schizophrenia Collaborative Study 
(Schizophrenia Data)

• A group of 64 patients using a placebo and 249 patients on 
a drug for schizophrenia measured at baseline and at weeks 
one through six

• Variables—severity of illness, background variables, and 
treatment variable

• Data for the analysis—severity of illness at weeks one, two, 
four, and six and treatment
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Placebo Group
Drug Group
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Schizophrenia Data: Sample Proportions
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illness1 illness2 illness4 illness6

drug

i s
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Input For Schizophrenia Data Growth Model
For Binary Outcomes: Treatment Group

TITLE: Growth model on schizophrenia data

DATA: FILE = SCHIZ.DAT; FORMAT = 5F1;

VARIABLE: NAMES = illness1 illness2 illness4 illness6 drug;

CATEGORICAL = illness1-illness6;
USEV = illness1-illness6;
USEOBS = drug EQ 1;

ANALYSIS: ESTIMATOR = ML;

MODEL: i s | illness1@0 illness2@1 illness4@3 illness6@5;

OUTPUT: TECH1 TECH10;
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Output Excerpts Schizophrenia Data Growth 
Model For Binary Outcomes: Treatment Group

TEST OF MODEL FIT

Loglikelihood

H0 Value -405.068

Information Criteria

Number of Free Parameters 5

Akaike (AIC) 820.136

Bayesian (BIC) 837.724

Sample-Size Adjusted BIC 821.873

(n* = (n + 2) / 24)
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Output Excerpts Schizophrenia Data Growth 
Model For Binary Outcomes: Treatment Group 

(Continued)
Chi-Square Test of Model Fit for the Binary and Ordered 
Categorical (Ordinal) Outcomes

Pearson Chi-Square

Value 49.923

Degrees of Freedom 10

P-Value 0.0000

Likelihood Ratio Chi-Square

Value 42.960

Degrees of Freedom 10

P-Value 0.0000
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No. Pattern No. Pattern No. Pattern No. Pattern

1 1001 2 1000 3 0000 4 1111

5 1110 6 1010 7 1100 8 0011

9 1011 10 0111 11 1101

Output Excerpts Schizophrenia Data Growth 
Model For Binary Outcomes: Treatment Group 

(Continued)
TECHNICAL 10 OUTPUT

MODEL FIT INFORMATION FOR THE LATENT CLASS INDICATOR MODEL PART 

RESPONSE PATTERNS
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Output Excerpts Schizophrenia Data Growth 
Model For Binary Outcomes: Treatment 

Group (Continued)
Response Frequency Standardized Chi-Square Contribution

Pattern Observed Estimated Residual Pearson Loglikelihood

(z-score)

1 4.00 0.59 4.43 19.55 15.26

2 24.00 12.89 3.18 9.57 29.83

3 2.00 4.89 -1.32 1.71 -3.57

4 97.00 99.00 -0.26 0.04 -3.95

5 69.00 59.53 1.41 1.51 20.38

6 2.00 2.78 -0.47 0.22 -1.32

7 43.00 54.42 -1.75 2.40 -20.26

8 1.00 0.47 0.78 0.60 1.51

9 5.00 1.90 2.26 5.07 9.69

10 1.00 1.84 -0.62 0.38 -1.22

11 1.00 5.47 -1.93 3.65 -3.40
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Output Excerpts Schizophrenia Data Growth 
Model For Binary Outcomes: Treatment 

Group (Continued)

Standardized

Variable Variable H1 H0 Residual

(z-score)

ILLNESS1 ILLNESS2

Category 1 Category 1 0.012 0.025 -1.295

Category 1 Category 2 0.004 0.025 -2.127

Category 2 Category 1 0.141 0.073 4.103

Category 2 Category 2 0.843 0.877 -1.623

Bivariate Pearson Chi-Square 21.979

Bivariate Log-Likelihood Chi-Square 21.430

BIVARIATE MODEL FIT INFORMATION
Estimated Probabilities
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Output Excerpts Schizophrenia Data Growth 
Model For Binary Outcomes: Treatment 

Group (Continued)
Standardized

Variable Variable H1 H0 Residual

(z-score)

ILLNESS1 ILLNESS4

Category 1 Category 1 0.008 0.034 -2.271

Category 1 Category 2 0.008 0.016 -0.977

Category 2 Category 1 0.289 0.295 -0.191

Category 2 Category 2 0.695 0.655 1.307

Bivariate Pearson Chi-Square 6.533

Bivariate Log-Likelihood Chi-Square 8.977
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Output Excerpts Schizophrenia Data Growth 
Model For Binary Outcomes: Treatment 

Group (Continued)
Standardized

Variable Variable H1 H0 Residual

(z-score)

ILLNESS1 ILLNESS6

Category 1 Category 1 0.008 0.038 -2.459

Category 1 Category 2 0.008 0.012 -0.599

Category 2 Category 1 0.554 0.521 1.063

Category 2 Category 2 0.430 0.430 0.006

Bivariate Pearson Chi-Square 6.713

Bivariate Log-Likelihood Chi-Square 9.529
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Output Excerpts Schizophrenia Data Growth 
Model For Binary Outcomes: Treatment 

Group (Continued)
Standardized

Variable Variable H1 H0 Residual

(z-score)

ILLNESS2 ILLNESS4

Category 1 Category 1 0.120 0.075 2.722

Category 1 Category 2 0.032 0.023 0.996

Category 2 Category 1 0.177 0.254 -2.796

Category 2 Category 2 0.671 0.648 0.735

Bivariate Pearson Chi-Square 13.848

Bivariate Log-Likelihood Chi-Square 13.361
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Output Excerpts Schizophrenia Data Growth 
Model For Binary Outcomes: Treatment 

Group (Continued)
Standardized

Variable Variable H1 H0 Residual

(z-score)

ILLNESS2 ILLNESS6

Category 1 Category 1 0.112 0.085 1.578

Category 1 Category 2 0.040 0.013 3.745

Category 2 Category 1 0.450 0.474 -0.754

Category 2 Category 2 0.398 0.429 -0.988

Bivariate Pearson Chi-Square 16.976

Bivariate Log-Likelihood Chi-Square 11.831
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Output Excerpts Schizophrenia Data Growth 
Model For Binary Outcomes: Treatment 

Group (Continued)
Standardized

Variable Variable H1 H0 Residual

(z-score)

ILLNESS4 ILLNESS6

Category 1 Category 1 0.277 0.302 -0.841

Category 1 Category 2 0.20 0.027 -0.697

Category 2 Category 1 0.285 0.257 1.027

Category 2 Category 2 0.418 0.414 0.103

Bivariate Pearson Chi-Square 1.757

Bivariate Log-Likelihood Chi-Square 1.791

Overall Bivariate Pearson Chi-Square 67.806

Overall Bivariate Log-Likelihood Chi-Square 66.920
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Input For Schizophrenia Data Growth Model
For Binary Outcomes With A Treatment Variable
TITLE: Schizophrenia Data

Growth Model for Binary Outcomes
With a Treatment Variable and Scaling Factors

DATA: FILE IS schiz.dat; FORMAT IS 5F1;

VARIABLE: NAMES ARE illness1 illness2 illness4 illness6
drug;   ! 0=placebo (n=64)  1=drug (n=249)
CATEGORICAL ARE illness1-illness6;

ANALYSIS: ESTIMATOR = ML;
!ESTIMATOR = WLSMV;

MODEL: i s | illness1@0 illness2@1 illness4@3
illness6@5;

i s ON drug;

Alternative language:

MODEL: i BY illness1-illness6@1;
s BY illness1@0 illness2@1 illness4@3 illness6@5;
[illness1$1 illness2$1 illness4$1 illness6$1] (1);
[s];
i s ON drug;
!{illness1@1 illness2-illness6};
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Tests Of Model Fit

Loglikelihood
HO Value -486.337

Information Criteria
Number of Free Parameters 7
Akaike (AIC) 986.674
Bayesian (BIC) 1012.898
Sample-Size Adjusted BIC   990.696

(n* = (n + 2) / 24)

Output Excerpts Schizophrenia Data Growth Model
For Binary Outcomes With A Treatment Variable

n = 313
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I        ON
DRUG -0.429 0.825 -0.521 -0.156 -0.063

S        ON
DRUG -0.651 0.259 -2.512 -0.684 -0.276

I        WITH
S -0.925 0.621 -1.489 -0.353 -0.353

Intercepts
I 0.000 0.000 0.000 0.000 0.000
S -0.555 0.255 -2.182 -0.583 -0.583

Thresholds
ILLNESS1$1 -5.706 1.047 -5.451
ILLNESS2$1 -5.706 1.047 -5.451
ILLNESS4$1 -5.706 1.047 -5.451
ILLNESS5$1 -5.706 1.047 -5.451

Residual Variances
I 7.543 3.213 2.348 0.996 0.996
S 0.838 0.343 2.440 0.924 0.924

Estimates     S.E.   Est./S.E.    Std       StdYX
Selected Estimates

Output Excerpts Schizophrenia Data Growth Model
For Binary Outcomes With A Treatment

Variable (Continued)
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