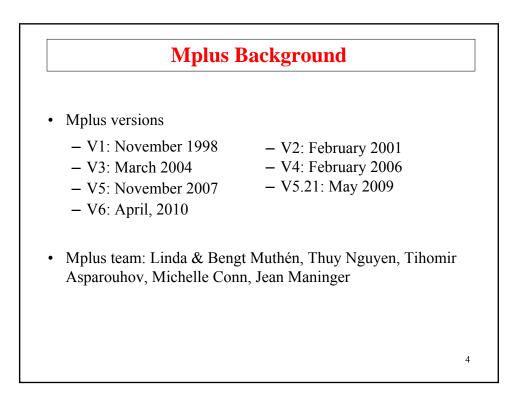
Mplus Short Courses Topic 3

Growth Modeling With Latent Variables Using Mplus: Introductory And Intermediate Growth Models

Linda K. Muthén Bengt Muthén

Copyright © 2010 Muthén & Muthén www.statmodel.com 05/17/2010

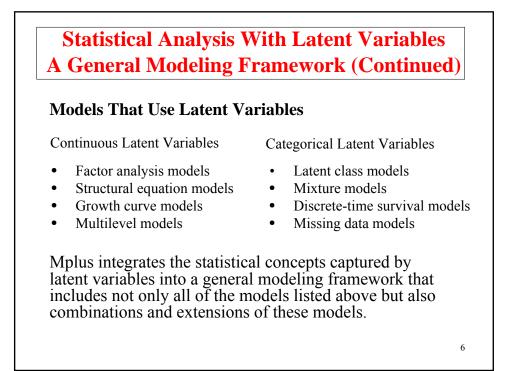

Table Of Contents		
General Latent Variable Modeling Framework	7	
Typical Examples Of Growth Modeling	15	
Basic Modeling Ideas	24	
Growth Modeling Frameworks	28	
The Latent Variable Growth Model In Practice	41	
Growth Model Estimation, Testing, And Model Modification	55	
Simple Examples Of Growth Modeling	64	
Covariates In The Growth Model	84	
Centering	99	
Non-Linear Growth	106	
Growth Model With Free Time Scores	108	
Piecewise Growth Modeling	120	
Intermediate Growth Models	127	
Growth Model With Individually Varying Times Of Observation		
And Random Slopes For Time-Varying Covariates	128	
Alternative Models With Time-Varying Covariates	138	
Regressions Among Random Effects	162	
Growth Modeling With Parallel Processes	172	
Categorical Outcomes: Logistic and Probit Regression	185	
Growth Modeling With Categorical Outcomes	192	
References	213	
		2

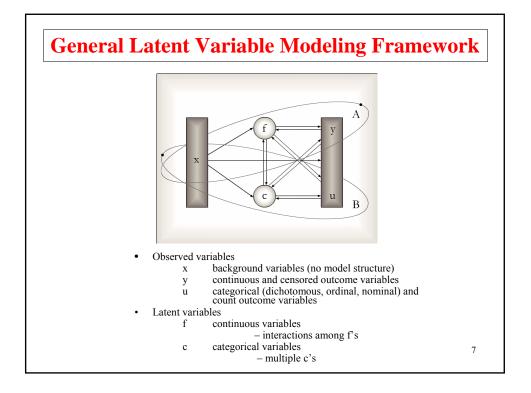
Mplus Background

- Inefficient dissemination of statistical methods:
 - Many good methods contributions from biostatistics,
 - psychometrics, etc are underutilized in practice
- Fragmented presentation of methods:
 - Technical descriptions in many different journals
 - Many different pieces of limited software
- Mplus: Integration of methods in one framework
 - Easy to use: Simple, non-technical language, graphics

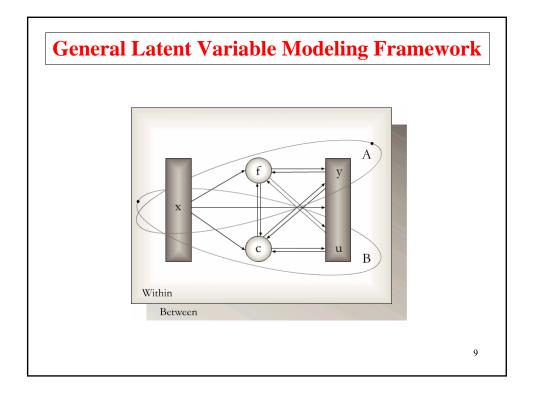
3

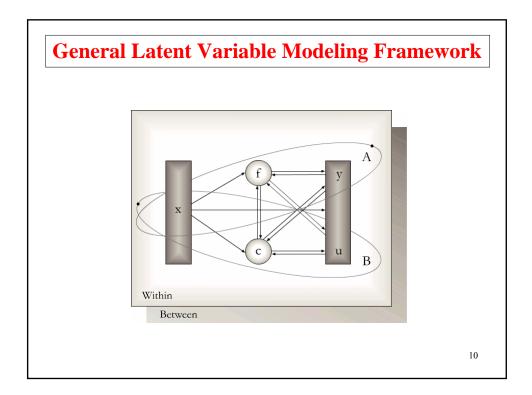
- Powerful: General modeling capabilities

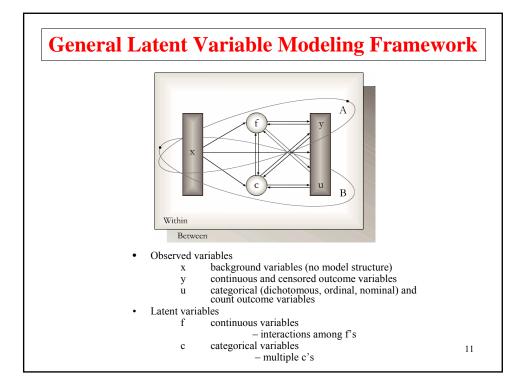

Statistical Analysis With Latent Variables A General Modeling Framework Statistical Concepts Captured By Latent Variables

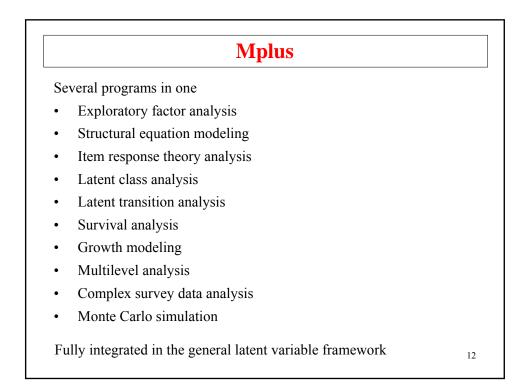

Continuous Latent Variables

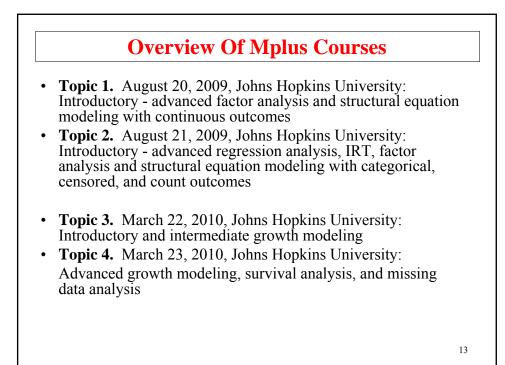

- Measurement errors
- Factors
- Random effects
- Frailties, liabilities
- Variance components
- Missing data

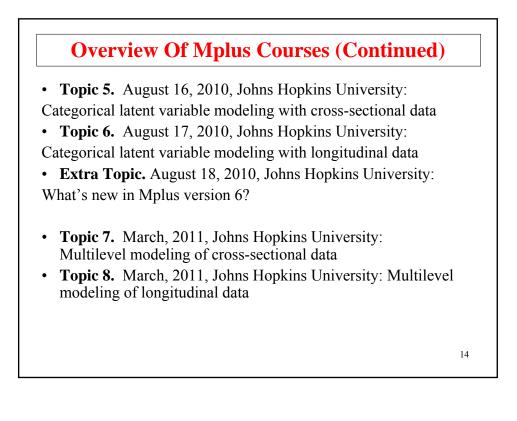

Categorical Latent Variables

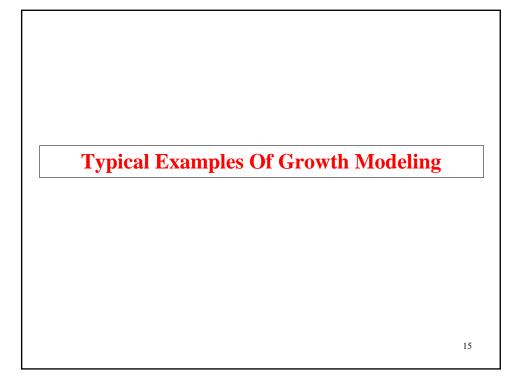

- Latent classes
- Clusters
- Finite mixtures
- Missing data

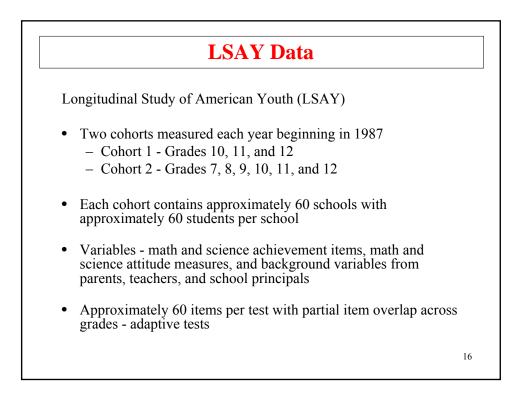


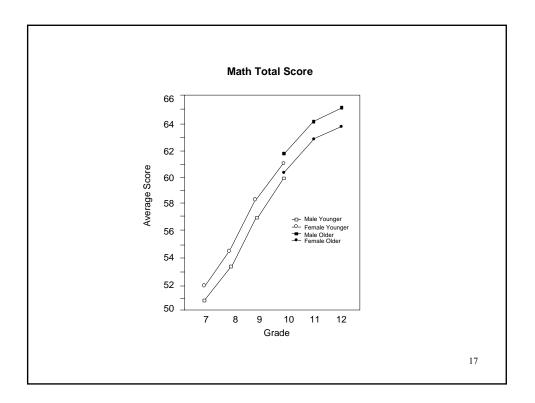


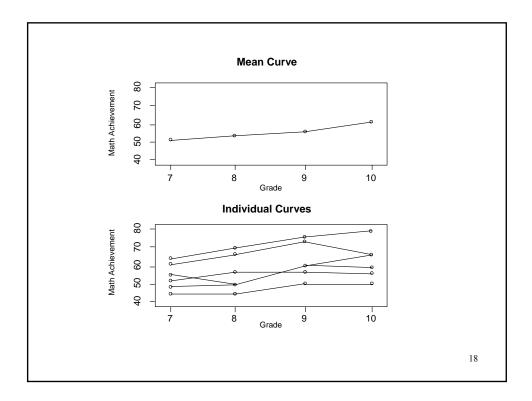


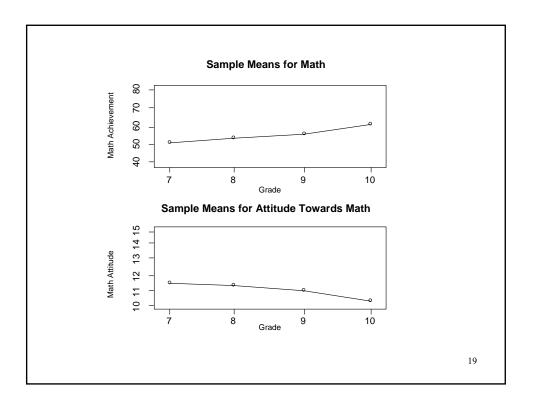


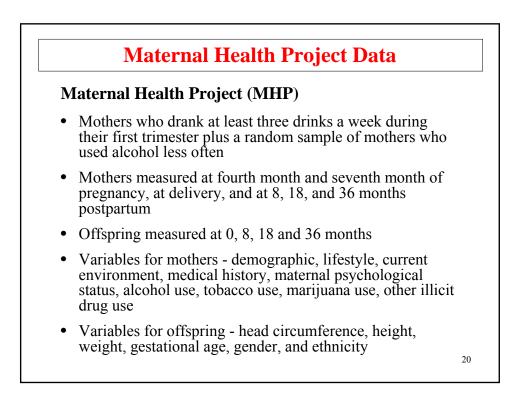


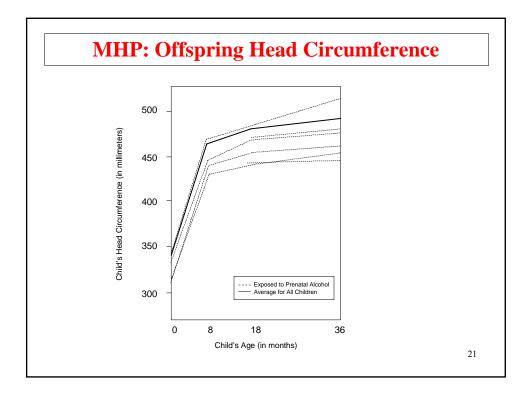


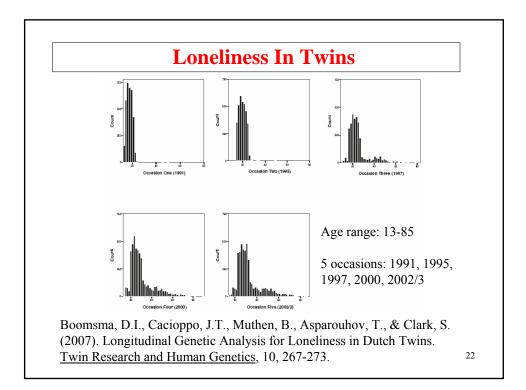


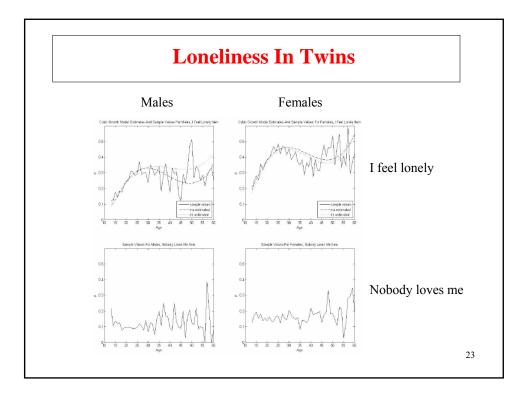


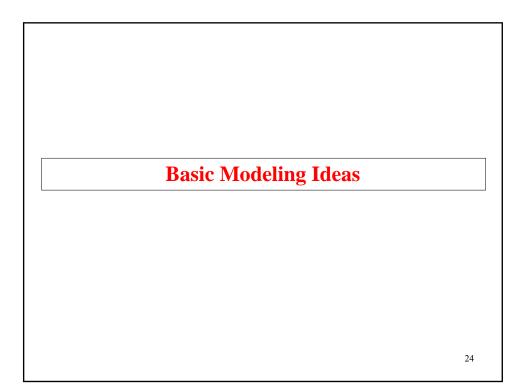


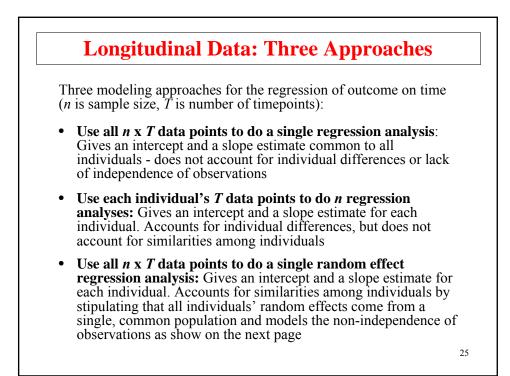


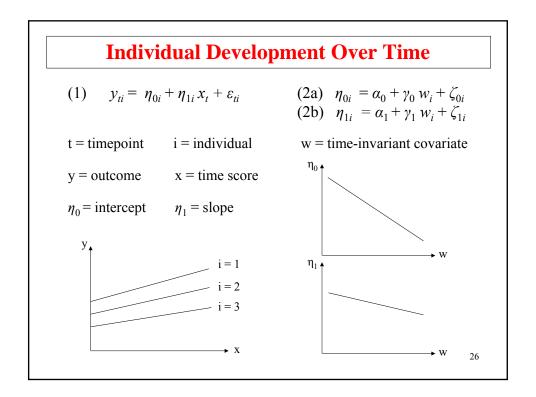


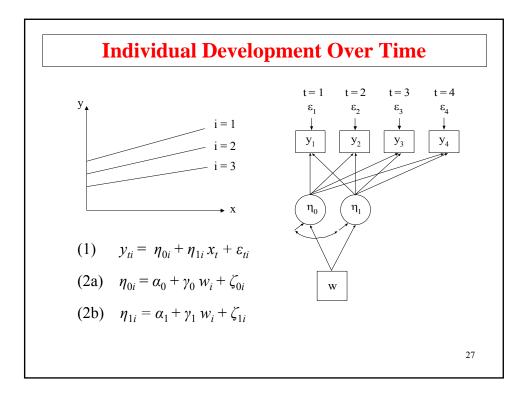


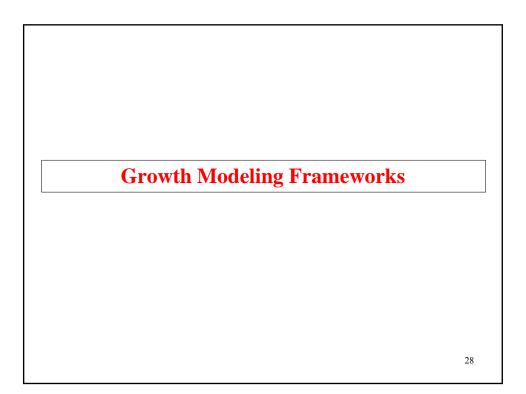


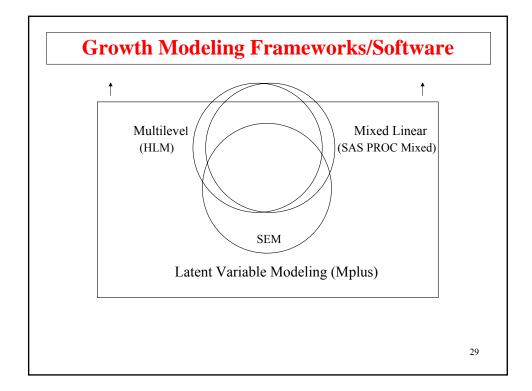


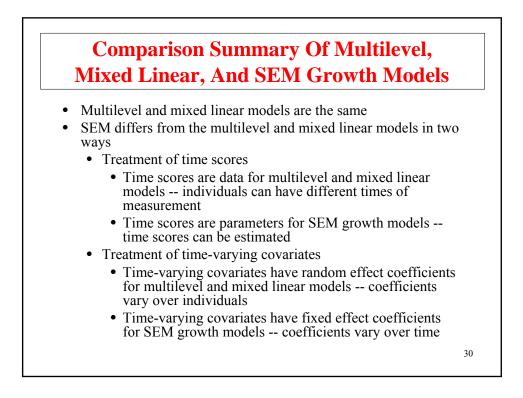






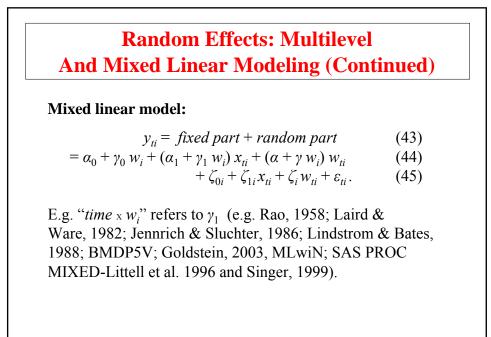






Random Effects: Multilevel And Mixed Linear Modeling

Individual i (i = 1, 2, ..., n) observed at time point t (t = 1, 2, ..., T).


Multilevel model with two levels (e.g. Raudenbush & Bryk, 2002, HLM).

• Level 1: $y_{ti} = \eta_{0i} + \eta_{1i} x_{ti} + \kappa_i w_{ti} + \varepsilon_{ti}$ (39)

• Level 2:
$$\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i}$$
 (40)

- $\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$ $\kappa_i = \alpha + \gamma w_i + \zeta_i$ (41) (42)

Random Effects: SEM And Multilevel Modeling

SEM (Tucker, 1958; Meredith & Tisak, 1990; McArdle & Epstein 1987; SEM software):

Measurement part:

$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \kappa_t w_{ti} + \varepsilon_{ti}.$$
(46)

Compare with level 1 of multilevel:

$$y_{ti} = \eta_{0i} + \eta_{1i} x_{ti} + \kappa_i w_{ti} + \varepsilon_{ti}.$$
 (47)

Multilevel approach:

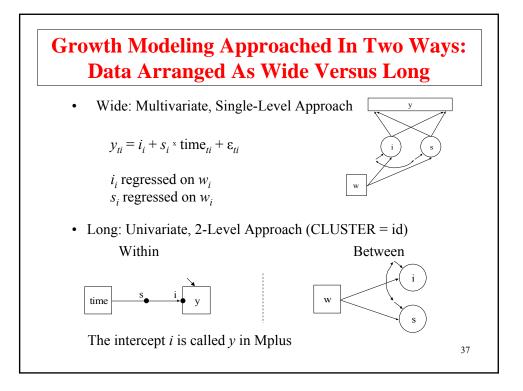
- x_{ti} as data: Flexible individually-varying times of observation
- Slopes for time-varying covariates vary over individuals

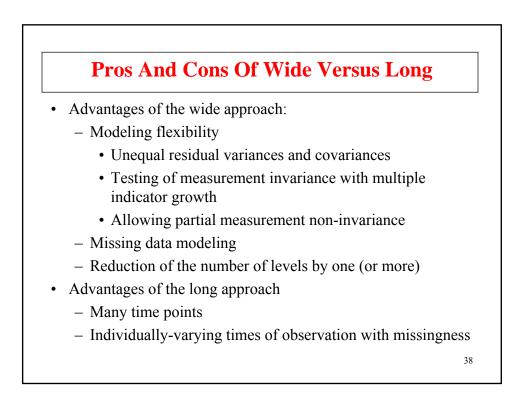
33

<section-header><section-header><section-header><section-header><list-item><list-item><text><text><text><equation-block><equation-block><text>

Random Effects: Mixed Linear Modeling And SEM

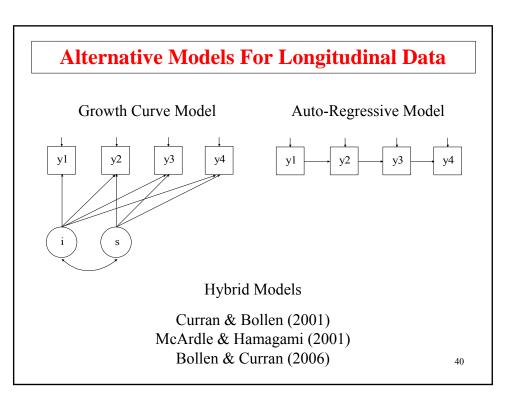
Mixed linear model in matrix form:

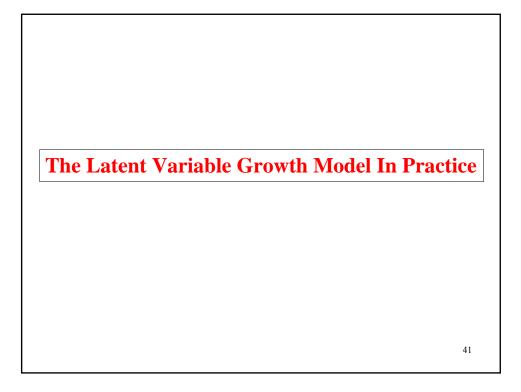

$$\mathbf{y}_i = (y_{1i}, y_{2i}, \dots, y_{Ti})'$$
 (51)

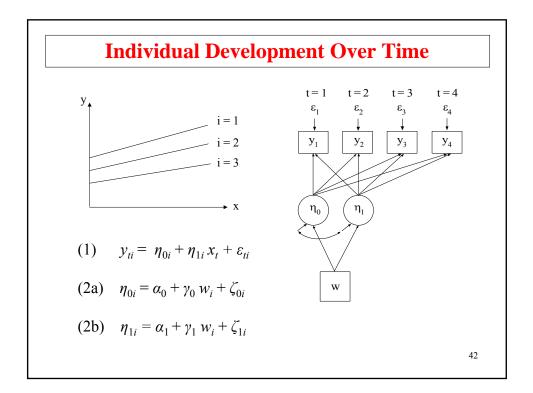

$$= X_i \, \boldsymbol{\alpha} + \boldsymbol{Z}_i \, \boldsymbol{b}_i + \boldsymbol{e}_i \,. \tag{52}$$

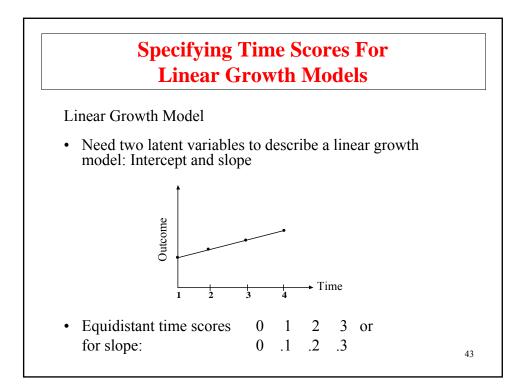
Here, *X*, *Z* are design matrices with known values, α contains fixed effects, and *b* contains random effects. Compare with (43) - (45).

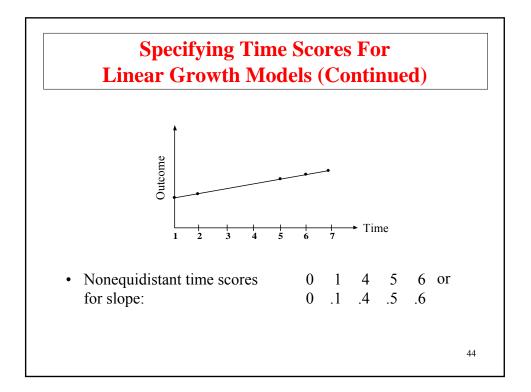
35


<section-header><section-header><section-header><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>






Advantages Of Growth Modeling In A Latent Variable Framework


- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

Interpretation Of The Linear Growth Factors

Model:

$$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti}, \qquad (17)$$

where in the example t = 1, 2, 3, 4 and $x_t = 0, 1, 2, 3$:

$$y_{1i} = \eta_{0i} + \eta_{1i} 0 + \varepsilon_{1i}, \qquad (18)$$

$$\eta_{0i} = y_{1i} - \varepsilon_{1i}, \tag{19}$$

$$y_{2i} = \eta_{0i} + \eta_{1i} + \varepsilon_{2i}, \qquad (20)$$

$$y_{2i} = \eta_{0i} + \eta_{1i} + \varepsilon_{2i}, \qquad (21)$$

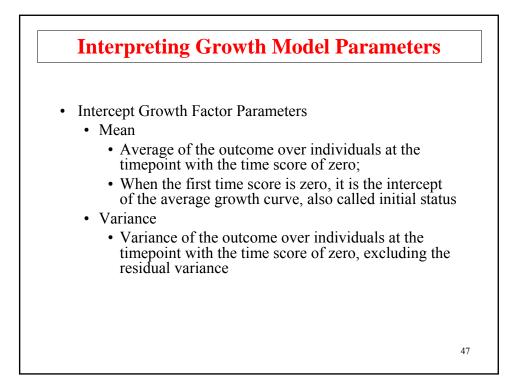
$$y_{4i} = \eta_{0i} + \eta_{1i} 3 + \varepsilon_{4i}.$$
 (22)

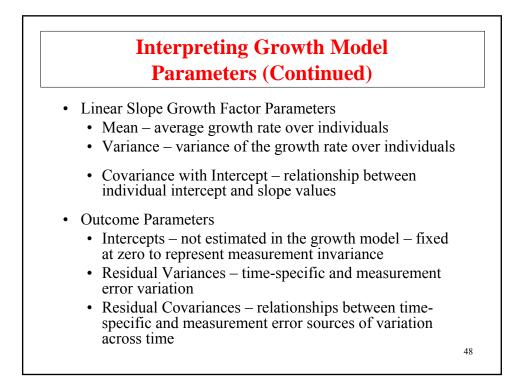
Interpretation Of The Linear Growth Factors (Continued)

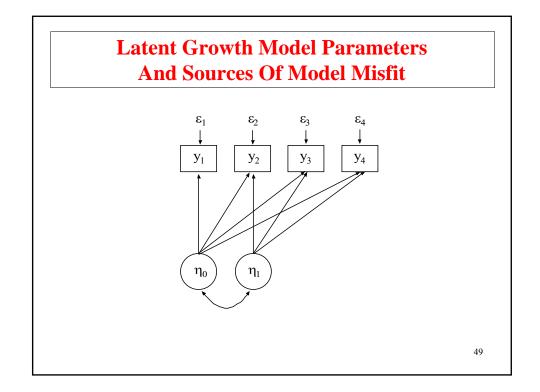
Interpretation of the intercept growth factor

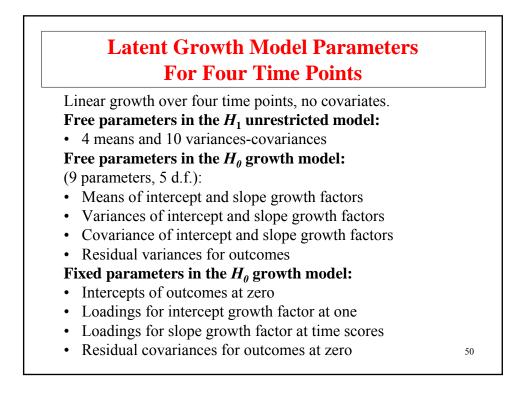
 η_{0i} (initial status, level):

Systematic part of the variation in the outcome variable at the time point where the time score is zero.


• Unit factor loadings


Interpretation of the slope growth factor

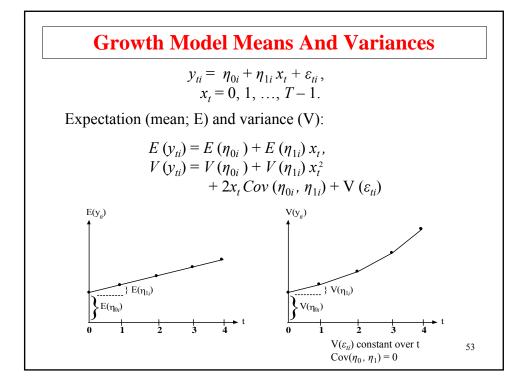

 η_{1i} (growth rate, trend):

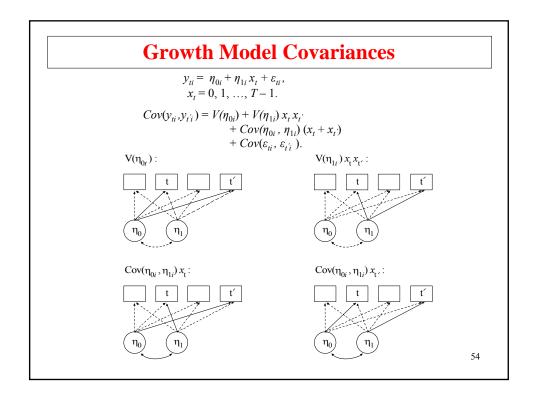

Systematic part of the increase in the outcome variable for a time score increase of one unit.

• Time scores determined by the growth curve shape

Latent Growth Model Sources Of Misfit

Sources of misfit:

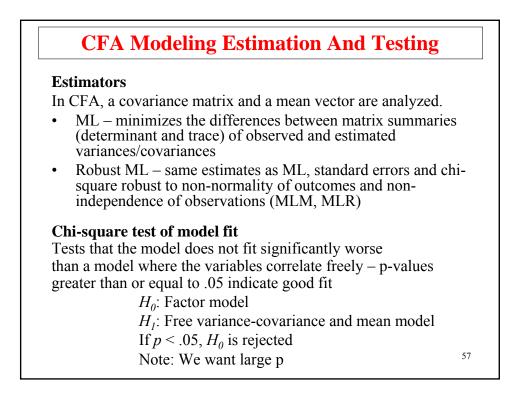

- Time scores for slope growth factor
- Residual covariances for outcomes
- Outcome variable intercepts
- Loadings for intercept growth factor

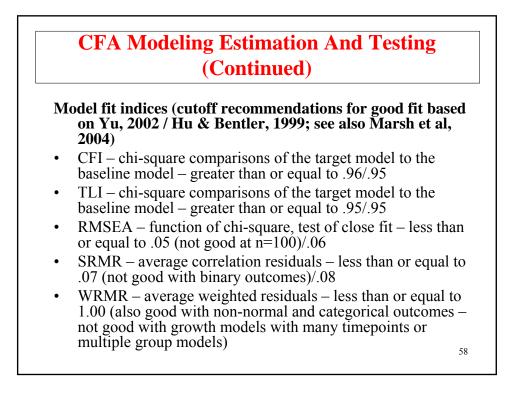

Model modifications:

- Recommended
 - Time scores for slope growth factor
 - Residual covariances for outcomes
- Not recommended
 - Outcome variable intercepts
 - Loadings for intercept growth factor

51

Latent Growth Model Parameters For Three Time Points Linear growth over three time points, no covariates. Free parameters in the H_1 unrestricted model: • 3 means and 6 variances-covariances Free parameters in the H_{θ} growth model (8 parameters, 1 d.f.) • Means of intercept and slope growth factors • Variances of intercept and slope growth factors Covariance of intercept and slope growth factors · Residual variances for outcomes Fixed parameters in the H_{θ} growth model: • Intercepts of outcomes at zero Loadings for intercept growth factor at one • Loadings for slope growth factor at time scores • Residual covariances for outcomes at zero 52




Growth Model Estimation, Testing, And Model Modification

Growth Model Estimation, Testing, And Model Modification

- Estimation: Model parameters
 - Maximum-likelihood (ML) estimation under normality
 - ML and non-normality robust s.e.'s
 - Quasi-ML (MUML): clustered data (multilevel)
 - WLS: categorical outcomes
 - ML-EM: missing data, mixtures
- Model Testing
 - Likelihood-ratio chi-square testing; robust chi square
 - Root mean square of approximation (RMSEA):
 - Close fit ($\leq .05$)
- Model Modification
 - Expected drop in chi-square, EPC
- Estimation: Individual growth factor values (factor scores)
 - Regression method Bayes modal Empirical Bayes
 - Factor determinacy

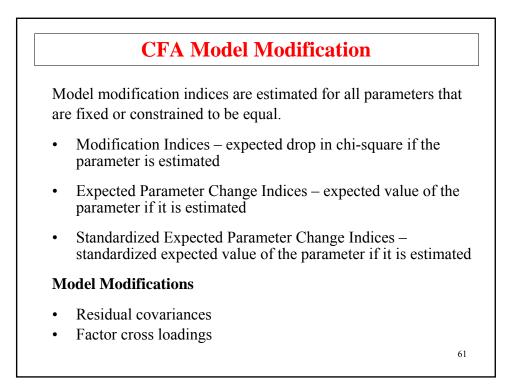
56

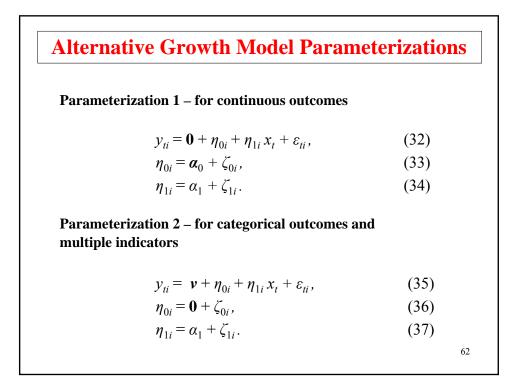
Degrees Of Freedom For Chi-Square Testing Against An Unrestricted Model

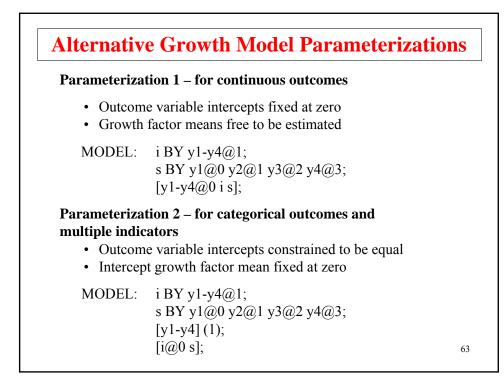
The p value of the χ^2 test gives the probability of obtaining a χ^2 value this large or larger if the H_0 model is correct (we want high p values).

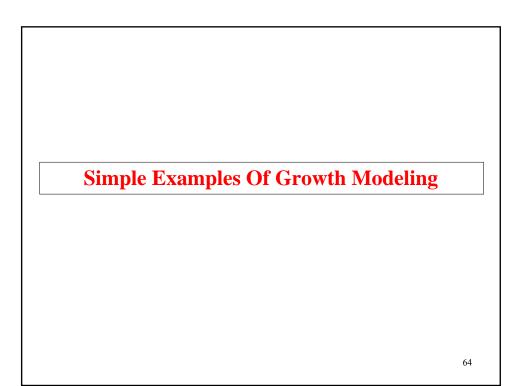
Degrees of Freedom:

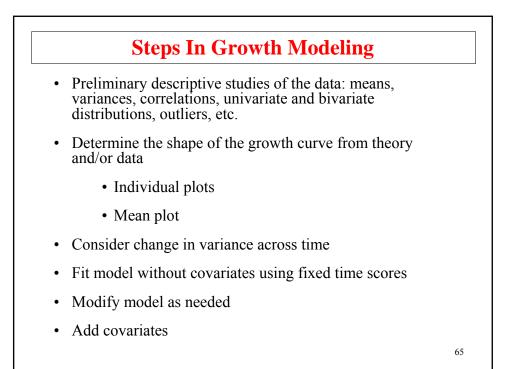
(Number of parameters in H_1) – (number parameters in H_0)

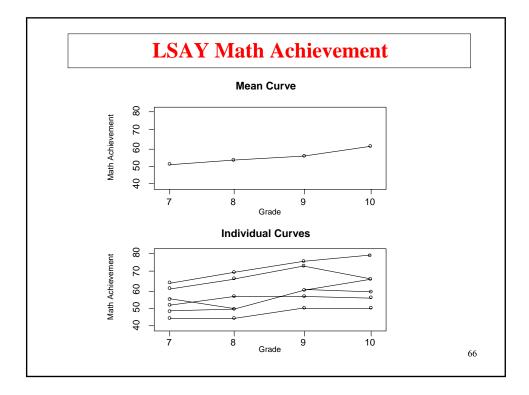

Number of H_1 parameters with an unrestricted Σ : p(p+1)/2

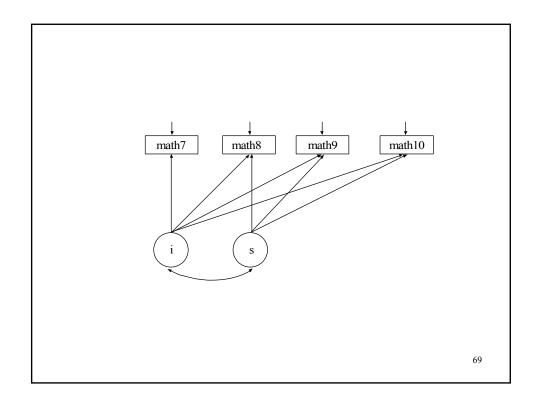

Number of H_1 parameters with unrestricted μ and Σ : p + p (p + 1)/2


59


Chi-Square Difference Testing Of Nested Models


- When a model H_a imposes restrictions on parameters of model H_b , H_a is said to be nested within H_b
- To test if the nested model H_a fits significantly worse than H_b , a chi-square test can be obtained as the difference in the chisquare values for the two models (testing against an unrestricted model) using as degrees of freedom the difference in number of parameters for the two models
- The chi-square difference is the same as 2 times the difference in log likelihood values for the two models
- The chi-square theory does not hold if H_a has restricted any of the H_b parameters to be on the border of their admissible parameter space (e.g. variance = 0) 60





Input For LSAY TYPE=BASIC Analysis

```
TITLE:
           Basic run
DATA:
           FILE = lsayfull_dropout.dat;
VARIABLE: NAMES = lsayid schcode female mothed homeres math7
           math8 math9 math10 math11 math12
           mthcrs7 mthcrs8 mthcrs9 mthcrs10 mthcrs11 mthcrs12;
!lsayid = Student id
!schcode = 7^{th} grade school code
!mothed = mother's education
           (1=LT HS diploma, 2=HS diploma, 3=Some college,
!
          4=4yr college degree, 5=advanced degree)
!
!homeres = Home math and science resources
!mthcrs7-mthcrs12 = Highest math course taken during each grade
           (0 = no course, 1 - low, basic, 2 = average, 3 = high,
!
           4 = pre-algebra, 5 = algebra I, 6 = geometry,
1
           7 = algebra II, 8 = pre-calc, 9 = calculus)
!
ANALYSIS: TYPE = BASIC;
PLOT:
           TYPE = PLOT3;
                                                                 67
           SERIES = math7-math10(*);
```

	n	= 3102		
Means	_			
	MATH7	MATH8	MATH9	MATH10
	50.356	53.872	57.962	62.250
Covariances				
_	MATH7	MATH8	MATH9	MATH10
MATH7	103.868			
MATH8	93.096	121.294		
MATH9	104.328	121.439	161.394	
MATH10	110.003	125.355	157.656	189.096
Correlations				
	MATH7	MATH8	MATH9	MATH10
MATH7	1.000			
MATH8	0.829	1.000		
MATH9	0.806	0.868	1.000	
MATH10	0.785	0.828	0.902	1.000

Input For LSAY Linear Growth Model Without Covariates TITLE: Growth 7 - 10, no covariates DATA: FILE = lsayfull_dropout.dat; VARIABLE: NAMES = lsayid schcode female mothed homeres math7 math8 math9 math10 math11 math12 mthcrs7 mthcrs8 mthcrs9 mthcrs10 mthcrs11 mthcrs12; USEV = math7-math10; MISSING = ALL(9999); i BY math7-math10@1; MODEL: s BY math7@0 math8@1 math9@2 math10@3; [math7-math10@0]; [i s]; SAMPSTAT STANDARDIZED RESIDUAL MODINDICES (3.84); OUTPUT: Alternative language: MODEL: is | math7@0 math8@1 math9@2 math10@3; 70

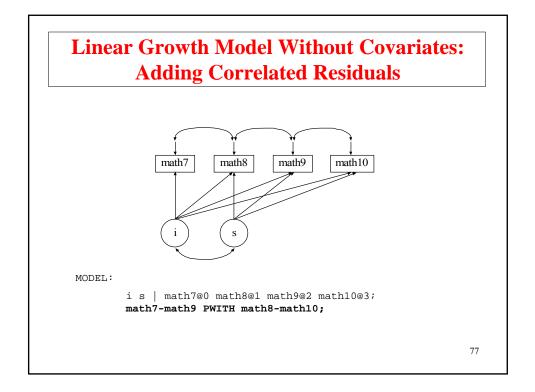
Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

Mod	lel Results	Estimates	S.E.	Est./S.E.	Two-Tailed P-Value	
I	BY				1 Value	
	MATH7	1.000	0.000	999.000	999.000	
	MATH8	1.000	0.000	999.000	999.000	
	МАТН9	1.000	0.000	999.000	999.000	
	MATH10	1.000	0.000	999.000	999.000	
S	BY					
	MATH7	0.000	0.000	999.000	999.000	
	MATH8	1.000	0.000	999.000	999.000	
	MATH9	2.000	0.000	999.000	999.000	
	MATH10	3.000	0.000	999.000	999.000	
						71
						, 1

Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

	Estimates	S.E.	Est./S.E.	Two-tailed	
				P-value	
Means					
I	50.202	0.180	279.523	0.000	
S	3.939	0.059	66.460	0.000	
Intercepts					
MATH7	0.000	0.000	999.000	999.000	
MATH8	0.000	0.000	999.000	999.000	
MATH9	0.000	0.000	999.000	999.000	
MATH10	0.000	0.000	999.000	999.000	
					70
					72

	Estimates	S.E.	Est./S.E.	Two-tailed P-value
Residual Varianc	25			F-Vaiue
MATH7	17.430	1.002	17.400	0.000
MATH8	18.440	0.750	24.596	0.000
MATH9	16.184	0.757	20.561	0.000
MATH10	17.219	1.301	13.230	0.000
Variances				
I	86.159	2.606	33.067	0.000
S	4.792	0.295	16.262	0.000
I WITH				
S	8.031	0.654	12.276	0.000
R-Square Observed				
Variable	R-Square			
MATH7	0.832			
MATH8	0.853			
MATH9	0.895			
MATH10	0.912			,


Output Excerpts LSAY Linear Growth Model Without Covariates (Continued) Tests Of Model Fit Chi-Square Test of Model Fit 86.541 Value Degrees of Freedom 5 P-Value 0.0000 CFI/TLI CFI 0.992 TLI 0.990 RMSEA (Root Mean Square Error Of Approximation) 0.073 Estimate 90 Percent C.I. 0.060 0.086 Probability RMSEA <= .05 0.002 SRMR (Standardized Root Mean Square Residual) Value 0.047 74

Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

		M.I.	E.P.C.	Std.E.P.C.	StdYX E.P.C.
BY Stat	ements				
I	BY MATH7	18.291	0.013	0.123	0.012
I	BY MATH8	15.115	-0.008	-0.073	-0.006
S	BY MATH7	22.251	0.178	0.389	0.038
S	BY MATH8	24.727	-0.120	-0.263	-0.023
WITH St	atements				
MATH9	WITH MATH7	18.449	-2.930	-2.930	-0.174
MATH9	WITH MATH8	31.311	4.767	4.767	0.276
MATH10	WITH MATH7	30.282	5.742	5.742	0.331
MATH10	WITH MATH8	54.842	-6.353	-6.353	-0.357
MATH10	WITH MATH9	31.503	14.816	14.816	0.888

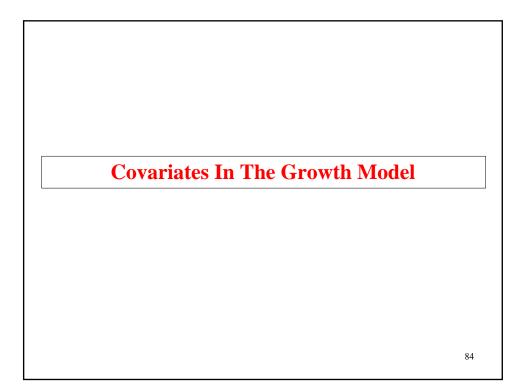
Output Excerpts LSAY Linear Growth Model Without Covariates (Continued)

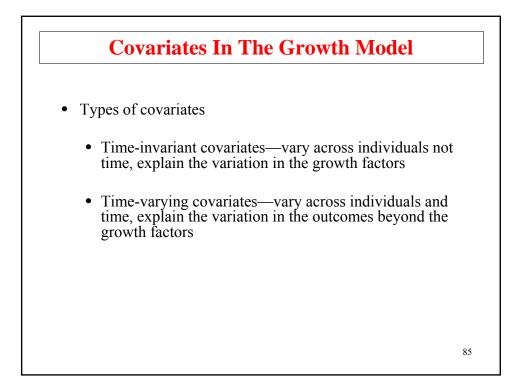
		M.I.	E.P.C.	Std.E.P.C.	StdYX E.P.C.
Means/Int	ercepts/Th	iresholds			
MATH7]	18.011	0.671	0.671	0.066
MATH8]	12.506	-0.362	362	-0.032

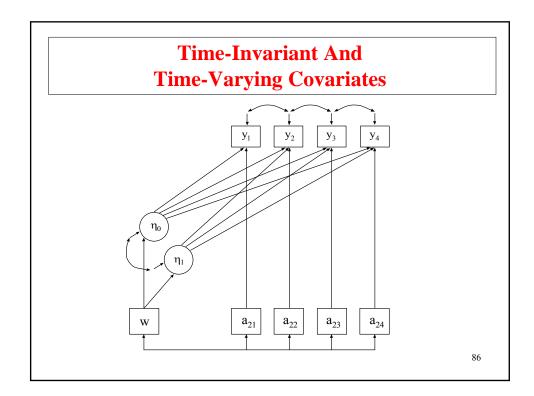
	Y Linear Growth Covariates: clated Residuals	ı Model
Tests Of Model Fit		
Chi-Square Test of Model Fit		
Value	18.519	
Degrees of Freedom	2	
P-Value	0.0000	
CFI/TLI		
CFI	0.998	
TLI	0.995	
RMSEA (Root Mean Square Error Of	f Approximation)	
Estimate	0.052	
90 Percent C.I.	0.032 0.074	
Probability RMSEA <= .05	0.404	
SRMR (Standardized Root Mean Squ	uare Residual)	
Value	0.011	78

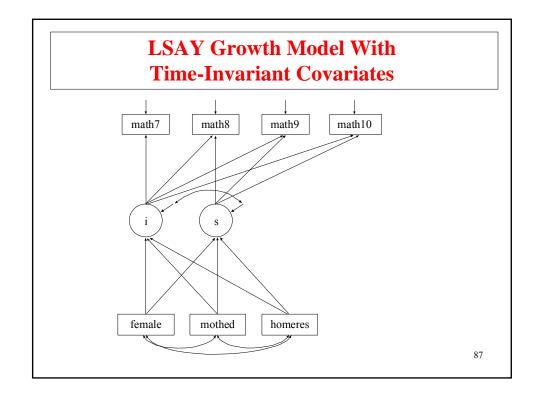
Output Excerpts LSAY: Adding Correlated Residuals (Continued)

		Estimates	S.E.	Est./S.E.	Two-tailed P-value
S	WITH				
I		6.133	1.379	4.447	0.000
MATH7	WITH				
MAT	Н8	-5.078	2.146	-2.366	0.018
MATH8	WITH				
MAT	Н9	4.917	0.916	5.365	0.000
MATH9	WITH				
MAT	н10	17.062	2.983	5.720	0.000
Means					
I		50.203	0.180	279.431	0.000
S		3.936	0.059	66.693	0.000
					79


Output Excerpts LSAY: Adding Correlated Residuals (Continued)


	Estimates	S.E.	Est./S.E.	Two-tailed P-value
Variances				
I	92.038	4.167	22.085	0.000
S	3.043	0.789	3.858	0.000
Residual Variances				
MATH7	11.871	3.466	3.425	0.001
MATH8	14.027	1.980	7.085	0.000
MATH9	32.596	2.609	12.492	0.000
MATH10	33.857	4.815	7.032	0.000
				8


	Outp	ut Excerpt	ts LSAY:		
Ac	lding Corre	lated Resi	duals (Cor	ntinued)	
ESTIMAT	TED MODEL AND RES				
	Model Estimated N	leans/Intercept	ts/Thresholds		
	MATH7	MATH8	MATH9	MATH10	
1	50.203	54.140	58.076	62.012	
	Residuals for Mea	ans/Intercepts,	/Thresholds		
	MATH7	MATH8	MATH9	MATH10	
1	0.153	-0.267	-0.114	0.238	
Means/1	Standardized Res: Intercepts/Thresho		es) for		
	MATH7	MATH8	MATH9	MATH10	
1	4.198	-4.109	-1.256	5.199	
	Normalized Residu	als for Means	/Intercepts/Thr	resholds	
	MATH7	MATH8	MATH9	MATH10	
1	0.834	-1.317	-0.478	0.904	
					81


Output Excerpts LSAY: Adding Correlated Residuals (Continued) Model Estimated Covariances/Correlations/Residual Correlations MATH7 MATH8 MATH9 MATH10 103.910 MATH7 93.093 MATH8 121.375 MATH9 104.304 121.441 161.339 MATH10 110.437 125.700 158.025 190.083 Residuals for Covariances/Correlations/Residual Correlations MATH7 MATH8 MATH10 MATH9 -0.041 MATH7 0.002 MATH8 -0.081 0.024 -0.002 MATH9 0.055 MATH10 -0.434 -0.345 -0.368 -0.987 82

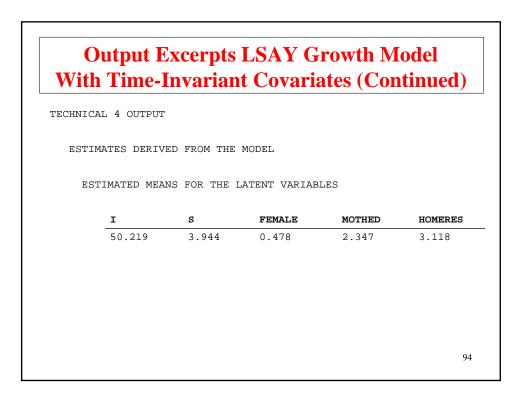
	Output	Excerpts	LSAY:	
Addir	ng Correlat	ed Residu	als (Cont	inued)
	rdized Residuals /Correlations/Re	(Tor	
	MATH7	MATH8	MATH9	MATH10
MATH7	999.000			
MATH8	999.000	999.000		
МАТН9	0.279	999.000	0.297	
MATH10	999.000	999.000	999.000	999.000
Normal Correlation	ized Residuals f s	for Covariance	es/Correlation	s/Residual
	MATH7	MATH8	MATH9	MATH10
MATH7	-0.016			
MATH8	0.001	-0.025		
матн9	0.008	-0.001	0.012	
MATH10	-0.130	-0.092	-0.081	-0.185
				83

DATA: VARIABLE:	<pre>Growth 7 - 10, no covariates FILE = lsayfull_dropout.dat; NAMES = lsayid schcode female mothed homeres math7 math8 math9 math10 math11 math12 mthcrs7 mthcrs8 mthcrs9 mthcrs10 mthcrs11 mthcrs12;</pre>
VARIABLE:	NAMES = lsayid schcode female mothed homeres math7 math8 math9 math10 math11 math12
	math7 math8 math9 math10 math11 math12
	MISSING = ALL (999); USEVAR = math7-math10 female mothed homeres;
ANALYSIS:	!ESTIMATOR = MLR;
	<pre>i s math7@0 math8@1 math9@2 math10@3; i s ON female mothed homeres;</pre>
Alternative	a language:
	<pre>i BY math7-math10@1; s BY math7@0 math8@1 math9@2 math10@3; [math7-math10@0]; [i s]; i s ON female mothed homeres;</pre>

	Covariates
n = 3116	
Tests Of Model Fit for ML	
Chi-Square Test of Model Fit	
Value	33.611
Degrees of Freedom	8
P-Value	0.000
CFI/TLI	
CFI	0.998
TLI	0.994
RMSEA (Root Mean Square Error Of Approxi	imation)
Estimate	0.032
90 Percent C.I.	0.021 0.04
Probability RMSEA <= .05	0.996
SRMR (Standardized Root Mean Square Resi	idual)
Value	0.010

Output Excerpts LSAY Grow With Time-Invariant Covariates		
Tests Of Model Fit for MLR		
Chi-Square Test of Model Fit		
Value	33.290*	
Degrees of Freedom	8	
P-Value	0.0001	
Scaling Correction Factor	1.010	
for MLR		
CFI/TLI		
CFI	0.997	
TLI	0.993	
RMSEA (Root Mean Square Error Of Approximatic	on)	
Estimate	0.015	
90 Percent C.I.	0.021	0.043
Probability RMSEA <= .05	0.996	
SRMR (Standardized Root Mean Square Residual)		
Value	0.010	9

Output Excerpts LSAY Growth Model With Time-Invariant Covariates (Continued)

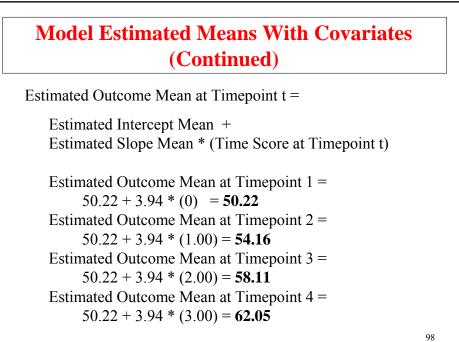

		Estimate	S.E.	Est./S.E.	Two-Tailed
					P-Value
I	ON				
	FEMALE	2.123	0.327	6.499	0.000
	MOTHED	2.262	0.164	13.763	0.000
	HOMERES	1.751	0.104	16.918	0.000
S	ON				
	FEMALE	-0.134	0.116	-1.153	0.249
	MOTHED	0.223	0.059	3.771	0.000
	HOMERES	0.273	0.037	7.308	0.000
					9

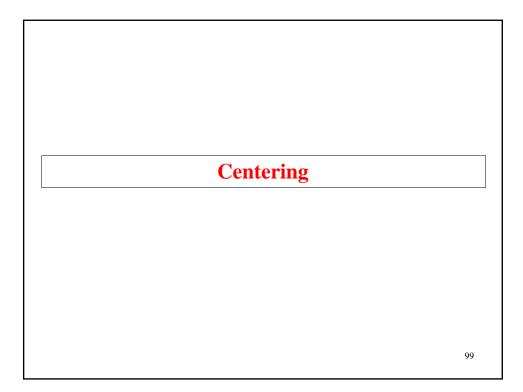
Output Excerpts LSAY Growth Model With Time-Invariant Covariates (Continued)

	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
S WITH				
I	4.131	1.244	3.320	0.001
Residual Va	riances			
I	71.888	3.630	19.804	0.000
S	3.313	0.724	4.579	0.000
Intercepts				
I	38.434	0.497	77.391	0.000
S	2.636	0.181	14.561	0.000
				9

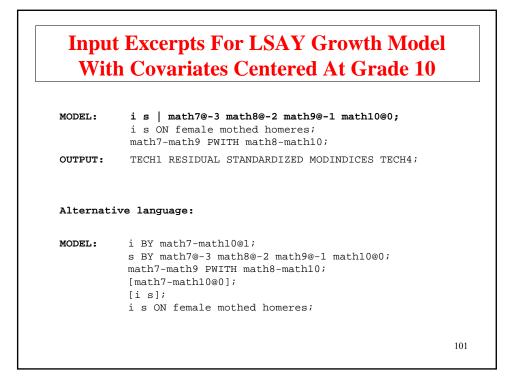
Output Excerpts LSAY Growth Model With Time-Invariant Covariates (Continued)

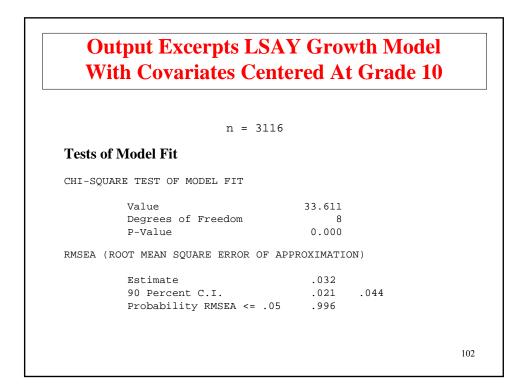
	R-Square	
	Observed	
	Variable	R-Square
	MATH7	0.876
	MATH8	0.863
	MATH9	0.817
	MATH10	0.854
	Latent	
	Variable	R-Square
	I	.204
	S	.091

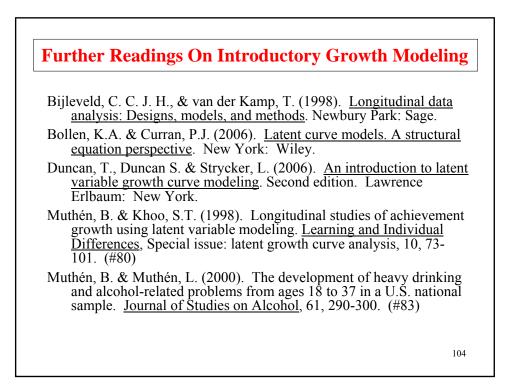



DOUT		TANGE MARDES	K FOR THE LAT		
ESIII	I	S	FEMALE	MOTHED	HOMERES
	90.264				
S	6.411	3.647			
FEMALE	0.350	-0.058	0.250		
MOTHED	3.226	0.373	-0.024	1.088	
HOMERES	5.901	0.891	-0.071	0.467	2.853
ESTI	MATED CORRE	LATION MATRI	IX FOR THE LA	TENT VARIAB	LES
	I	S	FEMALE	MOTHED	HOMERES
	1.000				
S	0.353	1.000			
FEMALE	0.074	-0.061	1.000		
MOTHED	0.326	0.187	-0.047	1.000	
HOMERES	0.368	0.276	-0.084	0.265	1.000

Model Estimated Average And Indi Growth Curves With Covariate		
Model:		
$y_{ti} = \eta_{0i} + \eta_{1i} x_t + \varepsilon_{ti},$	(23)	
$\eta_{0i} = \alpha_0 + \gamma_0 w_i + \zeta_{0i} ,$	(24)	
$\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i} ,$	(25)	
Estimated growth factor means:		
$\hat{E}(\eta_{0i}) = \hat{\alpha}_0 + \hat{\gamma}_0 \overline{W},$	(26)	
$\hat{E}(\eta_{1i}) = \hat{\alpha}_1 + \hat{\gamma}_1 \overline{w}$.	(27)	
Estimated outcome means:		
$\hat{E}(y_{ti}) = \hat{E}(\eta_{0i}) + \hat{E}(\eta_{1i}) x_t$	(28)	
Estimated outcomes for individual <i>i</i> :		
$\hat{y}_{ti} = \hat{\eta}_{0i} + \hat{\eta}_{1i} \ x_t$	(29)	
where $\hat{\eta}_{0i}$ and $\hat{\eta}_{1i}$ are estimated factor scores. \hat{y}_{ti} can be		
used for prediction purposes.		9



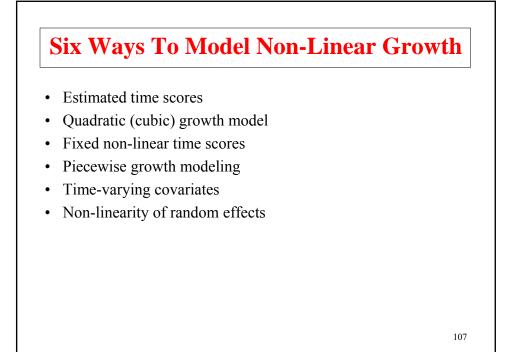

Model estimated means are the OUTPUT command.	available using the TECH4 and RESIDUAL options of
Estimated Intercept Mean =	Estimated Intercept + Estimated Slope (Female)*Sample Mean (Female) + Estimated Slope (Mothed)*Sample Mean (Mothed) + Estimated Slope (Homeres)*Sample Mean (Homeres)
38.43 + 2.12*0.48 + 2.2	6*2.35 + 1.75*3.12 = 50.22
Estimated Slope Mean $=$ 2.64 - 0.13*0.48 + 0.2	Estimated Intercept + Estimated Slope (Female)*Sample Mean (Female) + Estimated Slope (Mothed)*Sample Mean (Mothed) + Estimated Slope (Homeres)*Sample Mean (Homeres) 22*2.35 + 0.27*3.11 = 3.94


Centering	
• Centering determines the interpretation of the intercep growth factor	ot
• The centering point is the timepoint at which the time zero	score is
• A model can be estimated for different centering poin depending on which interpretation is of interest	ts
• Models with different centering points give the same fit because they are reparameterizations of the model	model
• Changing the centering point in a linear growth mode four timepoints	l with
Timepoints 1 2 3 4 Centering at	
Time scores 0 1 2 3 Timepoint 1	
-1 0 1 2 Timepoint 2	
-2 -1 0 1 Timepoint 3	
-3 -2 -1 0 Timepoint 4	100

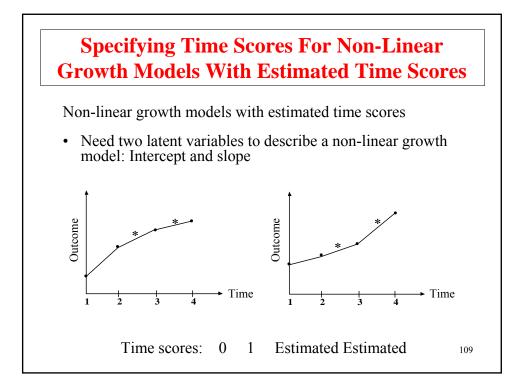
Output Excerpts LSAY Growth Model With Covariates Centered At Grade 10 (Continued)

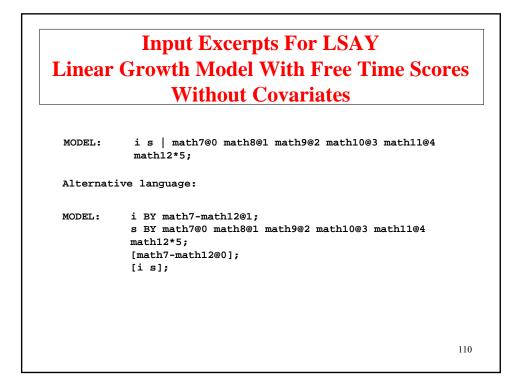
		Estimate	S.E.	Est./S.E.	Two-Tailed
					P-Value
I	ON				
FE	MALE	1.723	0.473	3.643	0.000
MC	THED	2.930	0.239	12.249	0.000
HC	MERES	2.569	0.151	17.002	0.000
S	ON				
FE	MALE	-0.133	0.116	-1.153	0.249
MC	THED	0.223	0.059	3.771	0.000
HC	MERES	0.273	0.037	7.308	0.000
					10

Further Readings On Introductory Growth Modeling (Continued)


Raudenbush, S.W. & Bryk, A.S. (2002). <u>Hierarchical linear models:</u> <u>Applications and data analysis methods</u>. Second edition. Newbury Park, CA: Sage Publications.

Singer, J.D. & Willett, J.B. (2003). <u>Applied longitudinal data analysis.</u> <u>Modeling change and event occurrence</u>. New York, NY: Oxford University Press.


Snijders, T. & Bosker, R. (1999). <u>Multilevel analysis. An introduction</u> to basic and advanced multilevel modeling. Thousand Oakes, CA: Sage Publications.


105

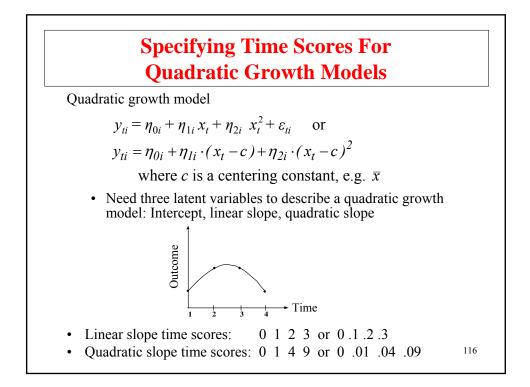
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

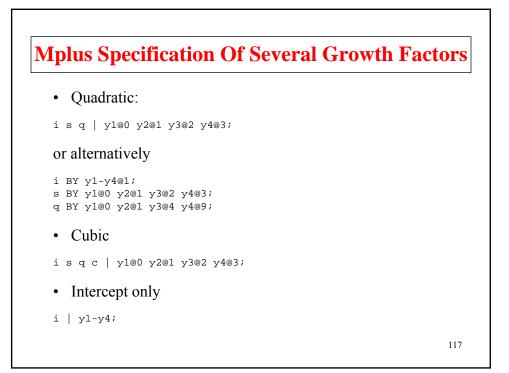
<section-header><section-header>

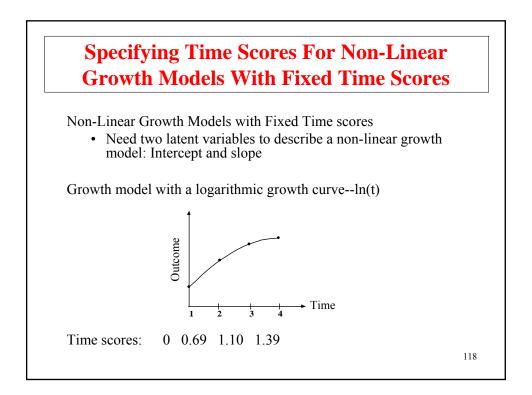
Output Excerpts LSAY Gro With Free Time Scores Witho		
n = 3102		
Tests Of Model Fit		
Chi-Square Test of Model Fit		
Value	121.095	
Degrees of Freedom	10	
P-Value	0.0000	
CFI/TLI		
CFI	0.992	
TLI	0.989	
RMSEA (Root Mean Square Error Of Approximation	lon)	
Estimate	0.060	
90 Percent C.I.	0.051	0.070
Probability RMSEA <= .05	0.041	
SRMR (Standardized Root Mean Square Residual	L)	
Value	0.034	
		111

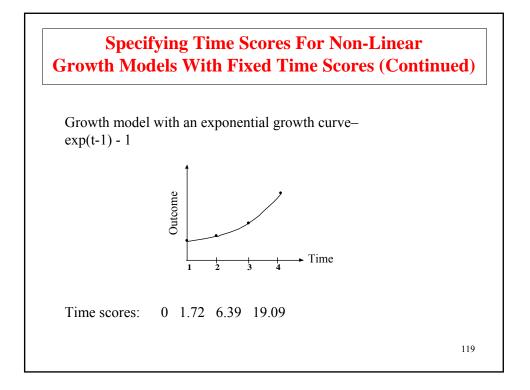
Output Excerpts LSAY Growth Model With Free Time Scores Without						
			ates (Cor			
		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
I						
	MATH7	1.000	0.000	999.000	999.000	
	MATH8	1.000	0.000	999.000	999.000	
	MATH9	1.000	0.000	999.000	999.000	
	MATH10	1.000	0.000	999.000	999.000	
	MATH11	1.000	0.000	999.000	999.000	
	MATH12	1.000	0.000	999.000	999.000	
S						
	MATH7	0.000	0.000	999.000	999.000	
	MATH8	1.000	0.000	999.000	999.000	
	MATH9	2.000	0.000	999.000	999.000	
	MATH10	3.000	0.000	999.000	999.000 112	

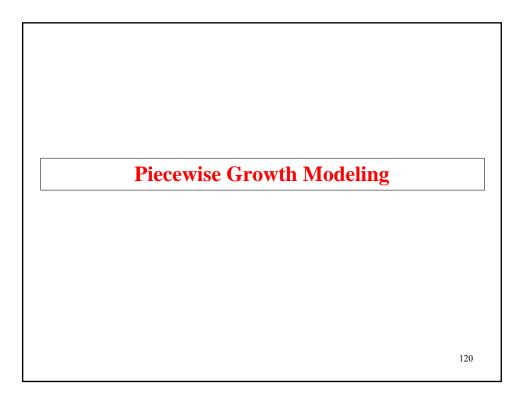
Output Excerpts LSAY Growth Model With Free Time Scores Without Covariates (Continued)

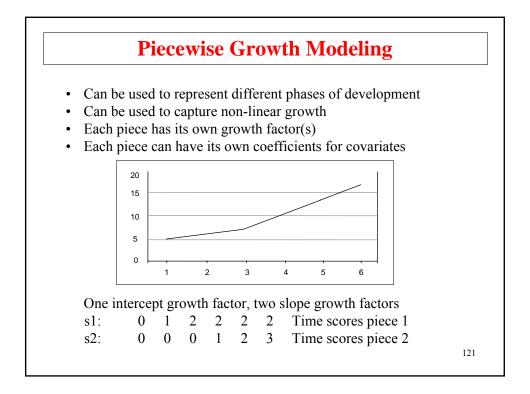

		Estimate	S.E.	Est./S.E.	Two-Tailed
					P-Value
MATH1	1.	4.000	0.000	999.000	999.000
MATH1	2	4.095	0.042	97.236	0.000
S W	ITH				
I		4.986	0.741	6.725	0.000
Variance	s				
I		91.374	3.046	29.994	0.000
S		4.001	0.276	14.666	0.000
Means					
I		50.323	0.180	279.612	0.000
S		3.752	0.049	76.472	0.000
					113

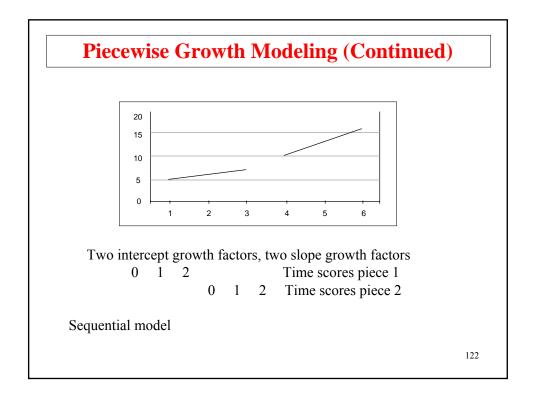


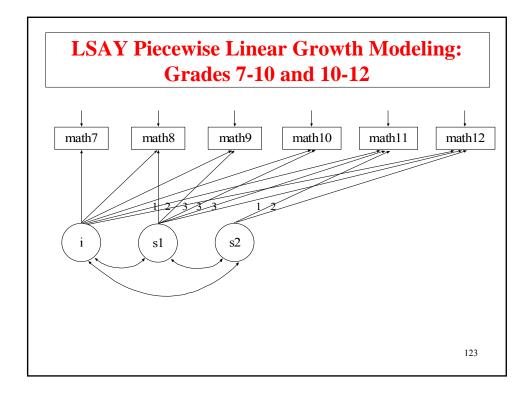

Interpretation Of Slope Growth Factor Mean For Non-Linear Models

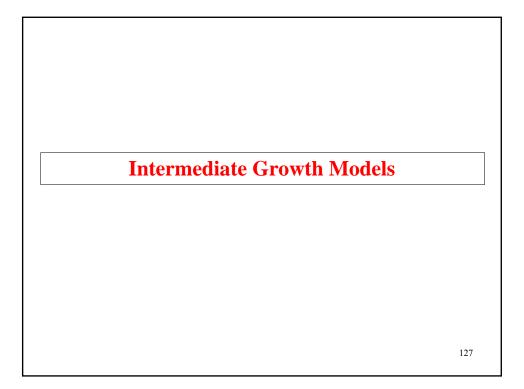

- The slope growth factor mean is the expected change in the outcome variable for a one unit change in the time score
- In non-linear growth models, the time scores should be chosen so that a one unit change occurs between timepoints of substantive interest.
 - An example of 4 timepoints representing grades 7, 8, 9, and 10
 - Time scores of 0 1 * * slope factor mean refers to expected change between grades 7 and 8
 - Time scores of 0 * * 1 slope factor mean refers to expected change between grades 7 and 10


115









	With Covariates
MODEL:	i s1 math7@0 math8@1 math9@2 math10@3 math11@3 math12@3; i s2 math7@0 math8@0 math9@0 math10@0 math11@1 math12@2; i s1 s2 ON female mothed homeres;
Alternat	ive language:
MODEL:	<pre>i BY math7-math12@1; s1 BY math7@0 math8@1 math9@2 math10@3 math11@3 math12@3; s2 BY math7@0 math8@0 math9@0 math10@0 math11@1 math12@2; [math7-math12@0]; [i s1 s2]; i s1 s2 ON female mothed homeres;</pre>

Output Excerpts LSAY Piecewise Growth Model With Covariates

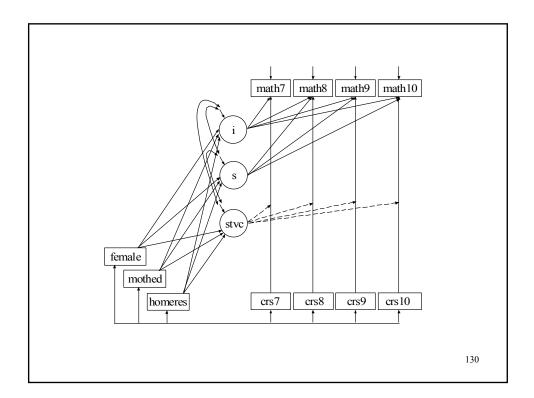
n = 3116		
Tests of Model Fit		
CHI-SQUARE TEST OF MODEL FIT		
Value Degrees of Freedom P-Value	229.22 21 0.0000	
RMSEA (ROOT MEAN SQUARE ERROR OF APPI	ROXIMATION)	
Estimate 90 Percent C.I. Probability RMSEA <= .05	0.056 0.050 0.063 0.051	
		125

Output Excerpts LSAY Piecewise Growth Mode With Covariates (Continued)					
I	ON				
FEN	IALE	2.126	0.327	6.496	0.000
MOT	THED	2.282	0.165	13.867	0.000
HOM	IERES	1.757	0.104	16.953	0.000
51	ON				
FEM	IALE	-0.121	0.114	-1.065	0.287
MOT	THED	0.216	0.058	3.703	0.000
HOM	IERES	0.269	0.037	7.325	0.000
52	ON				
FEN	IALE	-0.178	0.191	-0.935	0.350
MOT	THED	0.071	0.099	0.719	0.472
HON	IERES	0.047	0.061	0.758	0.449 12

Growth Model With Individually-Varying Times Of Observation And Random Slopes For Time-Varying Covariates

128

Growth Modeling In Multilevel Terms


Time point *t*, individual *i* (two-level modeling, no clustering):

- y_{ti} : repeated measures of the outcome, e.g. math achievement
- a_{1ti} : time-related variable; e.g. grade 7-10
- a_{2ti} : time-varying covariate, e.g. math course taking
- x_i : time-invariant covariate, e.g. grade 7 expectations

Two-level analysis with individually-varying times of observation and random slopes for time-varying covariates:

Level 1:
$$y_{ti} = \pi_{0i} + \pi_{1i} a_{1ti} + \pi_{2ti} a_{2ti} + e_{ti}$$
, (55)

Level 2:
$$\pi_{0i} = \beta_{00} + \beta_{01} x_i + r_{0i}, \\ \pi_{1i} = \beta_{10} + \beta_{11} x_i + r_{1i}, \\ \pi_{2i} = \beta_{20} + \beta_{21} x_i + r_{2i}.$$
 (56)

Input For Growth Model With Individually Varying Times Of Observation

2	ritle:	Growth model with individually varying times of observation and random slopes	
I	DATA:	FILE IS lsaynew.dat; FORMAT IS 3F8.0 F8.4 8F8.2 3F8.0;	
7	VARIABLE:	NAMES ARE math7 math8 math9 math10 crs7 crs8 crs9 crs10 female mothed homeres a7-a10;	
		<pre>! crs7-crs10 = highest math course taken during ead ! grade (0=no course, 1=low, basic, 2=average, 3=h: ! 4=pre-algebra, 5=algebra I, 6=geometry, ! 7=algebra II, 8=pre-calc, 9=calculus)</pre>	
		MISSING ARE ALL (9999); CENTER = GRANDMEAN (crs7-crs10 mothed homeres); TSCORES = a7-a10;	
		13	31

Input For Growth Model With Individually Varying Times Of Observation (Continued)				
DEFINE:	<pre>math7 = math7/10; math8 = math8/10; math9 = math9/10; math10 = math10/10;</pre>			
ANALYSIS:	TYPE = RANDOM MISSING; ESTIMATOR = ML; MCONVERGENCE = .001;			
MODEL:	<pre>i s math7-math10 AT a7-a10; stvc math7 ON crs7; stvc math8 ON crs8; stvc math9 ON crs9; stvc math10 ON crs10; i ON female mothed homeres; s ON female mothed homeres; stvc ON female mothed homeres; i WITH s; stvc WITH i; stvc WITH s;</pre>			
OUTPUT:	TECH8;			

Output Excerpts For Growth Model With Individually Varying Times Of Observation And Random Slopes For Time-Varying Covariates

n = 2271

Tests of Model Fit

Loglikelihood

H0 Value -8199.311 Information Criteria Number of Free Parameters 22 Akaike (AIC) 16442.623 Bayesian (BIC) 16568.638 Sample-Size Adjusted BIC 16498.740 (n* = (n + 2) / 24)

133

Output Excerpts For Growth Model With Individually Varying Times Of Observation And Random Slopes For Time-Varying Covariates (Continued) **Model Results** Est./S.E. Estimates S.E. Ι ON 0.036 5.247 FEMALE 0.187 MOTHED 0.187 0.018 10.231 HOMERES 0.159 0.011 14.194 S ON FEMALE -2.017 -0.025 0.012 2.429 0.015 0.006 MOTHED 0.019 0.004 4.835 HOMERES STVC ON 0.013 -0.590 FEMALE -0.008 MOTHED 0.003 0.007 0.429 HOMERES 0.009 0.004 2.167 Т WITH S 0.038 0.006 6.445 STVC WITH I 0.011 0.005 2.087 S 0.004 0.002 2.033 134

Output Excerpts For Growth Model With Individually Varying Times Of Observation And Random Slopes For Time-Varying Covariates (Continued)	
Intercepts	

MATH7	0.000	0.000	0.000	
MATH8	0.000	0.000	0.000	
MATH9	0.000	0.000	0.000	
MATH10	0.000	0.000	0.000	
I	4.992	0.025	198.456	
S	0.417	0.009	47.275	
STVC	0.113	0.010	11.416	
Residual Variances				
MATH7	0.185	0.011	16.464	
MATH8	0.178	0.008	22.232	
MATH9	0.156	0.008	18.497	
MATH10	0.169	0.014	12.500	
I	0.570	0.023	25.087	
S	0.036	0.003	12.064	
STVC	0.012	0.002	5.055	135

Why No Chi-Square With Random Slopes For Random Variables?

Consider as an example individually-varying times of observation a_{1ti} :

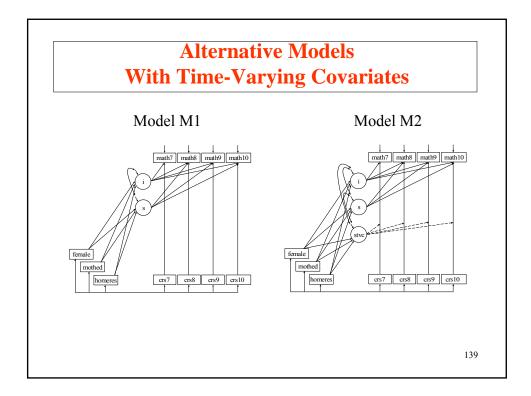
$$y_{ti} = \pi_{0i} + \pi_{1i} a_{1ti} + e_{ti}$$

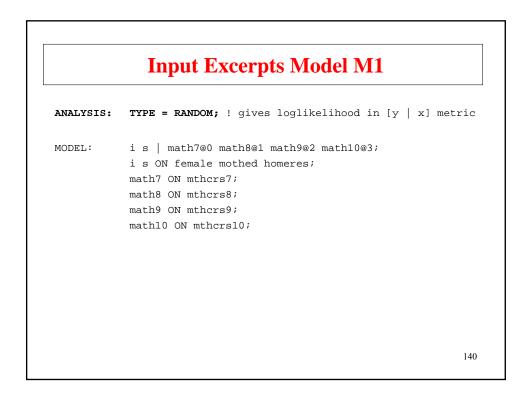
$$V(y_{ti} | a_{1ti}) = V(\pi_{0i}) + V(\pi_{1i}) a_{1ti}^2 + 2 a_{1ti} Cov(\pi_{0i}, \pi_{1i}) + V(e_{ti})$$

The variance of y changes as a function of a_{Iti} values.

Not a constant \varSigma to test the model fit for.

Maximum-Likelihood Alternatives


Note that [y, x] = [y | x] * [x], where the marginal distribution [x] is unrestricted.


Normal theory ML for

- [y, x]: Gives the same results as [y | x] when there is no missing data (Joreskog & Goldberger, 1975). Typically used in SEM
 - With missing data on x, the normality assumption for x is an additional assumption not used with [y | x]
- [y | x]: Makes normality assumptions for residuals, not for x. Typically used outside SEM
 - Used with Type = Random, Type = Mixture, and with categorical, censored, and count outcomes
 - Deletes individuals with missing on any x
- [y, x] versus [y | x] gives different sample sizes and the likelihood and BIC values are not on a comparable scale

137

Alternative Models With Time-Varying Covariates

Output Excerpts	Model M1
TESTS OF MODEL FIT	
Chi-Square Test of Model Fit	
Value	1143.173*
Degrees of Freedom	23
P-Value	0.000
Scaling Correlation Factor	1.058
for MLR	
* The chi-square value for MLM, MLM WLSMV cannot be used for chi-square MLR and WLSM chi-square difference the Mplus Technical Appendices at <u>w</u> chi-square difference testing in the User's Guide.	difference tests. MLM, testing is described in ww.statmodel.com. See

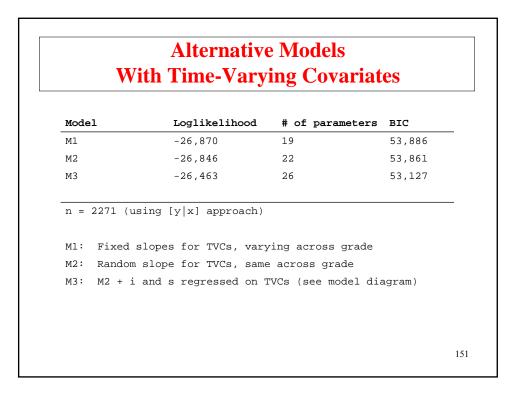
Output Excerpts Model M1 (Continued)
Chi-Square Test of Model Fit for the Baseli	.ne Model
Value	8680.167
Degrees of Freedom	34
P-Value	0.000
CFI/TLI	
CFI	0.870
TLI	0.808
Loglikelihood	
H0 Value	-26869.760
H0 Scaling Correlation Factor	1.159
for MLR	
H1 Value	-26264.830
H1 Scaling Correlation Factor	1.104
for MLR	

Output Excerpts Model M1 (Continued)				
Information Criteria				
Number of Free Parameters	19			
Akaike (AIC)	53777.520			
Bayesian (BIC)	53886.351			
Sample-Size Adjusted BIC	53825.985			
(n* = (n = 2) / 24)				
RMSEA (Root Mean Square Error of Approximation)				
Estimate	0.146			
SRMR (Standardized Root Mean Square Residual)				
Value	0.165			
	143			

Output Excerpts Model M1 (Continued)					
		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
I	ON -				
FEMAI	LE	1.877	0.357	5.261	0.000
MOTHED		1.926	0.203	9.497	0.000
HOME	RES	1.608	0.113	14.181	0.000
S	ON				
FEMAI	LE	-0.236	0.125	-1.893	0.058
MOTH	ED	0.167	0.066	2.545	0.011
HOME	RES	0.193	0.042	4.556	0.000
MATH7	ON				
MTHCI	RS7	1.042	0.157	6.644	0.000
MATH8	ON				
MTHCRS8		0.898	0.102	8.794	0.000

Outpu	t Excerpt	s Model	M1 (Cont	inued)
	Estimate	S.E.	Est./S.E.	Two-Tailed
_				P-Value
MATH9 ON				
MTHCRS9	0.929	0.087	10.638	0.000
MATH10 ON				
MTHCRS10	0.911	0.102	8.966	0.000
S WITH				
I	4.200	0.687	6.113	0.000
Intercepts				
MATH7	0.000	0.000	999.000	999.000
MATH8	0.000	0.000	999.000	999.000
MATH9	0.000	0.000	999.000	999.000
MATH10	0.000	0.000	999.000	999.000
I	50.063	0.263	190.158	0.000
S	4.202	0.096	43.621	0.000

	Estimate	S.E.	Est./S.E.	Two-Tailed
				P-Value
esidual Var	iances			
MATH7	18.640	1.341	13.895	0.000
MATH8	18.554	1.002	18.518	0.000
MATH9	16.672	1.010	16.501	0.000
MATH10	17.795	1.671	10.651	0.000
11111110			24.622	0.000
I	58.919	2.393	24.022	0.000

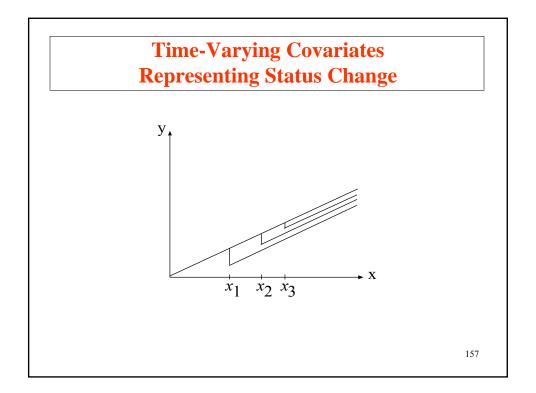

L

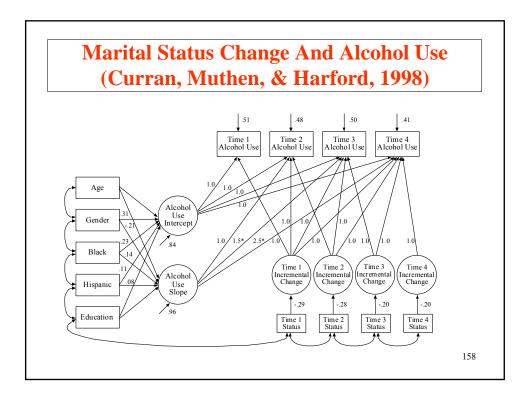

0	utp	ut Ex	cerpts	Model M	1 (Continu	ied)
MODIFICA	ATION	INDICES	3			
Minimum	M.I.	value f	for printi	ng the modifi	cation index	10.000
				M.I.	E.P.C.	
ON/BY St	tatem	ents				
MATH 7	ON	I	/			
I	BY	MATH7		15.393	0.014	
MATH7	ON	S	/			
S	BY	MATH7		16.813	0.172	
MATH8	ON	I	/			
I	BY	MATH8		11.067	-0.008	
MATH8	ON	S	/			
S	BY	MATH8		15.769	-0.107	
S	ON	I	/			
I	BY	S		999.000	0.000	
						147

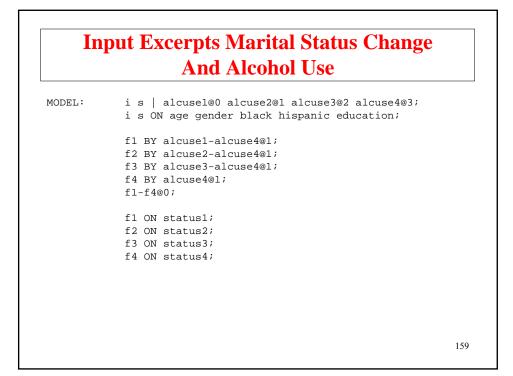
(Output Exce	erpts Model M	1 (Continued)
		M.I.	E.P.C.
ON Sta	atements		
I	ON MATH7	60.201	0.718
I	ON MATH8	58.550	0.464
I	ON MATH9	116.447	0.600
I	ON MATH10	118.956	0.786
I	ON MTHCRS7	582.970	5.844
I	ON MTHCRS8	373.181	3.119
I	ON MTHCRS9	475.187	2.540
I	ON MTHCRS10	379.535	2.012
S	ON MATH7	55.444	0.298
S	ON MATH9	118.064	0.322
S	ON MATH10	24.355	0.221
S	ON MTHCRS7	203.710	1.334
S	ON MTHCRS8	86.109	0.543 14

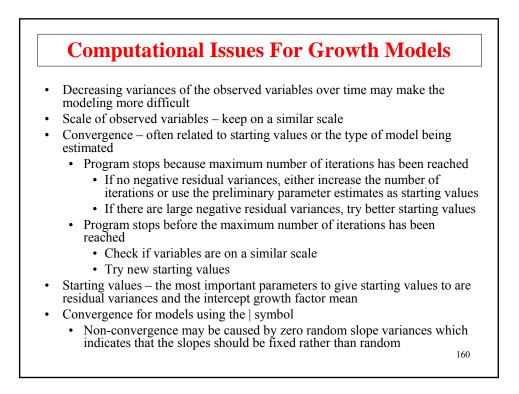
0	utput Excer	pts Model M	1 (Continued)	
		М.І.	E.P.C.	
S	ON MTHCRS9	90.560	0.453	
S	ON MTHCRS10	118.478	0.559	
MATH7	ON MATH7	15.393	0.014	
MATH7	ON MATH8	17.359	0.013	
MATH7	ON MATH9	14.805	0.011	
MATH7	ON MATH10	18.991	0.012	
MATH7	ON MTHCRS8	48.865	0.873	
MATH7	ON MTHCRS9	63.490	0.676	
MATH7	ON MTHCRS10	22.160	0.337	
MATH8	ON MATH8	11.438	-0.007	
MATH8	ON MATH10	13.204	-0.007	
MATH8	ON MTHCRS7	82.739	1.467	
MATH8	ON MTHCRS9	12.743	0.321	
				149

			1 (Continued)
		M.I.	E.P.C.
MATH9	ON MTHCRS7	26.183	0.776
матн9	ON MTHCRS8	16.027	0.494
матн9	ON MTHCRS10	69.480	0.781
MATH10	ON MTHCRS8	19.665	0.629
MATH10	ON MTHCRS9	48.678	0.911

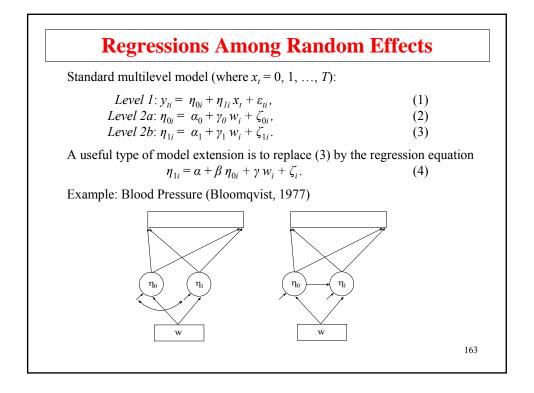


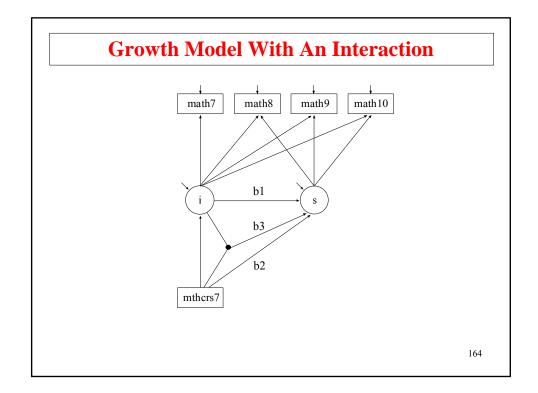

ANALYSIS:	TYPE = RANDOM;	
MODEL:	i s math7@0 math8@1 math9@2 math10@3;	
	stvc math7 ON mthcrs7;	
	stvc math8 ON mthcrs8;	
	stvc math9 ON mthcrs9;	
	stvc math10 ON mthcrs10;	
	stvc WITH i s;	
	i s stvc ON female mothed homeres;	
	i ON mthcrs7;	
	s ON mthcrs8-mthcrs10;	


Output Excerpts Time-Varying Covariates: Model M3						
		Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
I	ON					
FEMA	LE	1.444	0.325	4.449	0.000	
MOTH	IED	1.259	0.184	6.860	0.000	
HOME	RES	1.144	0.104	11.041	0.000	
MTHC	RS7	5.095	0.188	27.040	0.000	
S	ON					
FEMA	LE	-0.395	0.123	-3.215	0.001	
MOTH	IED	-0.018	0.064	-0.283	0.777	
HOME	RES	0.052	0.042	1.249	0.212	
MTHC	RS8	0.099	0.061	1.627	0.104	
MTHC	RS9	0.254	0.061	4.188	0.000	
MTHC	RS10	0.341	0.053	6.471	0.000	


	Estimate	S.E.	Est./S.E.	Two-Tailed
STVC ON				P-Value
FEMALE	-0.083	0.123	-0.677	0.499
MOTHED	0.009	0.066	0.129	0.898
HOMERES	0.070	0.041	1.710	0.087
STVC WITH				
I	-0.078	0.453	-0.173	0.863
S	0.015	0.185	0.083	0.934
S WITH				
I	0.480	0.630	0.762	0.446
Intercepts				
MATH7	0.000	0.000	999.000	999.000
MATH8	0.000	0.000	999.000	999.000

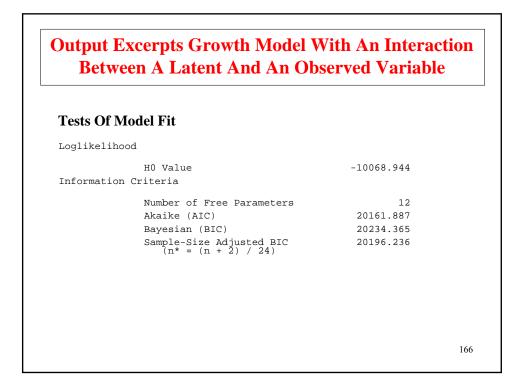
Outpu	it Excerpts	s: Mode	l M3 (Cont	tinued)
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
MATH9	0.000	0.000	999.000	999.000
MATH10	0.000	0.000	999.000	999.000
I	50.244	0.240	209.085	0.000
S	4.257	0.094	45.071	0.000
STVC	0.231	0.106	2.188	0.029
Residual Var	iances			
MATH7	18.968	1.304	14.541	0.000
MATH8	17.061	0.931	18.322	0.000
MATH9	15.624	0.936	16.690	0.000
MATH10	16.550	1.494	11.074	0.000
I	44.980	1.891	23.792	0.000
S	3.423	0.338	10.118	0.000
STVC	0.615	0.255	2.410	0.016




Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

161


Regressions Among Random Effects

Input For A Growth Model With An Interaction Between A Latent And An Observed Variable

TITLE:	growth model with an interaction between a latent and a observed variable	n
DATA:	FILE IS lsay.dat;	
VARIABLE:	NAMES ARE math7 math8 math9 math10 mthcrs7; MISSING ARE ALL (9999); CENTERING = GRANDMEAN (mthcrs7);	
DEFINE:	<pre>math7 = math7/10; math8 = math8/10; math9 = math9/10; math10 = math10/10;</pre>	
ANALYSIS:	TYPE=RANDOM MISSING;	
MODEL:	<pre>i s math7@0 math8@1 math9@2 math10@3; [math7-math10] (1); !growth language defaults [i@0 s]; !overridden</pre>	
	<pre>inter i XWITH mthcrs7; s ON i mthcrs7 inter; i ON mthcrs7;</pre>	
OUTPUT:	SAMPSTAT STANDARDIZED TECH1 TECH8;	165

Output Excerpts Growth Model With An Interaction Between A Latent And An Observed Variable (Continued)

Model Results				
	Estimates	S.E.	Est./S.E.	
I				
MATH7	1.000	0.000	0.000	
MATH8	1.000	0.000	0.000	
MATH9	1.000	0.000	0.000	
MATH10	1.000	0.000	0.000	
S				
MATH7	0.000	0.000	0.000	
MATH8	1.000	0.000	0.000	
MATH9	2.000	0.000	0.000	
MATH10	3.000	0.000	0.000	
				1(7
				167

	Output Excerpts Growth Model With An Interaction Between A Latent And An Observed Variable (Continued)						
		Estimates	S.E.	Est./S.E.			
S	ON						
-	C C	0.087	0.012	7.023			
2	INTER	-0.047	0.006	-7.301			
S	ON						
I	MTHCRS7	0.045	0.013	3.555			
I	ON						
I	ITHCRS7	0.632	0.016	40.412			

Output Excerpts Growth Model With An Interaction Between A Latent And An Observed Variable (Continued)

	Estimates	S.E.	Est./S.E.	
Intercepts				
MATH7	5.019	0.015	341.587	
MATH8	5.019	0.015	341.587	
MATH9	5.019	0.015	341.587	
MATH10	5.019	0.015	341.587	
I	0.000	0.000	0.000	
S	0.417	0.007	57.749	
Residual Varia	ances			
MATH7	0.184	0.011	16.117	
MATH8	0.178	0.009	20.109	
MATH9	0.164	0.009	18.369	
MATH10	0.173	0.015	11.509	
I	0.528	0.018	28.935	
S	0.037	0.004	10.027	

Interpreting The Effect Of The Interaction Between Initial Status Of Growth In Math Achievement And Course Taking In Grade 6

• Model equation for slope s s = a + b1*i + b2*mthcrs7 + b3*i*mthcrs7 + e

or, using a moderator function (Klein & Moosbrugger, 2000) where i moderates the influence of mthcrs7 on s s = a + b1*i + (b2 + b3*i)*mthcrs7 + e

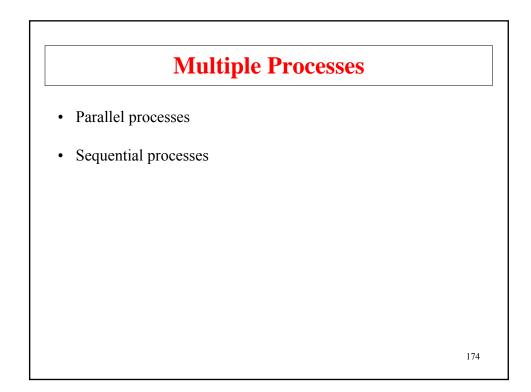
• Estimated model

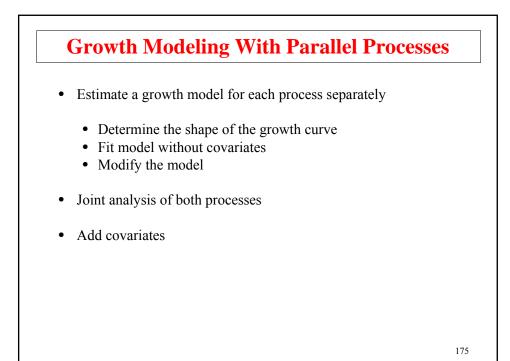
Unstandardized s = 0.417 + 0.087*i + (0.045 - 0.047*i)*mthcrs7

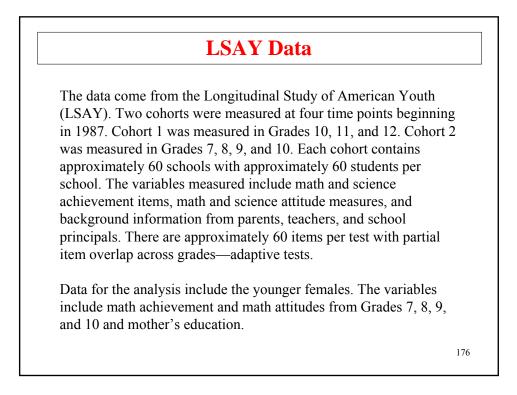
Standardized with respect to i and mthcrs7 s = 0.42 + 0.08 * i + (0.04-0.04*i)*mthcrs7

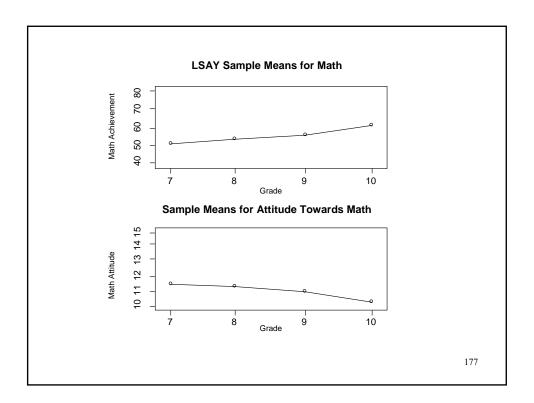
•	Interpretation of the standardized solution
	At the mean of i, which is zero, the slope increases 0.04 for 1 SD increase in mthcrs7

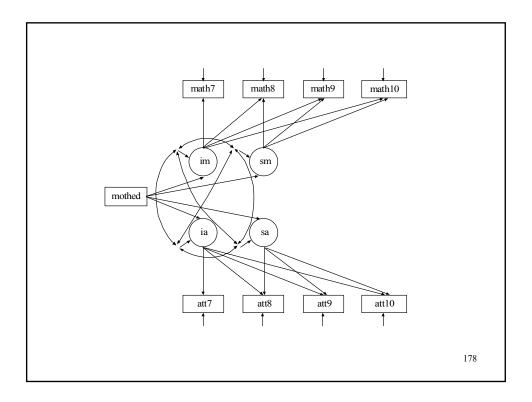
At 1 SD below the mean of i, which is zero, the slope increases 0.08 for 1 SD increase in mthers7

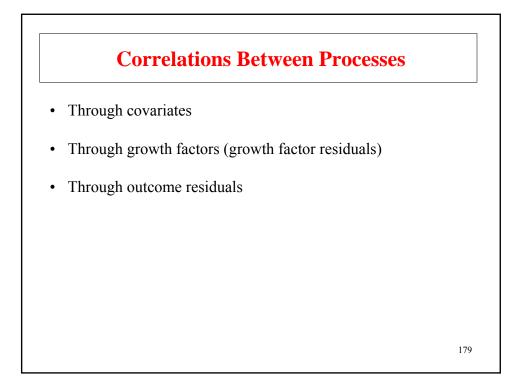

At 1 SD above the mean of i, which is zero, the slope does not increase as a function of mthers7

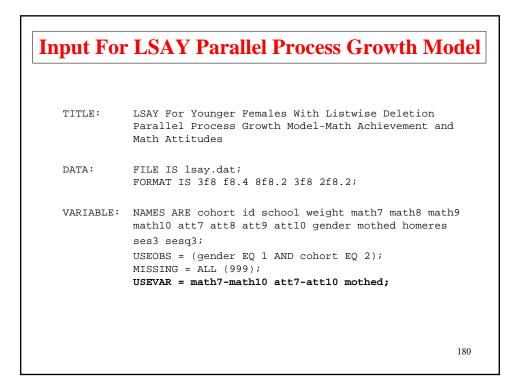

171

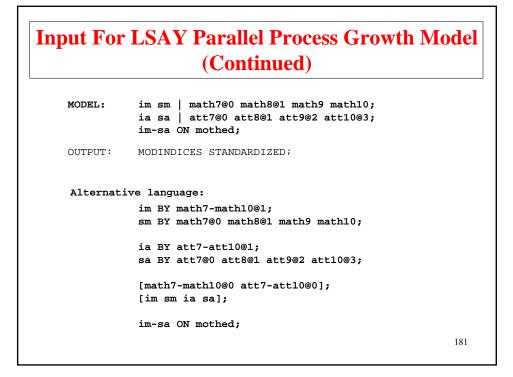

Growth Modeling With Parallel Processes

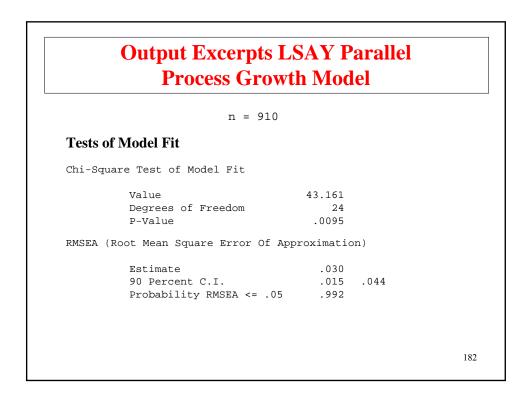

Advantages Of Growth Modeling In A Latent Variable Framework

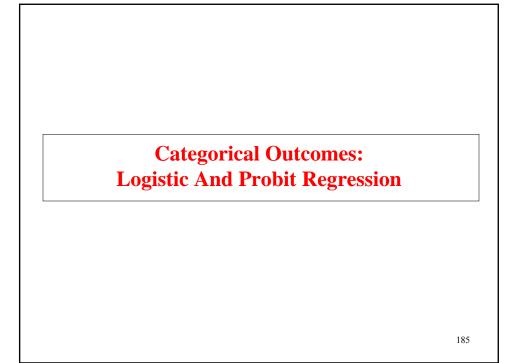

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

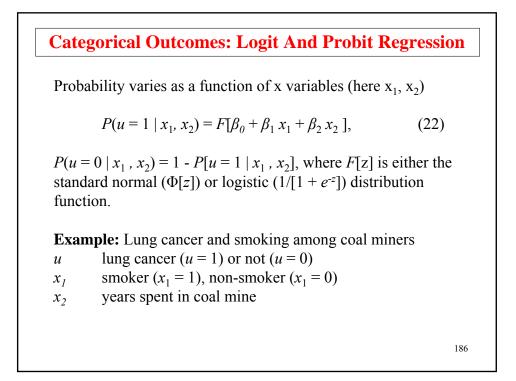


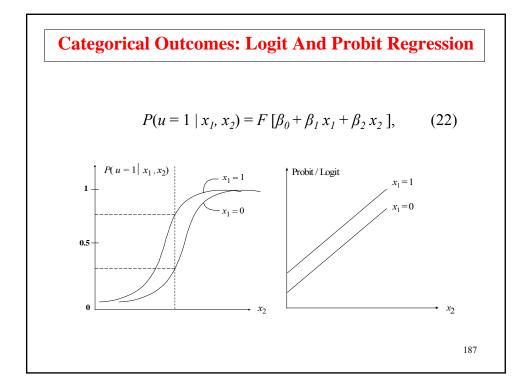


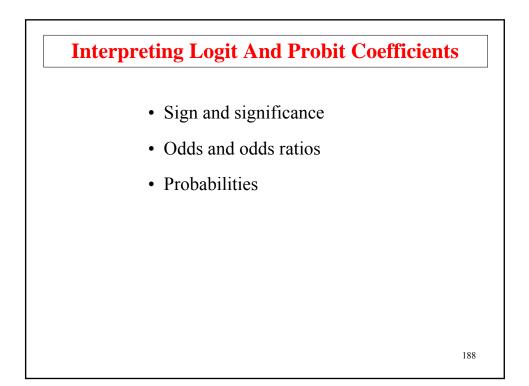


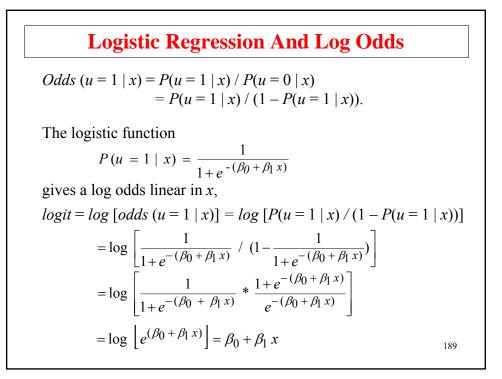


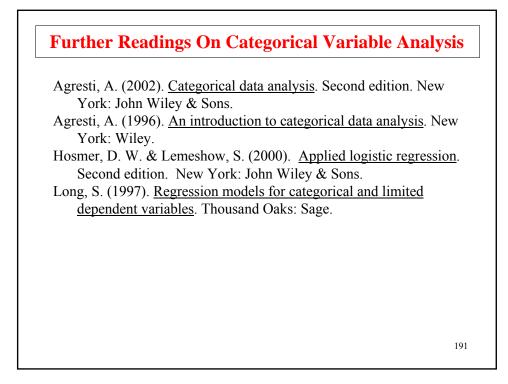


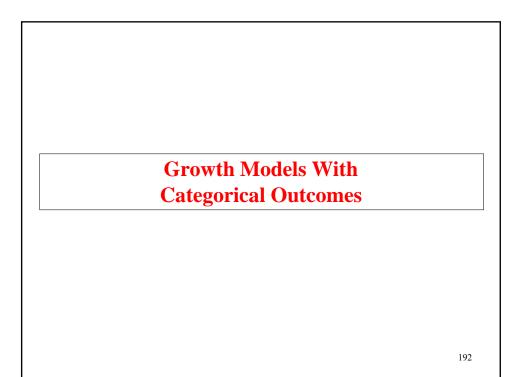


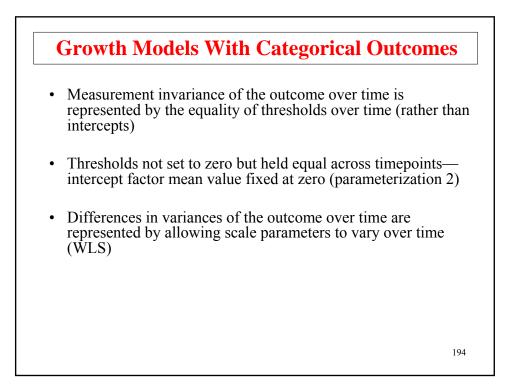


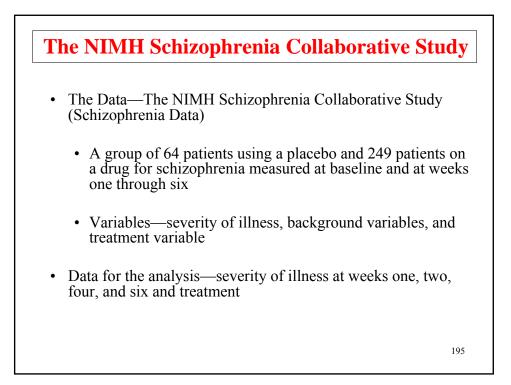

Output Excerpts LSAY Parallel Process Growth Model (Continued)						
		Estimates	S.E.	Est./S.E.	Std	StdYX
ІМ	ON					
	MOTHED	2.462	.280	8.798	.311	.303
SM	ON					
	MOTHED	.145	.066	2.195	.132	.129
IA	ON					
	MOTHED	.053	.086	.614	.025	.024
SA	ON					
	MOTHED	.012	.035	.346	.017	.017
						1

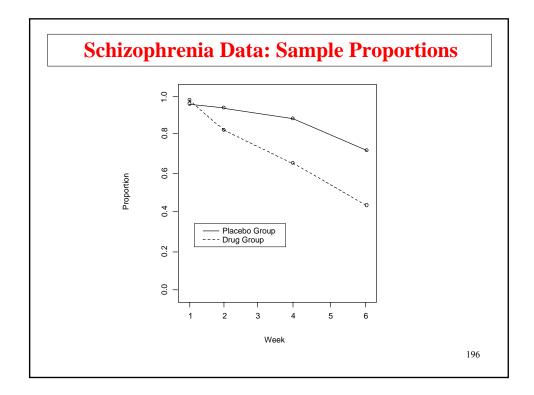

Output Excerpts LSAY Parallel Process Growth Model (Continued)							
			Estimates	S.E.	Est./S.E.	Std	StdYX
SM		WITH					
	IM		3.032	.580	5.224	.350	.350
IA		WITH					
	IM		4.733	.702	6.738	.282	.282
	SM		.544	.164	3.312	.235	.235
SA		WITH					
	IM		276	.279	987	049	04
	SM		.130	.066	1.976	.168	.16
	IA		567	.115	-4.913	378	37
							1

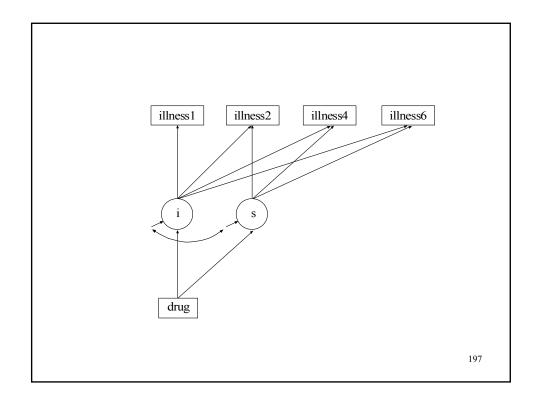







Logistic Regression And Log Odds (Continued) • $logit = log \ odds = \beta_0 + \beta_1 x$ • When *x* changes one unit, the *logit (log odds)* changes β_1 units • When *x* changes one unit, the *odds* changes e^{β_1} units





Input For Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group Growth model on schizophrenia data TITLE: DATA: FILE = SCHIZ.DAT; FORMAT = 5F1; NAMES = illness1 illness2 illness4 illness6 drug; VARIABLE: CATEGORICAL = illness1-illness6; USEV = illness1-illness6; USEOBS = drug EQ 1; ANALYSIS: ESTIMATOR = ML; i s | illness1@0 illness2@1 illness4@3 illness6@5; MODEL: OUTPUT: TECH1 TECH10; 198

TEST OF MODEL FIT	
Loglikelihood	
H0 Value	-405.068
Information Criteria	
Number of Free Parameters	5
Akaike (AIC)	820.136
Bayesian (BIC)	837.724
Sample-Size Adjusted BIC	821.873
(n* = (n + 2) / 24)	

Output Excerpts Schizophrenia Model For Binary Outcomes: Tre (Continued)	
Chi-Square Test of Model Fit for the Binar Categorical (Ordinal) Outcomes	y and Ordered
Pearson Chi-Square	
Value	49.923
Degrees of Freedom	10
P-Value	0.0000
Likelihood Ratio Chi-Square	
Value	42.960
Degrees of Freedom	10
P-Value	0.0000 200

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group (Continued)

			<u> </u>		/		
TECHNICAL	10 OUTPU	Т					
MODEI	L FIT INF	ORMAT	ION FOR TH	IE LAI	ENT CLASS	INDI	ICATOR MODEL PART
RESPO	ONSE PATT	ERNS					
No.	Pattern	No.	Pattern	No.	Pattern	No.	Pattern
1	1001	2	1000	3	0000	4	1111
5	1110	6	1010	7	1100	8	0011
9	1011	10	0111	11	1101		
							201

	uency	Standardized	Chi-Square	Contribution
Observed	Estimated	Residual	Pearson	Loglikelihood
		(z-score)		
4.00	0.59	4.43	19.55	15.26
24.00	12.89	3.18	9.57	29.83
2.00	4.89	-1.32	1.71	-3.57
97.00	99.00	-0.26	0.04	-3.95
69.00	59.53	1.41	1.51	20.38
2.00	2.78	-0.47	0.22	-1.32
43.00	54.42	-1.75	2.40	-20.26
1.00	0.47	0.78	0.60	1.51
5.00	1.90	2.26	5.07	9.69
1.00	1.84	-0.62	0.38	-1.22
1.00	5.47	-1.93	3.65	-3.40 202
	24.00 2.00 97.00 69.00 2.00 43.00 1.00 5.00 1.00	24.0012.892.004.8997.0099.0069.0059.532.002.7843.0054.421.000.475.001.901.001.84	4.00 0.59 4.43 24.00 12.89 3.18 2.00 4.89 -1.32 97.00 99.00 -0.26 69.00 59.53 1.41 2.00 2.78 -0.47 43.00 54.42 -1.75 1.00 0.47 0.78 5.00 1.90 2.26 1.00 1.84 -0.62	4.000.594.4319.5524.0012.893.189.572.004.89-1.321.7197.0099.00-0.260.0469.0059.531.411.512.002.78-0.470.2243.0054.42-1.752.401.000.470.780.605.001.902.265.071.001.84-0.620.38

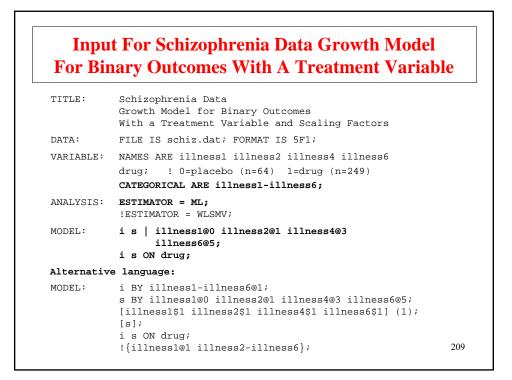
Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group (Continued)

BIVARIATE MODEL FIT INFORMATION Estimated Probabilities

				Standardized
Variable	Variable	Hl	н0	Residual
				(z-score)
ILLNESS1	ILLNESS2			
Category 1	Category 1	0.012	0.025	-1.295
Category 1	Category 2	0.004	0.025	-2.127
Category 2	Category 1	0.141	0.073	4.103
Category 2	Category 2	0.843	0.877	-1.623
Bivariate Po	earson Chi-Squa	re		21.979
Bivariate L	og-Likelihood C	hi-Square		21.430
				203

Variable	Variable	н1	но	Standardized Residual (z-score)
ILLNESS1	ILLNESS4			
Category 1	Category 1	0.008	0.034	-2.271
Category 1	Category 2	0.008	0.016	-0.977
Category 2	Category 1	0.289	0.295	-0.191
Category 2	Category 2	0.695	0.655	1.307
Bivariate Pe	earson Chi-Squa	re		6.533
Bivariate Lo	og-Likelihood Cl	hi-Square		8.977
				204

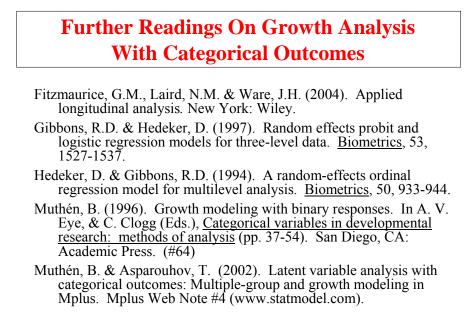
Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group (Continued)


Variable	Variable	Hl	но	Standardized Residual
				(z-score)
ILLNESS1	ILLNESS6			
Category 1	Category 1	0.008	0.038	-2.459
Category 1	Category 2	0.008	0.012	-0.599
Category 2	Category 1	0.554	0.521	1.063
Category 2	Category 2	0.430	0.430	0.006
Bivariate Pe	earson Chi-Squa	re		6.713
Bivariate Lo	og-Likelihood C	hi-Square		9.529
				205

Variable	Variable	н1	но	Standardized Residual (z-score)
ILLNESS2	ILLNESS4			
Category 1	Category 1	0.120	0.075	2.722
Category 1	Category 2	0.032	0.023	0.996
Category 2	Category 1	0.177	0.254	-2.796
Category 2	Category 2	0.671	0.648	0.735
Bivariate Pe	earson Chi-Squa	re		13.848
Bivariate Lo	og-Likelihood Cl	hi-Square		13.361
				200

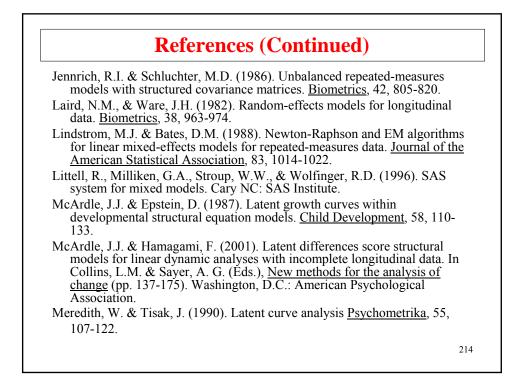
Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes: Treatment Group (Continued)

Variable	Variable	Hl	но	Standardized Residual (z-score)
ILLNESS2	ILLNESS6			
Category 1	Category 1	0.112	0.085	1.578
Category 1	Category 2	0.040	0.013	3.745
Category 2	Category 1	0.450	0.474	-0.754
Category 2	Category 2	0.398	0.429	-0.988
Bivariate Pe	earson Chi-Squa	re		16.976
Bivariate Lo	og-Likelihood C	hi-Square		11.831
				207


Variable	Variable	н1	но	Standardized Residual (z-score)
ILLNESS4	ILLNESS6			
Category 1	Category 1	0.277	0.302	-0.841
Category 1	Category 2	0.20	0.027	-0.697
Category 2	Category 1	0.285	0.257	1.027
Category 2	Category 2	0.418	0.414	0.103
Bivariate Pe	earson Chi-Squa	re		1.757
Bivariate Lo	og-Likelihood C	hi-Square		1.791
Overall Biva	ariate Pearson (Chi-Square		67.806
Overall Biva	ariate Log-Like	lihood Chi-S	quare	66.920

Output Excerpts Schizophrenia Data Growth Model For Binary Outcomes With A Treatment Variable (Continued)

		Estimates	S.E.	Est./S.E.	Std	StdYX
I	ON					
	DRUG	-0.429	0.825	-0.521	-0.156	-0.063
S	ON					
	DRUG	-0.651	0.259	-2.512	-0.684	-0.276
I	WITH					
	S	-0.925	0.621	-1.489	-0.353	-0.353
Int	ercepts					
	I	0.000	0.000	0.000	0.000	0.000
	S	-0.555	0.255	-2.182	-0.583	-0.583
Thr	esholds					
	ILLNESS1\$1	-5.706	1.047	-5.451		
	ILLNESS2\$1	-5.706	1.047	-5.451		
	ILLNESS4\$1	-5.706	1.047	-5.451		
	ILLNESS5\$1	-5.706	1.047	-5.451		
Res	idual Variances					
	I	7.543	3.213	2.348	0.996	0.996
	S	0.838	0.343	2.440	0.924	0.924
						21


References

(To request a Muthén paper, please email bmuthen@ucla.edu.)

Analysis With Longitudinal Data

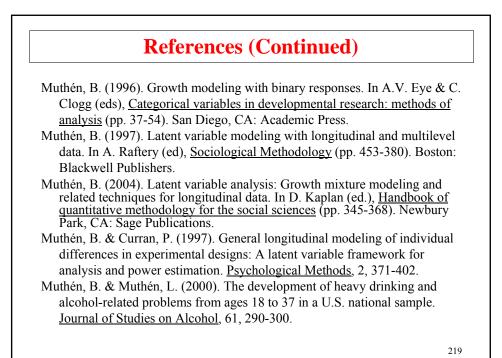
Introductory

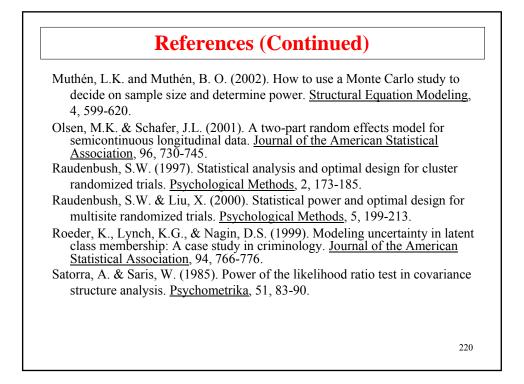
- Bollen, K.A. & Curran, P.J. (2006). <u>Latent curve models. A structural</u> <u>equation perspective</u>. New York: Wiley.
- Collins, L.M. & Sayer, A. (Eds.) (2001). <u>New methods for the analysis of change</u>. Washington, D.C.: American Psychological Association.
- Curran, P.J. & Bollen, K.A. (2001). The best of both worlds: Combining autoregressive and latent curve models. In Collins, L.M. & Sayer, A.G. (Eds.) <u>New methods for the analysis of change</u> (pp. 105-136). Washington, DC: American Psychological Association.
- Duncan, T., Duncan S. & Strycker, L. (2006). <u>An introduction to latent</u> <u>variable growth curve modeling</u>. Second edition. Lawrence Erlbaum: New York.
- Goldstein, H. (2003). <u>Multilevel statistical models</u>. Third edition. London: Edward Arnold.

References (Continued)

Muthén, B. (1991). Analysis of longitudinal data using latent variable models with varying parameters. In L. Collins & J. Horn (Eds.), <u>Best methods for</u> the analysis of change. Recent advances, unanswered questions, future <u>directions</u> (pp. 1-17). Washington D.C.: American Psychological Association.

- Muthén, B. (2000). Methodological issues in random coefficient growth modeling using a latent variable framework: Applications to the development of heavy drinking. In <u>Multivariate applications in substance</u> <u>use research</u>, J. Rose, L. Chassin, C. Presson & J. Sherman (eds.), Hillsdale, N.J.: Erlbaum, pp. 113-140.
- Muthén, B. & Khoo, S.T. (1998). Longitudinal studies of achievement growth using latent variable modeling. <u>Learning and Individual Differences</u>. Special issue: latent growth curve analysis, 10, 73-101.


Muthén, B. & Muthén, L. (2000). The development of heavy drinking and alcohol-related problems from ages 18 to 37 in a U.S. national sample. Journal of Studies on Alcohol, 61, 290-300.


Muthén, B. & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. <u>Biometrics</u>, 55, 463-469.

	References (Continued)
	C.R. (1958). Some statistical models for comparison of growth curves. Biometrics, 14, 1-17.
Rauc A	denbush, S.W. & Bryk, A.S. (2002). <u>Hierarchical linear models:</u> <u>Applications and data analysis methods</u> . Second edition. Newbury Park, CA: Sage Publications.
Sing	er, J.D. (1998). Using SAS PROC MIXED to fit multilevel models,
h	ierarchical models, and individual growth models. Journal of Educational
a	nd Behavioral Statistics, 23, 323-355.
Sing	er, J.D. & Willett, J.B. (2003). Applied longitudinal data analysis.
	Adeling change and event occurrence. New York, NY: Oxford University
Р	ress.
Snijc	ders, T. & Bosker, R. (1999). Multilevel analysis: An introduction to basic
	nd advanced multilevel modeling. Thousand Oakes, CA: Sage
P	ublications.
Tuck	ker, L.R. (1958). Determination of parameters of a functional relation by
	actor analysis. Psychometrika, 23, 19-23.
	216

References (Continued) Advanced Albert, P.S. & Shih, J.H. (2003). Modeling tumor growth with random onset. Biometrics, 59, 897-906. Brown, C.H. & Liao, J. (1999). Principles for designing randomized preventive trials in mental health: An emerging development epidemiologic perspective. American Journal of Community Psychology, special issue on prevention science, 27, 673-709. Brown, C.H., Indurkhya, A. & Kellam, S.K. (2000). Power calculations for data missing by design: applications to a follow-up study of lead exposure and attention. Journal of the American Statistical Association, 95, 383-395. Collins, L.M. & Sayer, A. (Eds.), New methods for the analysis of change. Washington, D.C.: American Psychological Association. Curran, P.J., Muthén, B., & Harford, T.C. (1998). The influence of changes in marital status on developmental trajectories of alcohol use in young adults. Journal of Studies on Alcohol, 59, 647-658. Duan, N., Manning, W.G., Morris, C.N. & Newhouse, J.P. (1983). A comparison of alternative models for the demand for medical care. Journal $\frac{217}{217}$ of Business and Economic Statistics, 1, 115-126.

	References (Continued)
	rrer, E. & McArdle, J.J. (2004). Alternative structural models for multivariate longitudinal data analysis. <u>Structural Equation Modeling</u> , 10,
	493-524. zmaurice, G., Davidian, M., Verbeke, G. & Molenberghs, G.
	(2008). Longitudinal Data Analysis. Chapman & Hall/CRC Press.
	sin, A. & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. <u>Psychometrika</u> , 65, 457-474.
	oo, S.T. & Muthén, B. (2000). Longitudinal data on families: Growth modeling alternatives. In <u>Multivariate applications in substance use</u> research, J. Rose, L. Chassin, C. Presson & J. Sherman (eds), Hillsdale, N.J.: Erlbaum, pp. 43-78.
Mi	yazaki, Y. & Raudenbush, S.W. (2000). A test for linkage of multiple cohorts from an accelerated longitudinal design. <u>Psychological Methods</u> , 5, 44-63.
	berbeek, M., Breukelen, G.J.P. & Berger, M.P.F. (2000). Design issues for experiments in multilevel populations. <u>Journal of Educational and</u> <u>Behavioral Statistics</u> , 25, 271-284.
	221

