Mplus Short Courses Topic 4

Growth Modeling With Latent Variables Using Mplus: Advanced Growth Models, Survival Analysis, And Missing Data

Linda K. Muthén Bengt Muthén

Copyright © 2010 Muthén & Muthén www.statmodel.com 06/14/2010

Table Of Contents		
Table Of Contents		
	-	
General Latent Variable Modeling Framework	/	
Advanced Growth Models	15	
Modeling With Zeroes	16	
Two-Part Growth Modeling	22	
Regression With a Count Dependent Variable	34	
Philadelphia Crime Data ZIP Growth Modeling	39	
Growth Modeling With Multiple Populations	48	
Growth Modeling With Multiple Indicators	78	
Embedded Growth Models	100	
Power For Growth Models	110	
Survival Analysis	130	
Discrete-Time Survival Analysis	132	
Continuous-Time Survival Analysis	154	
Analysis With Missing Data	167	
MAR	173	
Missing Data Correlates Using ML	193	
Non-Ignorable Missing Data	203	
Selection Modeling	209	
Pattern-Mixture Modeling	212	
Multiple Imputation	220	
References	220	
Kelefences	224	2

Mplus Background

- Inefficient dissemination of statistical methods:
 - Many good methods contributions from biostatistics,
 - psychometrics, etc are underutilized in practice
- Fragmented presentation of methods:
 - Technical descriptions in many different journals
 - Many different pieces of limited software
- Mplus: Integration of methods in one framework
 - Easy to use: Simple, non-technical language, graphics

3

- Powerful: General modeling capabilities

Statistical Analysis With Latent Variables A General Modeling Framework Statistical Concepts Captured By Latent Variables Continuous Latent Variables Categorical Latent Variables

- Measurement errors
- Factors
- Random effects
- Frailties, liabilities
- Variance components
- Missing data

- Latent classes
- Clusters
- Finite mixtures

5

Missing data

Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

	Input For NLSY Heavy Drinking
TITLE:	<pre>nlsy36425x25dep.inp cohort 64 centering at 25 hd82-hd89 (ages 18 - 25) log age scale: x_t = a*(ln(t-b) - ln(c-b)), where t is time, a and b are constants to fit the mean curve (chosen as a = 2 and b = 16), and c is the centering age, here set at 25.</pre>
DATA:	FILE = big.dat; FORMAT = 2f5, f2, t14, 5f7, t50, f8, t60, 6f1.0, t67, 2f2.0, t71, 8f1.0, t79, f2.0, t82, 4f2.0;
DATA TWC	PART:
	NAMES = hd82-hd89; BINARY = u18 u19 u20 u24 u25; CONTINUOUS = y18 y19 y20 y24 y25;

Regular Growth Modeling of NLSY Heavy Drinking						
Parameter	Estimate	S.E.	Est./S.E.			
Regular growth mode Non-normality robu:	eling, treating o st ML (MLR)	outcome as cont	inuous.			
i ON						
male	0.769	0.076	10.066			

black	-0.336	0.083	-4.034
hisp	-0.227	0.103	-2.208
es	0.291	0.128	2.283
fh123	0.286	0.137	2.089
hsdrop	-0.024	0.104	-0.232
coll	-0.131	0.086	-1.527
			29

Modelin	Modeling of NLSY Heavy Drinking						
Parameter	Estimate	S.E.	Est./S.E.				
Two-part growt	h modeling						
iy ON							
male	0.329	0.058	5.651				
black	-0.123	0.062	-1.986				
hisp	-0.143	0.069	-2.082				
es	0.096	0.062	1.543				
fh123	0.219	0.076	2.894				
hsdrop	0.093	0.063	1.460				
coll	-0.030	0.056	-0.526				

Output Excerpts For Two-Part Growth Modeling of NLSY Heavy Drinking (Continued)

Escimace	S.E.	ESt./S.E.
1.533	0.164	9.356
-0.705	0.172	-4.092
-0.385	0.199	-1.934
0.471	0.194	2.430
0.287	0.224	1.281
-0.191	0.183	-1.045
-0.325	0.161	-2.017
	1.533 -0.705 -0.385 0.471 0.287 -0.191 -0.325	1.5330.164-0.7050.172-0.3850.1990.4710.1940.2870.224-0.1910.183-0.3250.161

Output Excerpts For Two-Part Growth Modeling of NLSY Heavy Drinking (Continued)

	iu	su	qu	iy	sy	dλ
iu	1.000					
su	0.572	1.000				
qu	0.511	0.923	1.000			
iy	0.945	0.524	0.454	1.000		
зу	-0.140	0.472	0.440	-0.041	1.000	
ЧХ	-0.155	0.375	0.539	-0.101	0.847	1.000
						33

Negative Binomial Regression

Unobserved heterogeneity ε_i is added to the Poisson model

 $ln \lambda_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, where $exp(\varepsilon) \sim \Gamma$

Poisson assumes

Negative binomial assumes

$E(u_i \mid x_i) = \lambda_i$	$E(u_i \mid x_i) = \lambda_i$	
$V(u_i \mid x_i) = \lambda_i$	$V(u_i \mid x_i) = \lambda_i (l + \lambda_i \alpha)$	NB-2

NB with $\alpha = 0$ gives Poisson. When the dispersion parameter $\alpha > 0$, the NB model gives substantially higher probability for low counts and somewhat higher probability for high counts than Poisson.

Further variations are zero-inflated NB and zero-truncated NB (hurdle model or two-part model).

 $\frac{\text{Zero-Inflated Poisson (ZIP)}}{\text{Growth Modeling Of Counts}}$ $u_{ti} = \begin{cases} 0 & \text{with probability } \pi_{ii} \\ \text{Poisson } (\lambda_{ii}) & \text{with probability } 1 - \pi_{ii} \\ \ln \lambda_{ti} = \eta_{0i} + \eta_{1i}a_{ti} + \eta_{2i}a_{ti}^2 \\ \eta_{0i} = \alpha_0 + \zeta_{0i} \\ \eta_{1i} = \alpha_1 + \zeta_{1i} \\ \eta_{2i} = \alpha_2 + \zeta_{2i} \end{cases}$ In Mplus, $\pi_{ti} = P(u\#_{ti} = 1)$, where u# is a binary latent inflation variable

Input Excerpts Philadelphia Crime Data (Continued)

Output Excerpts Philadelphia Crime Data			
TESTS OF MODEL FIT			
Loglikelihood			
H0 Value	-40607.007		
H0 Scaling Correlation Factor	0.931		
for MLR			
Information Criteria			
Number of Free Parameters	17		
Akaike (AIC)	81248.155		
Bayesian (BIC)	81375.355		
Sample-Size Adjusted BIC	81321.330		
(n* = (n + 2) / 24)			

(Continued)						
	Estimate	S.E.	Est./S.E.	Two-Tailed		
				P-Value		
Means						
I	-4.689	0.145	-32.402	0.000		
S	14.003	0.749	18.700	0.000		
Q	20.036	0.913	21.942	0.000		
Y10#1	0.768	0.123	6.268	0.000		
Y12#1	-0.557	0.119	-4.679	0.000		
Y14#1	-1.763	0.156	-11.322	0.000		
Y16#1	-3.023	0.310	-9.746	0.000		
Y18#1	-0.284	0.061	-4.638	0.000		
Y20#1	-0.319	0.074	-4.293	0.000		
Y22#1	-1.521	0.166	-9.156	0.000		
Y24#1	-13.723	9.974	-1.376	0.169		

Output Excerpts Philadelphia Crime Data (Continued)							
	Estimate S.E. Est./S.E. Two-Tail						
				P-Value			
Y10	0.000	0.000	999.000	999.000			
Y12	0.000	0.000	999.000	999.000			
Y14	0.000	0.000	999.000	999.000			
Y16	0.000	0.000	999.000	999.000			
Y18	0.000	0.000	999.000	999.000			
Y20	0.000	0.000	999.000	999.000			
Y22	0.000	0.000	999.000	999.000			
Y24	0.000	0.000	999.000	999.000			
Variances							
I	5.509	0.345	15.960	0.000			
S	32.931	4.568	7.206	0.000			
Q	59.745	7.603	7.858	0.000 44			

Output Excerpts Philadelphia Crime Data (Continued)					
	_	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
S	WITH				
I		-8.320	1.206	-6.896	0.000
Q	WITH				
I		5.864	1.358	4.318	0.000
S		-35.766	5.594	-6.394	0.000
					45
					45

Philadelphia Crime Data Model Fit To Counts For Most Frequent Response Patterns

Pattern	Observed	Estimated	Z Score	
00000000	8021	7850	3.04	
00010000	572	673	-4.00	
00100000	378	433	-2.72	
00001000	292	354	-3.32	
00000010	203	233	-1.95	
00000100	201	266	-4.03	
2000000	181	173	0.60	
0000001	141	157	-1.27	
00110000	117	112	0.50	
00020000	107	95	1.28	
				4
				-

Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

Multiple Population Growth Modeling Specifications					
Let y_{git} denote the outcome for population (group) g, in timepoint t,	dividual <i>i</i> , and				
Level 1: $y_{\sigma ti} = \eta_{\sigma 0i} + \eta_{\sigma 1i} x_t + \varepsilon_{\sigma ti}$	(65)				
Level 2a: $\eta_{g0i} = \alpha_{g0} + \gamma_{g0} w_{gi} + \zeta_{g0i}$	(66)				
Level 2b: $\eta_{g1i} = \alpha_{g1} + \gamma_{g1} w_{gi} + \zeta_{g1i}$,	(67)				
Measurement invariance (level-1 equation): time-invariance slopes 1, x_t Structural differences (level-2): α_g , γ_g , $V(\zeta_g)$ Alternative parameterization:	iant intercept 0 and				
Level 1: $y_{gti} = v + \eta_{g0i} + \eta_{g1i} x_t + \varepsilon_{gti}$,	(68)				
with α_{10} fixed at zero in level 2a.					
Analysis steps:					
1. Separate growth analysis for each group					
2. Joint analysis of all groups, free structural parameter	S				
3. Join analysis of all groups, tests of structural parame	ter invariance				

		NL	S	Y:	M	ult	ip	le	C	oh	01	t	St	ru	ctu	ire	9			
Birth									Age	ı										
Year Cohort	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	3
57								82	83	84	85	86	87	88	89	90	91	92	93	9
58							82	83	84	85	86	87	88	89	90	91	92	93	94	
59						82	83	84	85	86	87	88	89	90	91	92	93	94		
60					82	83	84	85	86	87	88	89	90	91	92	93	94			
61				82	83	84	85	86	87	88	89	90	91	92	93	94				T
62			82	83	84	85	86	87	88	89	90	91	92	93	94					T
63		82	83	84	85	86	87	88	89	90	91	92	93	94						
64	82	83	84	85	86	87	88	89	90	91	92	93	94							

Three Approaches To Cohort Structures

- Single group using y18 y37
- Single group using 7 y's and AT with TSCORES to capture varying ages
- Multiple group using 7 y's and 8 cohorts with s@xt

 Data – two confrequency of h and 1989 	horts neavy	born drinl	in 19 king i	061 and the	nd 19 year	962 m rs 198	ieasu 33, 19	red on t 984, 198
• Development not year of me	of hea easure	avy d ment	lrinki t, is o	ng ac f inte	eross erest	chror	nolog	gical age
Cohort/Year		198	33	198	34	198	8	1989
1961 (older)		2	22	2	23	2	7	28
1962 (younger)		2	21	2	22	2	6	27
Cohort/Age	21	22	23	24	25	26	27	28
1961 (older)		83	84				88	89
1962 (vounger)	83	84				88	89	

Input For Multiple Group Modeling Of Multiple Cohorts (Continued)						
MODEL older:						
	i s hd83@1 hd84@2 hd88@6 hd89@7; hd83 (6); hd88 (7);					
MODEL younger	c:					
	hd84 (6); hd89 (7);					
OUTPUT:	STANDARDIZED;					

Of Multiple	Cohorts
Tests Of Model Fit	
Chi-Square Test of Model Fit	
Value	68.096
Degrees of Freedom	17
P-Value	.0000
Chi-Square Contributions From Each (Group
OLDER	39.216
YOUNGER	28.880
Chi-Square Test of Model Fit for the	e Baseline Model
Value	3037.930
Degrees of Freedom	12
P-Value	0.0000
CFI/TLI	
CFI	0.983

Loglikelihood			
H0 Value	-18544.420		
H1 Value	-18510.371		
Information Criteria			
Number of Free Parameters	11		
Akaike (AIC)	37110.839		
Bayesian (BIC)	37175.770		
Sample-Size Adjusted BIC	37140.820		
(n* = (n + 2) / 24)			
RMSEA (Root Mean Square Error Of Appro	oximation)		
Estimate	0.047		
90 Percent C.I.	0.036	0.059	
SRMR (Standardized Root Mean Square Re	esidual)		
Value	0.033		
			61
			01

Output Excerpts Multiple Group Modeling Of Multiple Cohorts (Continued)									
Model Results									
	Estimates	S.E.	Est./S.E.	Std	StdYX				
Group OLDER									
I WITH									
S	111	.010	-11.390	537	537				
Residual Varian	ces								
HD83	1.141	.046	24.996	1.141	.445				
HD84	1.062	.057	18.489	1.062	.453				
HD88	1.028	.041	25.326	1.028	.455				
HD89	.753	.053	14.107	.753	.358				
Variances									
I	1.618	.068	23.651	1.000	1.000				
S	.026	.002	13.372	1.000	1.000				
Means									
I	1.054	.030	35.393	.828	.828				
S	032	.005	-6.611	200	200				

Output Excerpts Multiple Group Modeling Of Multiple Cohorts (Continued)

GROUP YOUNG	JER				
Residual Va	arrances				
HD83	1.049	.066	15.916	1.049	.393
HD84	1.141	.046	24.996	1.141	.445
HD88	1.126	.056	19.924	1.126	.491
HD89	1.028	.041	25.326	1.028	.455

63

Preventive Interventions Randomized Trials Prevention Science Methodology Group (PSMG) Developmental Epidemiological Framework: Determining the levels and variation in risk and protective ٠ factors as well as developmental paths within a defined population in the absence of intervention Directing interventions at these risk and protective factors ٠ in an effort to change the developmental trajectories in a defined population Evaluating variation in intervention impact across risk • levels and contexts on proximal and distal outcomes, thereby empirically testing the developmental model 64

Aggressive Classroom Behavior: The GBG Intervention

Muthén & Curran (1997, Psychological Methods)

The Johns Hopkins Prevention Center carried out a schoolbased preventive intervention randomized trial in Baltimore public schools starting in grade 1. One of the interventions tested was the Good Behavior Game intervention, a classroom based behavior management strategy promoting good behavior. It was designed specifically to reduce aggressive behavior of first graders and was aimed at longer term impact on aggression through middle school.

One first grade classroom in a school was randomly assigned to receive the Good Behavior Game intervention and another matched classroom in the school was treated as control. After an initial assessment in fall of first grade, the intervention was administered during the first two grades.

Aggressive Classroom Behavior: The GBG Intervention (Continued)

The outcome variable of interest was teacher ratings (TOCA-R) of each child's aggressive behavior (breaks rules, harms property, fights, etc.) in the classroom through grades 1 - 6. Eight teacher ratings were made from fall and spring for the first two grades and every spring in grades 3 - 6.

The most important scientific question was whether the Good Behavior Game reduces the slope of the aggression trajectory across time. It was also of interest to know whether the intervention varies in impact for children who started out as high aggressive versus low aggressive.

Analyses in Muthén-Curran (1997) were based on data for 75 boys in the GBG group who stayed in the intervention condition for two years and 111 boys in the control group.

The GBG Aggression Example: Analysis Results

Muthén & Curran (1997):

- Step 1: Control group analysis
- Step 2: Treatment group analysis
- Step 3: Two-group analysis w/out interactions
- Step 4: Two-group analysis with interactions
- Step 5: Sensitivity analysis of final model
- Step 6: Power analysis

Input Exco Using A R	erpts For Aggressive Behavior Intervention Multiple Group Growth Model With A Regression Among Random Effects
TITLE:	Aggressive behavior intervention growth model n = 111 for control group n = 75 for tx group
MODEL:	i s q y1@0 y2@1 y3@2 y4@3 y5@5 y6@7 y7@9 y8@11;
	i t y1@0 y2@1 y3@2 y4@3 y5@5 y6@7 y7@9 y8@11;
	[y1-y8] (1); !alternative growth model
	[i@0]; !parameterization
	i (2);
	s (3);
	i WITH s (4);
	[s] (5);
	[q] (6);
	t@0 q@0;
	q WITH i@0 s@0 t@0; y1-y7 PWITH y2-y8;
	t ON i;
	70

Input Excerpts For Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

MOD	EL control:	t ON i@0; [t@0];		
				71

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

Grou	p Control	Grouj	o Tx
Observed		Observed	
Variable	e R-Square	Variable	R-Square
Yl	.644	Yl	.600
Y2	.642	Y2	.623
¥3	.663	ҮЗ	.568
¥4	.615	Y4	.464
Υ5	.637	Y5	.425
Y6	.703	Yб	.399
¥7	.812	¥7	.703
¥8	.818	Х8	.527
			73

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

	Estimates	S.E.	Est./S.E.	Std	StdYX
I	.000	.000	.000	999.000	999.000
Residual Varian	ces				
Y1	.444	.088	5.056	.444	.356
Y2	.449	.079	5.714	.449	.358
ҮЗ	.414	.069	6.026	.414	.337
¥4	.522	.080	6.551	.522	.385
Y5	.512	.079	6.469	.512	.363
Yб	.422	.074	5.677	.422	.297
Y7	.264	.083	3.186	.264	.188
Х8	.291	.094	3.097	.291	.182
Т	.000	.000	.000	999.000	999.000
<i>Variances</i>					
I	.803	.109	7.330	1.000	1.000
S	.004	.001	3.869	1.000	1.000
Q	.000	.000	.000	999.000	999.000 74

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

Means	Estimates	S.E.	Est./S.E.	Std	StdYX
I	.000	.000	.000	.000	.000
S	.086	.021	4.035	1.285	1.285
Q	005	.002	-3.005	999.000	999.000
Intercepts					
Y1	2.041	.078	26.020	2.041	1.828
Y2	2.041	.078	26.020	2.041	1.823
Y3	2.041	.078	26.020	2.041	1.841
Y4	2.041	.078	26.020	2.041	1.753
Y5	2.041	.078	26.020	2.041	1.718
Yб	2.041	.078	26.020	2.041	1.711
Y7	2.041	.078	26.020	2.041	1.724
Y8	2.041	.078	26.020	2.041	1.612
	000	000	000	000 000	000 000

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

	Estimates	S.E.	Est./S.E.	Std	StdYX
r on					
I	052	.015	-3.347	-1.000	-1.000
Residual Vari	ances				
Y1	.535	.141	3.801	.535	.400
Y2	.439	.122	3.595	.439	.377
Y3	.501	.108	4.653	.501	.432
¥4	.701	.132	5.332	.701	.536
Y5	.736	.133	5.545	.736	.575
Y6	.805	.152	5.288	.805	.601
¥7	.245	.104	2.364	.245	.297
¥8	.609	.182	3.351	.609	.473
Т	.000	.000	.000	.000	.000
Variances					
I	.803	.109	7.330	1.000	1.000
S	.004	.001	3.869	1.000	1.000
Q	.000	.000	.000	999.000	999.000

Output Excerpts Aggressive Behavior Intervention Using A Multiple Group Growth Model With A Regression Among Random Effects (Continued)

I S Q Intercepts	.000 .086 005	.000 .021 .002	.000 4.035 -3.005	.000	.000 1.285
S Q Intercepts	.086 005	.021 .002	4.035	1.285	1.285
Q Intercepts	005	.002	-3 005		
Intercepts			5.005	999.000	999.000
v 1					
11	2.041	.078	26.020	2.041	1.764
Y2	2.041	.078	26.020	2.041	1.893
Y3	2.041	.078	26.020	2.041	1.895
Y4	2.041	.078	26.020	2.041	1.785
Y5	2.041	.078	26.020	2.041	1.805
Y6	2.041	.078	26.020	2.041	1.764
¥7	2.041	.078	26.020	2.041	2.248
Y8	2.041	.078	26.020	2.041	1.799
Т	016	.013	-1.225	341	- 341

Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

Multiple Indicator Growth Modeling Specifications

Let y_{jii} denote the outcome for individual *i*, indicator *j*, and timepoint *t*, and let η_{ti} denote a latent variable construct,

Level 1a (measurement part):

	$y_{iti} =$	v_{it} +	$-\lambda_{it}\eta_{ti}$	$+ \varepsilon_{iti}$,	(44)
	<i>.</i>	<i>J</i> •	<i>J</i>	<i></i>	

Level
$$1b: \eta_{ti} = \eta_{0i} + \eta_{1i} x_t + \zeta_{ti},$$
 (45)
Level $2a: \eta_t = \alpha_t + \gamma_t w_t + \zeta_t,$ (46)

Level 2*a* :
$$\eta_{0i} - \alpha_0 + \gamma_0 w_i + \zeta_{0i}$$
, (46)
Level 2*b* : $\eta_{1i} = \alpha_1 + \gamma_1 w_i + \zeta_{1i}$, (47)

Measurement invariance: time-invariant indicator intercepts

and slopes:

$$v_{j1} = v_{j2} = \dots v_{jT} = v_j,$$
 (48)
 $\lambda_{j1} = \lambda_{j2} = \dots \lambda_{jT} = \lambda_j,$ (49)

81

where $\lambda_1 = 1$, $\alpha_0 = 0$. $V(\varepsilon_{jti})$ and $V(\zeta_{ti})$ may vary over time. Structural differences: $E(\eta_{ti})$ and $V(\eta_{ti})$ vary over time.

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Advantages Of Using Multiple Indicators Instead Of An Average

- Estimation of unequal weights
- No need to assume full measurement invariance:
 - Partial measurement invariance—changes across time in individual item functioning
- No confounding of time-specific variance and measurement error variance
- Smaller standard errors for growth factor parameters (more power)

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance (Continued)

[brul2 bru22 bru32 bru42] (7); [fig12 fig22 fig32 fig42] (8); [hot12 hot22 hot32 hot42] (9); [lie12 lie22 lie32 lie42] (10); [stu12 stu22 stu32 stu42] (11); [tcl12 tcl22 tcl32 tcl42] (12); [yot12 yot22 yot32 yot42] (13);

[f12a@0 f22a f32a f42a];

89

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading Invariance And Partial Intercept Invariance

TITLE:	Multiple indicator CFA with factor loading and parti intercept invariance	ial
MODEL:	fl2a BY brul2	
	fig12-yot12 (1-6);	
	f22a BY bru22	
	fig22-yot22 (1-6);	
	f32a BY bru32	
	fig32-yot32 (1-6);	
	f42a BY bru42	
	fig42-yot42 (1-6);	
		90

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading Invariance And Partial Intercept Invariance (Continued)

[bru12 bru22 bru32 bru42] (7); [fig12 fig22 fig32 fig42] (8); [hot12 hot22 hot32] (9); [lie12 lie22 lie32 lie42] (10); [stu12 stu22] (11); [tcl12 tcl22 tcl32] (12); [yot12 yot22 yot32 yot42] (13); [f12a@0 f22a f32a f42a];

Summary of Analysis Results For TOCA Measurement Invariance Models						
Model	Chi-Square (d.f.)	Difference (d.f. diff.)				
Measurement non-invariance	567.08 (344)					
Factor loading invariance	581.29 (362)	14.21 (18)				
Factor loading and						
intercept invariance	654.59 (380)	73.30* (18)				
Factor loading and partial						
intercept invariance	606.97 (376)	25.68* (14)				
Factor loading and partial intercept invariance with a linear growth						
structure	614.74 (381)	7.77 (5)				

Summary of Analysis Results For TOCA Measurement Invariance Models (Continued)

Explanation of Chi-Square Differences

Factor loading invariance (18)
Factor loading and
intercept invariance (18)
Factor loading and partial
intercept invariance (14)
Factor loading and partial
intercept invariance with
a linear growth structure (5)

6 factor loadings instead of 247 intercepts plus 3 factor meansinstead of 28 intercepts4 additional intercepts

 growth factor mean instead of 3 factor means
 growth factor variances, 1 growth factor covariance, 4 factor residual variances instead of 10 factor variances/covariances

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance With A Linear Growth Structure

MODEL:	f12a E	BY	bru12	
			fig12-yot12	(1-6);
	f22a E	BY	bru22	
			fig22-yot22	(1-6);
	£32a E	BY	bru32	
			fig32-yot32	(1-6);
	f42a E	ΒY	bru42	
			fig42-yot42	(1-6);

Input Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance With A Linear Growth Structure (Continued)

[bru12 bru22 bru32 bru42] (7);
[fig12 fig22 fig32 fig42] (8);
[hot12 hot22 hot32] (9);
[lie12 lie22 lie32 lie42] (10);
[stul2 stu22] (11);
[tcl12 tcl22 tcl32] (12);
[yot12 yot22 yot32 yot42] (13);
i s fl2a@0 f22a@1 f32a@2 f42a@3;
Alternative language:
- DV 610- 640-01.
I BY TIZATTYZAWIE
I BI II2d-I42d@I; S BY f12a@0 f22a@1 f32a@2 f42a@3:
I BI II2a-142a@1; s BY f12a@0 f22a@1 f32a@2 f42a@3; [f12a-f42a@0 i@0 s1:
s BY f12a-142a@1; s BY f12a@0 f22a@1 f32a@2 f42a@3; [f12a-f42a@0 i@0 s];
s BY f12a-142a@1; s BY f12a@0 f22a@1 f32a@2 f42a@3; [f12a-f42a@0 i@0 s];

Output Excerpts For TOCA Data Multiple Indicator CFA With Factor Loading And Intercept Invariance With A Linear Growth Structure								
	Estimates	S.E.	Est./S.E.	Std	StdYX			
F12A BY								
BRU12	1.000	.000	.000	.190	.786			
FIG12	1.097	.039	28.425	.208	.868			
HOT12	.986	.037	26.586	.187	.811			
LIE12	.967	.041	23.769	.184	.742			
STU12	.880	.041	21.393	.167	.667			
TCL12	1.034	.039	26.206	.196	.786			
YOT12	.932	.039	23.647	.177	.709			
Intercepts								
STU12	.331	.013	25.408	.331	1.324			
STU22	.331	.013	25.408	.331	1.231			
STU32	.417	.017	24.345	.417	1.592			
STU42	.390	.017	23.265	.390	1.496			

Advantages Of Growth Modeling In A Latent Variable Framework

- Flexible curve shape
- Individually-varying times of observation
- Regressions among random effects
- Multiple processes
- Modeling of zeroes
- Multiple populations
- Multiple indicators
- Embedded growth models
- Categorical latent variables: growth mixtures

	With Measurement Error In The Covariates
TITLE:	Embedded growth model with measurement error in the covariates and sequential processes advp: mother's drinking before pregnancy advml-advm3: drinking in first trimester momalc2-momalc3: drinking in 2nd and 3rd trimesters hcirc0-hcirc36; head circumference
MODEL:	<pre>fadvp BY advp; fadvp@0; fadvm1 BY advm1; fadvm1@0; fadvm2 BY advm2; fadvm2@0; fadvm3 BY advm3; fadvm3@0; fmomalc2 BY momalc2; fmomalc2@0; fmomalc3 BY momalc3; fmomalc3@0; i BY fadvp-fmomalc3@1; s BY fadvp@0 fadvm1@1 fadvm2*2 fadvm3*3</pre>

Input Excerpts For Two Linked Processes With Measurement Error In The Covariates (Continued)

advp WITH advml; advml WITH advm2; advm3 WITH advm2; i s ON gender eth; s WITH i; hi BY hcirc0-hcirc36@1; hs1 BY hcirc0@0 hcirc8@1.196 hcirc36@1.196; hs2 BY hcirc0@0 hcirc8@0 hcirc18@1 hcirc36*2; [hcirc0-hcirc36@0 hi*34 hs1 hs2]; hs1 WITH hs2@0; hi WITH hs2@0; hi WITH hs1@0; hi WITH i@0; hi WITH s@0; hs1 WITH i@0; hi1 WITH s@0; hs2 WITH i@0; hs2 WITH s@0; hi-hs2 ON gender eth fadvm2;

- Step 1: Create mean vector and covariance matrix for hypothesized parameter values
- Step 2: Analyze as if sample statistics and check that parameter values are recovered
- Step 3: Analyze as if sample statistics, misspecifying the model by fixing treatment effect(s) at zero
- Step 4: Use printed x^2 as an appropriate noncentrality parameter and computer power.

Muthén & Curran (1997): Artificial and real data situations.

<pre>TITLE: Power calculation for a growth model Step 1: Computing the population means and covariance matrix DATA: FILE IS artific.dat; TYPE IS MEANS COVARIANCE; NOBSERVATIONS = 500; VARIABLE: NAMES ARE y1-y4; MODEL: i s y1@0 y2@1 y3@2 y4@3; i@.5; s@.1; i WITH s@0; y1-y4@.5; OUTPUT: STANDARDIZED RESIUDAL;</pre>		Input For Step 1 Of Power Calculation	
<pre>DATA: FILE IS artific.dat; TYPE IS MEANS COVARIANCE; NOBSERVATIONS = 500; VARIABLE: NAMES ARE y1-y4; MODEL: is y1@0 y2@1 y3@2 y4@3; i@.5; s@.1; i WITH s@0; y1-y4@.5; OUTPUT: STANDARDIZED RESIUDAL;</pre>	TITLE:	Power calculation for a growth model Step 1: Computing the population means and covariance matrix	
<pre>VARIABLE: NAMES ARE yl-y4; MODEL: i s yl@0 y2@l y3@2 y4@3; i@.5; s@.1; i WITH s@0; yl-y4@.5; OUTPUT: STANDARDIZED RESIUDAL;</pre>	DATA:	FILE IS artific.dat; TYPE IS MEANS COVARIANCE; NOBSERVATIONS = 500;	
<pre>MODEL: i s y1@0 y2@1 y3@2 y4@3;</pre>	VARIABLE:	NAMES ARE y1-y4;	
OUTPUT: STANDARDIZED RESIUDAL;	MODEL:	i s y1@0 y2@1 y3@2 y4@3; i@.5; s@.1; i WITH s@0; y1-y4@.5;	
	OUTPUT:	STANDARDIZED RESIUDAL;	

Of Power Calculation TITLE: Power calculation for a growth model Step 2: Analyzing the population means and covariance matrix to check that parameters are recovered DATA: FILE IS pop.dat; TYPE IS MEANS COVARIANCE; NOBSERVATIONS = 500; VARIABLE: NAMES ARE y1-y4; MODEL: i s y1@0 y2@1 y3@2 y4@3; OUTPUT: STANDARDIZED RESIUDAL;		Input For Step 2	
<pre>TITLE: Power calculation for a growth model Step 2: Analyzing the population means and covariance matrix to check that parameters are recovered DATA: FILE IS pop.dat; TYPE IS MEANS COVARIANCE; NOBSERVATIONS = 500; VARIABLE: NAMES ARE y1-y4; MODEL: i s y1@0 y2@1 y3@2 y4@3; OUTPUT: STANDARDIZED RESIUDAL;</pre>		Of Power Calculation	
DATA: FILE IS pop.dat; TYPE IS MEANS COVARIANCE; NOBSERVATIONS = 500; VARIABLE: NAMES ARE y1-y4; MODEL: i s y1@0 y2@1 y3@2 y4@3; OUTPUT: STANDARDIZED RESIUDAL;	TITLE:	Power calculation for a growth model Step 2: Analyzing the population means and covariance matrix to check that parameters are recovered	
VARIABLE: NAMES ARE y1-y4; MODEL: is y1@0 y2@1 y3@2 y4@3; OUTPUT: STANDARDIZED RESIUDAL;	DATA:	FILE IS pop.dat; TYPE IS MEANS COVARIANCE; NOBSERVATIONS = 500;	
MODEL: i s y1@0 y2@1 y3@2 y4@3; OUTPUT: STANDARDIZED RESIUDAL;	VARIABLE:	NAMES ARE y1-y4;	
OUTPUT: STANDARDIZED RESIUDAL;	MODEL:	i s y1@0 y2@1 y3@2 y4@3;	
	OUTPUT:	STANDARDIZED RESIUDAL;	
			440

Data For Step 2 Of Power Calculation (Continued)

Data From Step 1 Residual Output

0 .2 .4 .6 1 .5 1.1 .5 .7 1.4 .5 .8 1.1 1.9

9.286 6	
9.286 6	
9.286 6	
.1580	
A)));	
	A)));

Input Power Estimation For Growth Models Using Monte Carlo Studies

TITLE:	This is an example of a Monte Carlo simulation study for a linear growth model for a continuous outcome with missing data where attrition is predicted by time- invariant covariates (MAR)	
MONTECARLO:	NAMES ARE y1-y4 x1 x2; NOBSERVATIONS = 500; NREPS = 500; SEED = 4533; CUTPOINTS = x2(1); MISSING = y1-y4;	
		125

Input Power Estimation For Growth Models Using Monte Carlo Studies (Continued)

MODEL:

```
i s | y1@0 y2@1 y3@2 y4@3;
[i*1 s*2];
i*1; s*.2; i WITH s*.1;
y1-y4*.5;
i ON x1*1 x2*.5;
s ON x1*.4 x2*.25;
TECH9;
```

OUTPUT:

127

Output Excerpts Power Estimation For Growth Models Using Monte Carlo Studies

Model Results

		ESTIMATI	ES	S.E.	M. S. E.	95%	%Sig
	Population	Average	Std. Dev.	Average		Cover	Coeff
I	ON						
X1	1.000	1.0032	0.0598	0.0579	0.0036	0.936	1.000
X2	0.500	0.5076	0.1554	0.1570	0.0241	0.952	0.908
S	ON						
X1	0.400	0.3980	0.0366	0.0349	0.0013	0.936	1.000
X2	0.250	0.2469	0.0865	0.0877	0.0075	0.938	0.830
							129
							120

Cohort-Sequential Designs and Power

Considerations:

- Model identification
- Number of timepoints needed substantively
- Number of years of the study
- Number of cohorts: More gives longer timespan but greater risk of cohort differences
- Number of measurements per individual
- Number of individuals per cohort
- Number of individuals per age

Tentative conclusion:

Power most influenced by total timespan, not the number of measures per cohort

Survival Analysis

- Discrete-time
 - Infrequent measurement (monthly, annually)
 - Limited number of time periods
- Continuous-time
 - Frequent measurement (hourly, daily)
 - Large number of time points

Discrete-Time Survival Analysis

Other terms: event history analysis, time-to-event. References: Allison (1984), Singer & Willet (1993), Vermunt (1997).

- Setting
 - Discrete time periods (e.g. grade), non-repeatable event (e.g. onset of drug use)
 - Uncensored and censored individuals
 - Time-invariant and time-varying covariates
- Aim
 - Estimate survival curves and hazard probabilities
 - Relate survival to covariates
- Generalized models using multiple latent classes of survival
 - Long-term survivors with zero hazard
 - Growth mixture modeling in combination with survival analysis

133

• Application: School removal and aggressive behavior in the classroom (Muthén & Masyn, 2005). Grade 1 sample, n = 403 control group children.

• An individual who drops out after period three, i.e. is censored during period four before the study ends $(j_i = 4)$

(00099999).

Hazard, Survival, Likelihood

The hazard is the probability of experiencing the event in the time period *j* given that it was not experienced prior to *j*. Letting the time of the event for individual *i* be denoted T_i , the logistic hazard function with *q* covariates x is

$$P(u_{ij}=1) = P(T_i = j \mid T_i \ge j) = h_{ij} = \frac{1}{1 + e^{-(-\tau_j + \kappa_j x_i)}}, \quad (49)$$

where a proportional-odds assumption is obtained by dropping the *j* subscript for κ_j . The survival function is

$$S_{ij} = \prod_{k=1}^{J} (1 - h_{ik}).$$
 (50)

137

Hazard, Survival, Likelihood (Continued)

The likelihood $L = \prod_{i=1}^{n} l_i$, where

$$l_{i} = \prod_{j=1}^{j_{i}} h_{ij}^{u_{ij}} (1 - h_{ij})^{-1 - u_{ij}}.$$
 (51)

A censored individual is observed with probability

$$l_i = \prod_{j=1}^{J_i} (1 - h_{ij}).$$
(52)

An uncensored individual experiences the event in time period j_i with probability

$$l_i = h_{ij_i} \prod_{j=1}^{j_i - 1} (1 - h_{ij}).$$
(53)

Gender	Grade	No School removal	At least one school removal	Sampl Hazar
Male	1	0	4	4/200 = 0.0
	2	0	5	5/196 = 0.0
	3	0	7	7/191 = 0.04
	4	0	6	6/184 = 0.02
	5	0	14	14/178 = 0.03
	6	0	14	14/164 = 0.03
	7	122	28	28/150 = 0.1
	Total	122	78	20
Female	1	0	0	0/203 = 0.04
	2	0	1	1/203 = 0.00
	3	0	1	1/202 = 0.002
	4	0	3	3/201 = 0.0
	5	0	1	1/198 = 0.00
	6	0	9	9/197 = 0.02
	7	157	31	31/188 = 0.1
	Total	157	46	20

Input For A Discrete-Time Survival Analysis

TITLE:	A discrete-time survival analysis	
DATA:	FILE IS survival.dat;	
VARIABLE:	NAMES ARE ul-u7 race lunch cavtoca cavlunch cntrlg yl gender; MISSING are all (999); CATEGORICAL ARE ul-u7;	
ANALYSIS:	ESTIMATOR = MLR;	
MODEL:	<pre>f BY ul-u7@1; f ON race-gender; f@0;</pre>	
OUTPUT:	TECH1 TECH8;	
		143

Output Excerpt A Discrete-Time Surviva	s l Analysis						
Tests Of Model Fit							
Loglikelihood							
H0 Value	-388.074						
Information Criteria							
Number of Free Parameters	14						
Akaike (AIC)	804.147						
Bayesian (BIC)	860.132						
Sample-Sized Adjusted BIC $(n^* = (n + 2)/24)$	815.709						
Output Excerpts							
------------------------	--------------	-----------	---------	-------------	-------	--	--
Disc	ete-T	ime Survi	val Ana	lysis (Cont	inued		
Model Re	esults						
		Estimates	S.E.	Est./S.E.			
Thresh	nolds						
U1:	\$1	4.707	0.694	6.782			
U2\$	\$1	4.118	0.782	5.269			
U38	\$1	3.764	0.658	5.725			
U48	\$1	3.588	0.648	5.537			
U5 \$	\$1	2.958	0.677	4.371			
U63	\$1	2.382	0.625	3.809			
U78	\$1	1.048	0.609	1.721			
F	ON						
RAC	CE	-0.449	0.379	-1.183			
LUI	NCH	-0.136	0.268	-0.506			
CAV	VTOCA	-1.104	0.295	-3.738			
CAV	/LUNCH	1.571	0.476	3.302			
CNT	FRLG	-0.336	0.213	-1.578			
Y1		0.783	0.119	6.566			
GEI	NDER	-0.700	0.206	-3.402			
					145		

Input For A Two-Class Discrete-Time Survival Analysis

TITLE:	A 2-class discrete-time survival analysis in a mixture modeling framework including long-term survivors
DATA:	FILE IS long.sav;
VARIABL	E: NAMES ARE ul-u7 race lunch cavtoca cavlunch cntrlg yl gender tl t2;
	MISSING ARE ALL (999);
	CATEGORICAL ARE u1-u7; CLASSES = c(2);
	TRAINING = t1 t2;
ANALYSI	S: TYPE = MIXTURE;

Inj	out For A Two-Class Discrete-Time Survival Analysis (Continued)
MODEL:	%OVERALL%
	f BY ul-u7@1; f ON race-gender; [f@0]; c#1 ON race-gender;
	<pre>%c#1% ! class of non-long-term survivors</pre>
	[ul\$1*4 u2\$1*3 u3\$1*3 u4\$1*3.5 u5\$1*2.5 u6\$1*4 u7\$1*1 [f@0]; f ON race-gender;
	<pre>%c#2% ! class of long-term survivors</pre>
	[ul\$1-u7\$1@10]; f ON race-gender@0;
OUTPUT:	PATTERNS TECH1 TECH8;
	148

Output Excerpts A Two-Class Discrete-Time Survival Analysis						
Tests Of Model Fit						
Loglikelihood						
H0 Value	-375.951					
Information Criteria						
Number of Free Parameters	22					
Akaike (AIC)	795.903					
Bayesian (BIC)	883.879					
Sample-Sized Adjusted BIC $(n^* = (n + 2)/24)$	814.071					
Entropy	0.644					
		14				

	Estimates	S.E.	Est./S.E.	
Class 1				
Thresholds				
U1\$1	4.590	0.809	5.673	
U2\$1	4.060	0.928	4.376	
U3\$1	3.654	0.804	4.542	
U4\$1	3.402	0.756	4.498	
U5\$1	2.656	0.764	3.477	
U6\$1	1.866	0.708	2.634	
11701	-0.026	0.841	-0.030	

Outpu	t Excerpt	s A Two	-Class	
Discrete-Time	e Survival	Analysi	s (Continu	ied)
C#1 ON				
RACE	-1.099	0.552	-1.990	
LUNCH	0.446	0.712	0.627	
CAVTOCA	-2.459	0.824	-2.983	
CAVLUNCH	2.907	1.470	1.977	
CNTRLG	-0.101	0.498	-0.204	
Yl	0.913	0.301	3.036	
GENDER	0.150	0.665	0.226	
Intercepts				
C#1	1.773	1.411	1.257	
Class 1				
F ON				
RACE	0.882	0.511	1.728	
LUNCH	-0.679	0.550	-1.236	
CAVTOCA	-0.234	0.642	-0.365	
CAVLUNCH	0.540	0.809	0.667	
CNTRLG	-0.441	0.355	-1.242	
Yl	0.605	0.218	2.774	
GENDER	-1.141	0.510	-2.237	
				15

Further Readings On Discrete-Time Survival Analysis

Allison, P.D. (1984). <u>Event history analysis</u>. Regression for Longitudinal Event Data. Quantitative Applications in the Social Sciences, No. 46. Thousand Oaks: Sage Publications.

Masyn, K. E. (2008). Modeling measurement error in event occurrence for single, non-recurring events in discrete-time survival analysis. In Hancock, G. R., & Samuelsen, K. M. (Eds.), <u>Advances in latent variable</u> <u>mixture models</u>, pp. 105-145. Charlotte, NC: Information Age Publishing, Inc.

Muthén, B. & Masyn, K. (2005). Discrete-time survival mixture analysis. Journal of Educational and Behavioral Statistics, 30, 27-28.

Singer, J.D., & Willett, J.B. (1993). It's about time: Using discrete-time survival analysis to study duration and the timing of events. <u>Journal of</u> <u>Educational Statistics</u>, 18(2), 155-195.

Singer, J. D. & Willett, J. B. (2003). <u>Applied longitudinal analysis</u>. Modeling change and event occurrence. Oxford, UK: Oxford University Press.

Vermunt, J.K. (1997). <u>Log-linear models for event histories</u>. Advanced quantitative techniques in the social sciences, vol 8. Thousand Oaks: 153 Sage Publications.

Continuous-Time Survival Analysis

The Proportional Hazard Model

The proportional hazard (PH) model specifies that the hazard function is proportional to the baseline hazard function,

$$h(t) = \lambda(t) Exp(\beta X)$$
(3)

157

$$\log h(t) = \log \lambda(t) + \beta X \tag{4}$$

Two proportional hazard models:

- Nonparametric shape for the baseline hazard function $\lambda(t)$: Cox regression
- Parametric model for the baseline hazard function $\lambda(t)$: parametric PH model

vival Data	lime Sur	tinuous-T	Cont
	с	x	t
	1.000000	-0.378137	7.330493
	1.000000	-0.880031	0.894182
→Event occurred at time	0.000000	0.369423	1.219113
1.219113	0.000000	1.886903	0.134073
	0.000000	1.118025	0.598567
	0.000000	0.642068	0.725646
	0.000000	-0.324017	1.637967
	0.000000	-0.760867	5.534057
	1.000000	0.194822	3.316749
	1.000000	-0.311791	4.176435

Translating Continuous-Time Survival Data To Discrete-Time Survival Data

VARIABLE:	<pre>NAMES = t x c; ! t =time of death or censoring ! c = not censored (0), censored (1) CATEGORICAL = u1-u8(*); USEVAR = x u1-u8;</pre>
DATA:	<pre>FILE = surveql.dat; VARIANCE = NOCHECK;</pre>
DEFINE:	<pre>IF (t>2) THEN ul=0; IF ((t>0) .AND. (t<2)) THEN ul=1-c; ! ul = 0 if c = 1, i.e. censoring time between 0 and 2 ! ul = 1 if person died then</pre>
	<pre>IF (t>4) THEN u2=0; IF ((t>2) .AND. (t<4)) THEN u2=1-c; IF (t<2) THEN u2=_missing; L u2 is missing either because u1 = 1 or because</pre>
	163 ! ul = 0 and c = 1

Translating Continuous-Time Survival Data To Discrete-Time Survival Data (Continued)

```
IF (t>14) THEN u7=0;
IF ((t>12) .AND. (t<14)) THEN u7=1-c;
IF (t<12) THEN u7=_missing;
IF (t>16) THEN u8=0;
IF ((t>14) .AND. (t<16)) THEN u8=1-c;
IF (t<14) THEN u8=_missing;
MODEL: u1-u8 ON x*1 (1);
ANALYSIS: ESTIMATOR = MLR;
TYPE = MISSING;
```


Weighted Least Squares Estimation With Missing Data

Weighted least squares for categorical and censored outcomes

- Assumes MCAR when there are no covariates
- Allows MAR when missingness is a function of covariates

Missing At Random (MAR): Missing On y In Bivariate Normal Case

$$\hat{\mu}_{x} = \sum_{i=1}^{n_{L}+n_{H}} x_{i} / (n_{L}+n_{H}) = \frac{n_{L} \bar{x}_{L} + n_{H} \bar{x}_{H}}{n_{L}+n_{H}} , \qquad (52)$$

$$\hat{\sigma}_{xx} = \sum_{i=1}^{n_L + n_H} (x_i - \hat{\mu}_x)^2 / (n_L + n_H).$$
(53)

175

Missing At Random (MAR): Missing On y In Bivariate Normal Case (Continued) Consider the regression $y_i = \alpha + \beta x_i + \zeta_i$ (54)estimated by the complete-data (listwise present) sample (sample size n_H) $\hat{\alpha} = \bar{y} - \hat{\beta} \bar{x}$, (55) $\widehat{\beta} = s_{yx} / s_{xx} ,$ (56) $\widehat{\sigma}_{\zeta\zeta} = s_{yy} - s_{yx}^2 / s_{xx}.$ (57) This gives the ML estimates of μ_{y} and $\sigma_{yy},$ adjusting the complete-data sample statistics: $\hat{\mu}_{y} = \hat{\alpha} + \hat{\beta} \hat{\mu}_{x} = \bar{y} + \hat{\beta} (\hat{\mu}_{x} - \bar{x}),$ (58) $\hat{\sigma}_{yy} = \hat{\sigma}_{\zeta\zeta} + \hat{\beta}^2 \ \hat{\sigma}_{xx} = s_{yy} + \hat{\beta}^2 \ (\hat{\sigma}_{xx} - s_{xx}).$ (59) 176

Missing On X	
• Regular modeling concerns the conditional	distribution
$[y \mid x]$	(1)
that is, as in regular regression the marginal $[x]$ is not involved. This is fine if there is no which case considering	distribution of o missing on x in
$[y \mid x]$	
gives the same estimates as (Joreskog & Go considering the joint distribution	oldberger, 1975)
[y, x] = [y x] [x]	
	178

Technical Aspects Of Ignorable Missing Data: ML Under MAR

Likelihood:
$$\sum_{i=1}^{n} \log \left[\mathbf{y}_{i} | \mathbf{x}_{i} \right].$$
 (87)

With missing data on **y**, the i^{th} term of (87) expands into

$$[\mathbf{y}_i^{obs}, \mathbf{y}_i^{mis}, \mathbf{m}_i | \mathbf{x}_i],$$
(88)

where \mathbf{m}_i is a 0/1 indicator vector of the same length as \mathbf{y}_i .

The likelihood focuses on the observed variables,

 $[\mathbf{y}_{i}^{obs}, \mathbf{m}_{i} | \mathbf{x}_{i}] = \int [\mathbf{y}_{i}^{obs}, \mathbf{y}_{i}^{mis} | \mathbf{x}_{i}] [\mathbf{m}_{i} | \mathbf{y}_{i}^{obs} \mathbf{y}_{i}^{mis}, \mathbf{x}_{i}] d\mathbf{y}_{i}^{mis}, \quad (89)$ which, when assuming that missingness is not a function of \mathbf{y}_{i}^{mis} (that is, assuming MAR),

Technical Aspects Of Ignorable Missing Data: ML Under MAR (Continued)

$$= \int [\mathbf{y}_{i}^{obs}, \mathbf{y}_{i}^{mis} | \mathbf{x}_{i}] d\mathbf{y}_{i}^{mis} [\mathbf{m}_{i} | \mathbf{y}_{i}^{obs}, \mathbf{x}_{i}], \qquad (90)$$
$$= [\mathbf{y}_{i}^{obs} | \mathbf{x}_{i}] [\mathbf{m}_{i} | \mathbf{y}_{i}^{obs}, \mathbf{x}_{i}]. \qquad (91)$$

With distinct parameter sets in (91), the last term can be ignored and maximization can focus on the $[\mathbf{y}_i^{obs} | \mathbf{x}_i]$ term. This leads to the standard MAR ignorable missing data procedure.

Input For AMPS Growth Model With Missing Data TITLE: AMPS growth model with missing data DATA: FILE IS amps.dat; VARIABLE: NAMES ARE caseid amover0 ovrdrnk0 illdrnk0 vrydrn0 amover1 ovrdrnk1 illdrnk1 vrydrn1 amover2 ovrdrnk2 illdrnk2 vrydrn2 amover3 ovrdrnk3 illdrnk3 vrydrn3 amover4 ovrdrnk4 illdrnk4 vrydrn4 amover5 ovrdrnk5 illdrnk5 vrydrn5 amover6 ovrdrnk6 illdrnk6 vrydrn6; USEV = amover0 amover1 amover2 amover3; MISSING = ALL (999); 184

U	ıı	Jul			h	SA				UN		IVI	Juc		
				Wi	th	Mi	SSI	ng .	Da	ta					
Sumn	nar	y of	Da	ta											
Numb	ber	of p	atte	erns		15									
SUMMARY	OF	MISS	SING	DATA	PA	TTERI	NS								
MISSI	NG	DATA	PAT	TERNS	3										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
AMOVER0	х	x	x	x	x	x	x	x							
AMOVER1	х	х	x	х					x	х	х	х			
AMOVER2	х	х			х	х			x	х			х	х	
AMOVER3	х		х		х		х		х		х		х		х
MISSI	NG	DATA	PAT	TERN	FRE	EQIEN	CIES								
Patt	ern	Fr	eque	ency		Patt	ern	Free	quen	су	Patt	ern	Fre	quer	ıcy
	1			685			б			29		11		1	04
	2			143			7			11		12		2	237
	3			73			8			64		13			б
	4			164			9		8	66		14			1
	5			65			10		2	80		15			3

Output Excerpts AMPS Growth Model With Missing Data (Continued)

COVARIANC	E COVERAGE	OF DATA	1	0.0	
	ovariance c	Sverage va	aiue 0.1	00	
PROPORTIO	N OF DATA P.	RESENT			
C	ovariance C	overage			
	AMOVER0	AMOVER1	AMOVER2	AMOVER3	
AMOVER0	0.464				
AMOVER1	0.401	0.933			
AMOVER2	0.347	0.715	0.753		
AMOVER3	0.314	0.650	0.610	0.682	
					187

Output Excerpts AMPS Growth Model With Missing Data (Continued)

- -

Model Resul	ts				
	Estimates	S.E.	Est./S.E.	Std	StdYX
I					
AMOVER0	1.000	0.000	0.000	0.426	0.921
AMOVER1	1.000	0.000	0.000	0.426	0.774
AMOVER2	1.000	0.000	0.000	0.426	0.645
AMOVER 3	1.000	0.000	0.000	0.426	0.529
S					
AMOVER0	0.000	0.000	0.000	0.000	0.000
AMOVER1	1.000	0.000	0.000	0.109	.198
AMOVER2	3.000	0.000	0.000	0.327	0.494
AMOVER3	6.244	0.426	14.645	0.680	0.843
S I					
WITH	-0.007	0.003	-2.278	-0.146	-0.146
AMOVER1 WITH					
AMOVER0	-0.022	0.011	-2.010	-0.022	-0.085
AMOVER2 WITH					
AMOVER1	0.017	0.007	2.505	0.017	0.047
AMOVER3 WITH					
AMOVER2	-0.001	0.027	-0.050	-0.001	-0.003 1

Residual Variance	S				
AMOVER0	0.033	0.013	2.509	0.033	0.152
AMOVER1	0.123	0.011	10.950	0.123	0.406
AMOVER2	0.190	0.017	11.461	0.190	0.433
AMOVER3	0.091	0.068	1.340	0.091	0.140
Variances					
I	0.182	0.014	12.891	1.000	1.000
S	0.012	0.002	5.378	1.000	1.000
Means					
I	0.200	0.010	19.391	0.469	0.469
S	0.057	0.005	11.858	0.520	0.520
Intercept					
AMOVER0	0.000	0.000	0.000	0.000	0.000
AMOVER1	0.000	0.000	0.000	0.000	0.000
AMOVER2	0.000	0.000	0.000	0.000	0.000
AMOVER3	0.000	0.000	0.000	0.000	0.000

Y with	z as	aux					
		E	ESTIMATES		S.E.	M.S.E.	95%
		Population	Average	Std. Dev.	Average		Cover
F2	BY						
Y1		0.7000	0.6914	0.0820	0.0766	0.0067	0.940
Y2		0.7000	0.6854	0.0829	0.0766	0.0070	0.930
¥3		0.7000	0.6947	0.0650	0.0767	0.0042	0.960
¥4		0.7000	0.6934	0.0719	0.0767	0.0052	0.960
¥5		0.7000	0.6911	0.0804	0.0761	0.0065	0.930
Y alone	2						
F2	BY						
Y1		0.7000	0.6482	0.0869	0.0797	0.0102	0.89
¥2		0.7000	0.6392	0.0861	0.0803	0.0110	0.85
¥3		0.7000	0.6450	0.0751	0.0802	0.0086	0.90
¥4		0.7000	0.6474	0.0741	0.0802	0.0082	0.91
Υ5		0.7000	0.6463	0.0825	0.0796	0.0096	0.89 199

Asparouhov & Muthen (2008). Auxiliary variables predictin missing data. Technical report. <u>www.statmodel.com</u> .	g

Non-Ignorable Missing Data Modeling Approaches And References (Continued)

Shared-parameter modeling: $[y, m] = \sum_{c} [c] [m | c] [y | c]$:

Albert & Follman (2008) handbook chapter: overview Beunckens et al (2008) in Biometrics: using a latent class variable c and i, s

205

Non-Ignorable Missing Data Modeling In Longitudinal Studies

- Intermittent missingness versus dropout
- Muthén, B., Asparouhov, T., Hunter, A. & Leuchter, A. (2010). Growth modeling with non-ignorable dropout: Alternative analyses of the STAR*D antidepressant trial. Submitted for publication.
- Applied to STAR*D antidepressant trial data (n=4041)

STAR*D Antidepressant Trial

- STAR*D multi-site NIMH antidepressant trial with n = 4041
- Subjects treated with citalopram (Level 1). No placebo group
- Clinician-rated QIDS depression score measured at baseline and weeks 2, 4, 6, 9, and 12
- 25% have complete data, 60% have monotone (dropout) missing data patterns, 14% have non-monotone missing data patterns
- Coverage at baseline and weeks 2, 4, 6, 9, and 12: 1.00, 0.79, 0.69, 0.68, 0.57, and 0.39
- Reasons for leaving Level 1: Remission (moved to follow-up), medication inefficient or not tolerated (moved to Level 2), study exit

Inj	put Excerpts Diggle-Kenward Selection Modeling	
DATA:	FILE = StarD Ratings 1-23-09.dat;	
VARIABLE:	NAMES =	
	<i>i</i>	
	MISSING = ALL (-9999); USEV = y0 y1 y2 y3 y4 y5 d1 d2 d3 d4 d5; CATEGORICAL = d1 d2 d3 d4 d5;	
DATA MISSING:	NAMES = y1 y2 y3 y4 y5; TYPE = SDROPOUT; BINARY = d1-d5;	
ANALYSIS:	<pre>PROCESS = 4; ALGORITHM = INTEGRATION; INTEGRATION = MONTECARLO; INTERACTIVE = control.dat;</pre>	
		210

Input Excerpts Pattern-Mixture Modeling

TITLE:	
DATA:	<pre>FILE = StarD Ratings 1-23-09.dat;</pre>
VARIABLE:	NAMES =
	MISSING = ALL (-9999); USEV = y0 y1 y2 y3 y4 y5 d1 d2 d3 d4 d5;
DATA MISSING:	NAMES = $v1 v2 v3 v4 v5$.
	TYPE = DDROPOUT; BINARY = d1-d5;

Input Excerpts Roy 4-Class Latent Dropout Modeling

TITLE:		
DATA:	<pre>FILE = StarD Ratings 1-23-09.dat;</pre>	
VARIABLE:	NAMES =	
	i	
	MISSING = ALL (-9999); USEV = y0 y1 y2 y3 y4 y5 d1-d5;	
	CLASSES = $c(4);$	
DATA MISSING:	NAMES = y1 y2 y3 y4 y5; TYPE = DDROPOUT; BINARY = d1-d5;	
ANALYSIS:	<pre>TYPE = MIXTURE; PROCESS = 4(STARTS); INTERACTIVE = control.dat; STARTS = 200 40;</pre>	
		215

- Albert, P.S. & Follman, D.A. (2008). Shared-parameter models. In Fitzmaurice, G., Davidian, M., Verbeke, G. & Molenberghs, G. (eds.), <u>Longitudinal Data Analysis</u>, pp. 433-452. Boca Raton: Chapman & Hall/CRC Press.
- Beunckens, C., Molenberghs, G., Verbeke, G., and Mallinckrodt, C. (2008). A latent-class mixture model for incomplete longitudinal Gaussian data. Biometrics, 64, 96-105.
- Dantan, E., Proust-Lima, C., Letenneur, L., & Jacqmin-Gadda, H. (2008). Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropouts. <u>The</u> <u>International Journal of Biostatistics</u>, 4(1), 1-26.
- Diggle, P.D. and Kenward, M.G. (1994). Informative dropout in longitudinal data analysis (with discussion). <u>Applied Statistics</u>, 43, 84.
- Graham, J.W. (2003). Adding missing-data-relevant variables to FIML-based structural equation models. <u>Structural Equation Modeling</u>, 10(1), 80-100.

Further Readings On Missing Data Analysis (Continued)

- Muthén, B., Jo, B. & Brown, H. (2003). Comment on the Barnard, Frangakis, Hill & Rubin article, Principal stratification approach to broken randomized experiments: A case study of school choice vouchers in New York City. Journal of the American Statistical Association, 98, 311-314.
- Roy, J. (2003). Modeling longitudinal data with nonignorable dropouts using a latent dropout class model. <u>Biometrics</u>, 59, 829-836.
- Schafer, J.L. (1997). <u>Analysis of incomplete multivariate data</u>. London: Chapman & Hall.
- Schafer, J.L & Graham, J. (2002). Missing data: Our view of the state of the art. <u>Psychological Methods</u>, 7, 147-177.
- Wu, M.C. & Carroll, R.J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. <u>Biometrics</u>, 44, 175-188.

2	2	3	

References (Continued)		
Jennrich, R.I. & Schluchter, M.D. (1986). Unbalanced repeated-measure models with structured covariance matrices. <u>Biometrics</u> , 42, 805-820	es	
Laird, N.M., & Ware, J.H. (1982). Random-effects models for longitudi data. <u>Biometrics</u> , 38, 963-974.	nal	
Lindstrom, M.J. & Bates, D.M. (1988). Newton-Raphson and EM algor for linear mixed-effects models for repeated-measures data. <u>Journal of</u> American Statistical Association, 83, 1014-1022.	ithms of the	
Littell, R., Milliken, G.A., Stroup, W.W., & Wolfinger, R.D. (1996). SA system for mixed models. Cary NC: SAS Institute.	S	
McArdle, J.J. & Epstein, D. (1987). Latent growth curves within developmental structural equation models. <u>Child Development</u> , 58, 1 133.	10-	
McArdle, J.J. & Hamagami, F. (2001). Latent differences score structura models for linear dynamic analyses with incomplete longitudinal dat Collins, L.M. & Sayer, A. G. (Eds.), <u>New methods for the analysis o</u> <u>change</u> (pp. 137-175). Washington, D.C.: American Psychological Association	al a. In <u>f</u>	
Association.	225	

	References (Continued)		
Adv	vanced		
Alb	pert, P.S. & Shih, J.H. (2003). Modeling tumor growth with random onset. Biometrics, 59, 897-906.		
Bro	wwn, C.H. & Liao, J. (1999). Principles for designing randomized preventive trials in mental health: An emerging development epidemiologic		
]	perspective. <u>American Journal of Community Psychology</u> , special issue on prevention science, 27, 673-709.		
Bro	wwn, C.H., Indurkhya, A. & Kellam, S.K. (2000). Power calculations for		
(data missing by design: applications to a follow-up study of lead exposure and attention Journal of the American Statistical Association 95, 383, 395		
Col	lins, L.M. & Sayer, A. (Eds.), New methods for the analysis of change.		
1	Washington, D.C.: American Psychological Association.		
Dua	an, N., Manning, W.G., Morris, C.N. & Newhouse, J.P. (1983). A		
(comparison of alternative models for the demand for medical care. Journal of Business and Economic Statistics, 1, 115-126.		
	228		

References (Continued)

Survival Analysis

- Allison, P.D. (1984). Event History Analysis. Regression for Longitudinal Event Data. Quantitative Applications in the Social Sciences, No. 46. Thousand Oaks: Sage Publications.
- Asparouhov, T., Masyn, K. & Muthen, B. (2006). Continuous time survival in latent variable models. Proceedings of the Joint Statistical Meeting in Seattle, August 2006. ASA section on Biometrics, 180-187.
- Larsen, K. (2004). Joint analysis of time-to-event and multiple binary indicators of latent classes, Biometrics, 60(1), 85-92.
- Larsen, K. (2005). The Cox proportional hazards model with a continuous latent variable measured by multiple binary indicators, Biometrics, 61(4), 1049-1055.
- Lin, H., Turnbull, B.W., McCulloch, C.E. & Slate, E. (2002). Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate-specific antigen readings and prostate cancer. Journal of the American Statistical Association, 97, 53-65.

235

