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• Inefficient dissemination of statistical methods:
– Many good methods contributions from biostatistics, 

psychometrics, etc are underutilized in practice
• Fragmented presentation of methods:

– Technical descriptions in many different journals
– Many different pieces of limited software

• Mplus: Integration of methods in one framework
– Easy to use: Simple, non-technical language, graphics
– Powerful: General modeling capabilities

Mplus Background

• Mplus versions
– V1: November 1998
– V3: March 2004
– V5: November 2007

– V2: February 2001
– V4: February 2006
– V5.2: November 2008

• Mplus team: Linda & Bengt Muthén, Thuy Nguyen, 
Tihomir Asparouhov, Michelle Conn, Jean Maninger
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General Latent Variable Modeling Framework
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Mplus
Several programs in one 
• Exploratory factor analysis
• Structural equation modeling
• Item response theory analysis
• Latent class analysis
• Latent transition analysis
• Survival analysis
• Growth modeling
• Multilevel analysis
• Complex survey data analysis
• Monte Carlo simulation

Fully integrated in the general latent variable framework
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Overview Of Mplus Courses 

• Topic 1. March 18, 2008, Johns Hopkins University: 
Introductory - advanced factor analysis and structural equation 
modeling with continuous outcomes

• Topic 2. March 19, 2008, Johns Hopkins University: 
Introductory - advanced regression analysis, IRT, factor 
analysis and structural equation modeling with categorical, 
censored, and count outcomes

• Topic 3. August 21, 2008, Johns Hopkins University: 
Introductory and intermediate growth modeling

• Topic 4. August 22, 2008, Johns Hopkins University:
Advanced growth modeling, survival analysis, and missing 
data analysis   
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Overview Of Mplus Courses (Continued)

• Topic 5. November 10, 2008, University of Michigan, Ann 
Arbor: Categorical latent variable modeling with cross-
sectional data

• Topic 6. November 11, 2008, University of Michigan, Ann 
Arbor: Categorical latent variable modeling with longitudinal 
data

• Topic 7. March 17, 2009, Johns Hopkins University:
Multilevel modeling of cross-sectional data

• Topic 8. March 18, 2009, Johns Hopkins University: 
Multilevel modeling of longitudinal data  



Analysis With Multilevel Data
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Used when data have been obtained by cluster sampling
and/or unequal probability sampling to avoid biases in
parameter estimates, standard errors, and tests of model fit
and to learn about both within- and between-cluster
relationships.

Analysis Considerations

• Sampling perspective
• Aggregated modeling – SUDAAN

• TYPE = COMPLEX
– Clustering, sampling weights, stratification 

(Asparouhov, 2005)

Analysis With Multilevel Data
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• Multilevel perspective
• Disaggregated modeling – multilevel modeling

• TYPE = TWOLEVEL
– Clustering, sampling weights, stratification

• Multivariate modeling
• TYPE = GENERAL

– Clustering, sampling weights 
• Combined sampling and multilevel perspective

• TYPE = COMPLEX TWOLEVEL
• Clustering, sampling weights, stratification

Analysis With Multilevel Data (Continued)
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Analysis Areas

• Multilevel regression analysis
• Multilevel path analysis
• Multilevel factor analysis
• Multilevel SEM
• Multilevel growth modeling 
• Multilevel latent class analysis
• Multilevel latent transition analysis
• Multilevel growth mixture modeling

Analysis With Multilevel Data (Continued)
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Complex Survey Data Analysis
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Consider nested, random-effects ANOVA for unit i in cluster j,

yij = v + ηj + εij ; i = 1, 2,…, nj ; j = 1,2,…, J.       (44)

Random sample of J clusters (e.g. schools).

With timepoint as i and individual as j, this is a repeated
measures model with random intercepts. 

Consider the covariance and variances for cluster members i = k
and i = l,

Coυ(ykj , ylj) = V(η), (45)
V(ykj) = V(ylj) = V(η) + V(ε), (46)

resulting in the intraclass correlation

ρ(ykj , ylj) = V(η)/[V(η) + V(ε)]. (47)

Interpretation: Between-cluster variability relative to total
variation, intra-cluster homogeneity.

Intraclass Correlation
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NLSY Household Clusters
Household                 # of Households* Intraclass Correlations for Siblings 
Type
(# of respondents) Year Heavy Drinking

Single 5,944 1982 0.19
Two 1,985 1983 0.18
Three 634 1984 0.12
Four 170 1985 0.09
Five 32 1988 0.04
Six 5 1989 0.06

Total number of households: 8,770

Total number of respondents: 12,686

Average number of respondents per household: 1.4

*Source: NLS User’s Guide, 1994, p.247

16

Design Effects

Consider cluster sampling with equal cluster sizes and the
sampling variance of the mean.

VC : correct variance under cluster sampling
VSRS : variance assuming simple random sampling

VC  ≥ VSRS but cluster sampling more convenient, less
expensive.

DEFF = VC / VSRS = 1 + (s – 1) ρ, (47)

where s is the common cluster size and ρ is the intraclass
correlation (common range: 0.00 – 0.50).
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Random Effects ANOVA Example

200 clusters of size 10 with intraclass correlation 0.2 analyzed
as:

• TYPE = TWOLEVEL

• TYPE = COMPLEX

• Regular analysis, ignoring clustering

DEFF = 1 + 9 * 0.2 = 2.8
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Input For Two-Level 
Random Effects ANOVA Analysis

TITLE: Random effects ANOVA data
Two-level analysis with balanced data

DATA: FILE = anova.dat;

VARIABLE: NAMES = y cluster;
USEV = y;
CLUSTER = cluster;

ANALYSIS: TYPE = TWOLEVEL;

MODEL:
%WITHIN%
y;
%BETWEEN%
y;
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Output Excerpts Two-Level 
Random Effects ANOVA Analysis

Model Results

Variances
Y 0.779 0.025 31.293

Within Level
Estimates S.E. Est./S.E.

Means
Y 0.003 0.038 0.076

Between Level

Variances
Y 0.212 0.028 7.496
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Input For Complex 
Random Effects ANOVA Analysis

TITLE: Random effects ANOVA data
Complex analysis with balanced data

DATA: FILE = anova.dat;

VARIABLE: NAMES = y cluster;
USEV = y;
CLUSTER = cluster;

ANALYSIS: TYPE = COMPLEX;
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Output Excerpts Complex
Random Effects ANOVA Analysis

Model Results

Means
Y 0.003 0.038 0.076

Variances
Y 0.990 0.036 27.538

Estimates S.E. Est./S.E.

22

TITLE: Random effects ANOVA data
Ignoring clustering

DATA: FILE = anova.dat;

VARIABLE: NAMES = y cluster;
USEV = y;
CLUSTER = cluster;

ANALYSIS:

Input For Random Effects ANOVA Analysis
Ignoring Clustering

!
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Output Excerpts Random Effects 
ANOVA Analysis Ignoring Clustering

Model Results

Means
Y 0.003 0.022 0.131

Variances
Y 0.990 0.031 31.623

Note: The estimated mean has SE = 0.022 instead of the correct 0.038

Estimates S.E. Est./S.E.
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Further Readings On Complex Survey Data
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Stapleton, L. (2002).  The incorporation of sample weights into 
multilevel structural equation models.  Structural Equation 
Modeling, 9, 475-502.

See also the Mplus Complex Survey Data Project: 
http://www.statmodel.com/resrchpap.shtml

Further Readings On Complex Survey Data
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Two-Level Regression Analysis
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Cluster-Specific Regressions

(1) yij = ß0j + ß1j xij + rij (2a) ß0j = γ00 + γ01 wj + u0j

(2b) ß1j = γ10 + γ11 wj + u1j

j = 1

j = 2

j = 3

y

x

β1

w

β0

w

Individual i in cluster j
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Two-level analysis (individual i in cluster j):

yij :  individual-level outcome variable
xij :  individual-level covariate
wj :  cluster-level covariate

Random intercepts, random slopes:

Level 1 (Within) : yij = ß0j + ß1j xij + rij , (1)

Level 2 (Between) :  ß0j = γ00 + γ01 wj + u0j , (2a)

Level 2 (Between) :  ß1j = γ10 + γ11 wj + u1j . (2b)

• Mplus gives the same estimates as HLM/MLwiN ML (not REML): 
• V (r) (residual variance for level 1) 
• γ00 , γ01, γ10 , γ11 , V(u0), V(u1), Cov(u0, u1) (level 2)

Two-Level Regression Analysis With Random
Intercepts And Random Slopes In Multilevel Terms
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WITHIN And BETWEEN Options Of 
The VARIABLE Command

• WITHIN
– Measured on individual level
– Modeled on within
– No variance on between

• BETWEEN
– Measured on cluster level
– Modeled on between

• Not on WITHIN or BETWEEN
– Measured on individual level
– Modeled on within and between

30

• The data—National Education Longitudinal Study 
(NELS:88)

• Base year Grade 8—followed up in Grades 10 and 12

• Students sampled within 1,035 schools—approximately 
26 students per school, n = 14,217

• Variables—reading, math, science, history-citizenship-
geography, and background variables

NELS Data
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NELS Math Achievement Regression

31

32

TITLE: NELS math achievement regression

DATA: FILE IS completev2.dat;
! National Education Longitudinal Study (NELS)
FORMAT IS f8.0 12f5.2 f6.3 f11.4 23f8.2
f18.2 f8.0 4f8.2;

VARIABLE: NAMES ARE school r88 m88 s88 h88 r90 m90 s90 h90 r92
m92 s92 h92 stud_ses f2pnlwt transfer minor coll_asp
algebra retain aca_back female per_mino hw_time 
salary dis_fair clas_dis mean_col per_high unsafe 
num_frie teaqual par_invo ac_track urban size rural 
private mean_ses catholic stu_teac per_adva tea_exce 
tea_res;

USEV = m92 female stud_ses per_adva private catholic 
mean_ses;

!per_adva = percent teachers with an MA or higher

WITHIN = female stud_ses;
BETWEEN = per_adva private catholic mean_ses;
MISSING = blank;
CLUSTER = school;
CENTERING = GRANDMEAN (stud_ses per_adva mean_ses);

Input For NELS Math Achievement Regression
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ANALYSIS: TYPE = TWOLEVEL RANDOM;

MODEL: 
%WITHIN%
s1 | m92 ON female;
s2 | m92 ON stud_ses;

%BETWEEN%
m92 s1 s2 ON per_adva private catholic mean_ses;
m92 WITH s1 s2;

OUTPUT: TECH8 SAMPSTAT;

Input For NELS Math Achievement Regression
(Continued)
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1 89863 75862 52654 1995 32661 89239 56214
2 41743

4570
81263
27159

45025
11662

26790
87842

60281
38454

82860 56241 21474

3 65407
40402
66512

61407
93469

83048
98582

42640
68595

41412
11517

67708
17543

83085
75498

39685
81069

4 31646
5095

98461
9208

68153
10904
44395
93859

85508
93569
95317
35719

26234
38063
64112
67574

83390
86733
50880
20048

60835
66125
77381
34139

74400
51670
12835
25784

20770
10910
47555
80675

5 14464
9471

74791
83234

18219
68254

10468
68028

72193
70718

97616
3496

15773
6842

877
45854

N = 10,933

Summary of Data

Number of clusters 902

Size (s) Cluster ID with Size s

Output Excerpts NELS Math 
Achievement Regression
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22 79570 15426 97947 93599 85125 10926 4603
23 6411 60328 70024 67835
24 36988 22874 50626 19091
25 56619 59710 34292 18826 62209
26 44586 67832 16515
27 82887
28 847 76909
30 36177
31 12786 53660 47120 94802
32 80553
34 53272
36 89842 31572
42 99516
43 75115

Average cluster size  12.187
Estimated Intraclass Correlations for the Y Variables

Intraclass
Variable Correlation

M92 0.107

Output Excerpts NELS Math
Achievement Regression (Continued)
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Tests of Model Fit
Loglikelihood

H0 Value -39390.404
Information Criteria

Number of Free parameters 21
Akaike (AIC) 78822.808
Bayesian (BIC) 78976.213
Sample-Size Adjusted BIC 78909.478

(n* = (n + 2) / 24)

Within Level
Residual 
Variances

M92 70.577 1.149 61.442
Between Level
S1         ON

PER_ADVA 0.084 0.841 0.100
PRIVATE -0.134 0.844 -0.159
CATHOLIC -0.736 0.780 -0.944
MEAN_SES -0.232 0.428 -0.542

Model Results
Estimates S.E. Est./S.E.

Output Excerpts NELS Math 
Achievement Regression (Continued)
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S2         ON Estimates S.E. Est./S.E.
PER_ADVA 1.348 0.521 2.587
PRIVATE -1.890 0.706 -2.677
CATHOLIC -1.467 0.562 -2.612
MEAN_SES 1.031 0.283 3.640

M92        ON
PER_ADVA 0.195 0.727 0.268
PRIVATE 1.505 1.108 1.358
CATHOLIC 0.765 0.650 1.178
MEAN_SES 3.912 0.399 9.814

S1          WITH
M92 -4.456 1.007 -4.427

S2         WITH
M92 0.128 0.399 0.322

Intercepts
M92 55.136 0.185 297.248
S1 -0.819 0.211 -3.876
S2 4.841 0.152 31.900

Residual Variances
M92 8.679 1.003 8.649
S1 5.740 1.411 4.066
S2 0.307 0.527 0.583

Output Excerpts NELS Math 
Achievement Regression (Continued)
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Cross-Level Influence
Between-level (level 2) variable w influencing within-level (level 1) 
y variable: 

Random intercept

yij = β0j + β1 xij + rij

β0j = γ00 + γ01 wj + u0j

Mplus:
MODEL:

%WITHIN%;
y ON x;   ! estimates beta1 
%BETWEEN%;
y ON w;   ! y is the same as beta0j

! estimates gamma01
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Cross-Level Influence (Continued)
Cross-level interaction, or between-level (level 2) variable
moderating a within level (level 1) relationship: 

Random slope

yij = β0j + β1j xij + rij

β1j = γ10 + γ11 wj + u1j

Mplus:
MODEL:

%WITHIN%;
beta1 | y ON x;
%BETWEEN%;
beta1 ON w;      ! estimates gamma11
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Random Slopes: Varying Variances

yij = β0j + β1j xij + rij

β1j = γ10 + γ11 wj + u1j

V(yij | xij, wj) = V(u1j) xij
2 + V(rij)

The variance varies as a function of the xij values.

So there is no single population covariance matrix for testing the 
model fit



Random Slopes In Mplus

Mplus allows random slopes for predictors that are

• Observed covariates
• Observed dependent variables
• Continuous latent variables

41
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A random intercept model is the same as decomposing yij into 
two uncorrelated components

where

Two-Level Variable Decomposition

ijijjij rxy ++= 10 ββ

ijijwij rxy += 1β

jjjbj uxy 001000 . ++== γγβ

jjj ux 001000 . ++= γγβ

bjwijij yyy +=
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The same decomposition can be made for xij, 

where xwij and xbj are latent covariates,

Mplus can work with either manifest or latent covariates.

See also User's Guide example 9.1.b

Two-Level Variable Decomposition (Continued)

bjwijij xxx +=

ijwijwwij rxy += β

jbjbbj uxy 000 ++= βγ
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Bias With Manifest Covariates

Comparing the manifest and latent covariate approach shows a 
bias in the manifest between-level slope

Bias increases with decreasing cluster size s and decreasing iccx.  
Example:   (βw – βb) = 0.5, s = 10, iccx = 0.1 

gives bias = 0.25

No bias for latent covariate approach
Asparouhov-Muthen (2006), Ludtke et al. (2008)

( ) ( ) ( )
( ) siccicc

icc
s

E
xx

x
bwb /1

11ˆ01 −+
−

−=− βββγ
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Further Readings On 
Multilevel Regression Analysis

Enders, C.K. & Tofighi, D. (2007). Centering predictor variables in 
cross-sectional multilevel models: A new look at an old Issue. 
Psychological Methods, 12, 121-138.

Lüdtke, O., Marsh, H.W., Robitzsch, A., Trautwein, U., Asparouhov,
T., & Muthén, B. (2008). The multilevel latent covariate model: A 
new, more reliable approach to group-level effects in contextual 
studies. Psychological Methods, 13, 203-229. 

Raudenbush, S.W. & Bryk, A.S. (2002).  Hierarchical linear models: 
Applications and data analysis methods.  Second edition.  Newbury 
Park, CA: Sage Publications.

Snijders, T. & Bosker, R. (1999).  Multilevel analysis. An introduction 
to basic and advanced multilevel modeling.  Thousand Oakes, CA: 
Sage Publications.
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Logistic And Probit Regression
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Probability varies as a function of x variables (here x1, x2)

P(u = 1 | x1, x2) = F[β0 + β1 x1 + β2 x2 ],        (22)

P(u = 0 | x1 , x2) = 1 - P[u = 1 | x1 , x2], where F[z] is either the 
standard normal (Φ[z]) or logistic (1/[1 + e-z]) distribution
function.

Example: Lung cancer and smoking among coal miners
u lung cancer (u = 1) or not (u = 0)
x1 smoker (x1 = 1), non-smoker (x1 = 0)
x2 years spent in coal mine

Categorical Outcomes: Logit And Probit Regression 
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P(u = 1 | x1, x2) = F [β0 + β1 x1 + β2 x2 ],    (22)

x2

Probit / Logit
x1 = 1

x1 = 0

Categorical Outcomes: Logit And Probit Regression 

P( u = 1   x1 , x2)

0

1

x2

0.5

 x1 = 0

 x1 = 1
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Interpreting Logit And Probit Coefficients

• Sign and significance

• Odds and odds ratios

• Probabilities
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Logistic Regression And Log Odds

Odds (u = 1 | x) = P(u = 1 | x) / P(u = 0 | x)
= P(u = 1 | x) / (1 – P(u = 1 | x)).

The logistic function

gives a log odds linear in x,

⎥⎦
⎤

⎢⎣
⎡

+
−

+
= +−+− )

1
11(/

1
1log )10()10( x    x    e

      
e

  ββββ

[ ] x   e   x   
10

)10(log ββββ +== +

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +

+
= +−

+−

+− )10(

)10(

)10(
1*

1
1log x    

x    

x      e
e      

e
  ββ

ββ

ββ

logit = log [odds (u = 1 | x)] = log [P(u = 1 | x) / (1 – P(u = 1 | x))]

)1(1
1)|1( x   0 - e

    x        u P ββ ++
==
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Logistic Regression And Log Odds (Continued)

• logit = log odds = β0 + β1 x

• When x changes one unit, the logit (log odds) changes β1 units

• When x changes one unit, the odds changes        units1βe

Two-Level Logistic Regression

52
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Two-Level Logistic Regression Model

With i denoting individual and j denoting cluster, 

P(uij = 1 | xij) =  

logitij=

where 

β0j = β0 + u0j
β1j = β1 + u1j

High/low β0j value means high/low logit (high/low log odds)

( )
( ) ijj1j0

ij

ij x 
x|0uP
x|1uP

log ββ +=⎥
⎦

⎤
⎢
⎣

⎡

=
=

( )ijjj xe 101
1

ββ +−+
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Predicting Juvenile Delinquency 
From First Grade Aggressive Behavior

• Cohort 1 data from the Johns Hopkins University Preventive 
Intervention Research Center

• n= 1,084 students in 40 classrooms, Fall first grade
• Covariates: gender and teacher-rated aggressive behavior
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Input For Two-Level Logistic Regression 
TITLE:

Hopkins Cohort 1 2-level logistic regression
DATA:

FILE = Cohort1_classroom_ALL.DAT;
VARIABLE:

NAMES = prcid juv99 gender stub1F bkRule1F harmO1F 
bkThin1F yell1F takeP1F fight1F lies1F 
tease1F; 

! juv99: juvenile delinquency record by age 18
CLUSTER = classrm;
USEVAR = juv99 male aggress;
CATEGORICAL =  juv99;
MISSING = ALL (999);
WITHIN = male aggress;

DEFINE:
male = 2 - gender;
aggress = stub1F + bkRule1F + harmO1F + bkThin1F + 

yell1F + takeP1F + fight1F + lies1F + tease1F;

56

ANALYSIS:
TYPE = TWOLEVEL;
PROCESS = 2;

MODEL:
%WITHIN%
juv99 ON male aggress;
%BETWEEN%

OUTPUT:
TECH1 TECH8;

Input For Two-Level Logistic Regression 
(Continued)
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Output Excerpts Two-Level Logistic Regression
MODEL RESULTS

Estimates S.E Est./S.E.

Within Level

JUV99 ON

MALE 1.071 0.149 7.193

AGGRESS 0.060 0.010 6.191

Between Level

Thresholds

JUV99$1 2.981 0.205 14.562

Variances

JUV99 0.807 0.250 3.228
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Understanding The Between-Level Intercept 
Variance

• Intra-class correlation
– ICC = 0.807/(π2/3+ 0.807) = 0.20

• Odds ratios 
– Larsen & Merlo (2005). Appropriate assessment of neighborhood

effects on individual health: Integrating random and fixed effects in
multilevel logistic regression. American Journal of 
Epidemiology, 161, 81-88. 

– Larsen proposes MOR:
"Consider two persons with the same covariates, chosen randomly from
two different clusters. The MOR is the median odds ratio between the
person of higher propensity and the person of lower propensity."

MOR = exp( √(2* σ2) * Φ-1 (0.75) )

In the current example, ICC = 0.20, MOR = 2.36
• Probabilities

– Compare αj=1 SD and αk=-1 SD from the mean 
– For males at the aggression mean the probability varies from 0.14 to 

0.50
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Two-Level Path Analysis

60

LSAY Data

• Longitudinal Study of American Youth
• Math and science testing in grades 7 – 12
• Interest in high school dropout
• Data for 2,213 students in 44 public schools



A Path Model With A Binary Outcome 
And A Mediator With Missing Data

female
mothed
homeres
expect
lunch
expel
arrest

droptht7
hisp
black
math7

hsdrop

female
mothed
homeres
expect
lunch
expel
arrest

droptht7
hisp
black
math7

hsdrop

math10

Logistic Regression Path Model

61

62

math10

hsdrop

BetweenWithin

Two-Level Path Analysis

female
mothed
homeres
expect
lunch
expel
arrest

droptht7
hisp
black
math7

math10

hsdrop
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TITLE: a twolevel path analysis with a categorical outcome 
and missing data on the mediating variable

DATA: FILE = lsayfull_dropout.dat;
VARIABLE: NAMES = female mothed homeres math7 math10 expel 

arrest hisp black hsdrop expect lunch droptht7 
schcode;
CATEGORICAL = hsdrop;
CLUSTER = schcode;
WITHIN = female mothed homeres expect math7 lunch 
expel arrest droptht7 hisp black;

ANALYSIS: TYPE = TWOLEVEL;
ESTIMATOR = ML;
ALGORITHM = INTEGRATION;
INTEGRATION = MONTECARLO (500);

Input For A Two-Level Path Analysis Model With
A Categorical Outcome And Missing Data On

The Mediating Variable
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MODEL:
%WITHIN%
hsdrop ON female mothed homeres expect math7 math10 
lunch expel arrest droptht7 hisp black;
math10 ON female mothed homeres expect math7 lunch 
expel arrest droptht7 hisp black;

%BETWEEN%
hsdrop*1; math10*1;

OUTPUT: PATTERNS SAMPSTAT STANDARDIZED TECH1 TECH8;

Input For A Two-Level Path Analysis Model With
A Categorical Outcome And Missing Data On

The Mediating Variable (Continued)
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Output Excerpts A Two-Level Path Analysis Model 
With A Categorical Outcome And Missing Data

On The Mediating Variable

Summary Of Data

Number of patterns 2
Number of clusters 44

Size (s) Cluster ID with Size s
12 304
13 305
36 307 122
38 106 112
39 138 109
40 103
41 308
42 146 120
43 102 101
44 303 143
45 141
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Output Excerpts A Two-Level Path Analysis Model 
With A Categorical Outcome And Missing Data

On The Mediating Variable (Continued)
Size (s) Cluster ID with Size s

46 144
47 140
49 108
50 126 111 110
51 127 124
52 137 117 147 118 301 136
53 142 131
55 145 123
57 135 105
58 121
59 119
73 104
89 302
93 309
118 115
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Model Results

HSDROP   ON
FEMALE 0.323 0.171 1.887 0.323 0.077
MOTHED -0.253 0.103 -2.457 -0.253 -0.121
HOMERES -0.077 0.055 -1.401 -0.077 -0.061
EXPECT -0.244 0.065 -3.756 -0.244 -0.159
MATH7 -0.011 0.015 -0.754 -0.011 -0.055
MATH10 -0.031 0.011 -2.706 -0.031 -0.197
LUNCH 0.008 0.006 1.324 0.008 0.074
EXPEL 0.947 0.225 4.201 0.947 0.121
ARREST 0.068 0.321 0.212 0.068 0.007
DROPTHT7 0.757 0.284 2.665 0.757 0.074
HISP -0.118 0.274 -0.431 -0.118 -0.016
BLACK -0.086 0.253 -0.340 -0.086 -0.013

Estimates S.E. Est./S.E. Std StdYX

Output Excerpts A Two-Level Path Analysis Model 
With A Categorical Outcome And Missing Data

On The Mediating Variable (Continued)

Within Level
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MATH10   ON
FEMALE -0.841 0.398 -2.110 -0.841 -0.031
MOTHED 0.263 0.215 1.222 0.263 0.020
HOMERES 0.568 0.136 4.169 0.568 0.070
EXPECT 0.985 0.162 6.091 0.985 0.100
MATH7 0.940 0.023 40.123 0.940 0.697
LUNCH -0.039 0.017 -2.308 -0.039 -0.059
EXPEL -1.293 0.825 -1.567 -1.293 -0.026
ARREST -3.426 1.022 -3.353 -3.426 -0.054
DROPTHT7 -1.424 1.049 -1.358 -1.424 -0.022
HISP -0.501 0.728 -0.689 -0.501 -0.010
BLACK -0.369 0.733 -0.503 -0.369 -0.009

Output Excerpts A Two-Level Path Analysis Model 
With A Categorical Outcome And Missing Data

On The Mediating Variable (Continued)

Estimates S.E. Est./S.E. Std StdYX
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Residual Variances
MATH10 62.010 2.162 28.683 62.010 0.341

Between Level
Means

MATH10 10.226 1.340 7.632 10.226 5.276
Thresholds

HSDROP$1 -1.076 0.560 -1.920
Variances

HSDROP 0.286 0.133 2.150 0.286 1.000
MATH10 3.757 1.248 3.011 3.757 1.000

Output Excerpts A Two-Level Path Analysis Model 
With A Categorical Outcome And Missing Data

On The Mediating Variable (Continued)

Estimates S.E. Est./S.E. Std StdYX

Two-Level Path Analysis Model Variation
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Model Diagram For Path Analysis With 
Between-Level Dependent Variable
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Two-Level Mediation With Random Slopes

72
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Two-Level Mediation

Indirect effect:
α * β + Cov (aj, bj)

Bauer, Preacher & Gil (2006). Conceptualizing and testing random
indirect effects and moderated mediation in multilevel models: New
procedures and recommendations. Psychological Methods, 11, 142-163.

m

yx

bj

c’j

aj
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MONTECARLO: 
NAMES ARE y m x;
WITHIN = x;
NOBSERVATIONS = 1000;
NCSIZES = 1;
CSIZES = 100 (10);
NREP = 100;

MODEL POPULATION:
%WITHIN%
c | y ON x;
b | y ON m;
a | m ON x;
x*1; m*1; y*1;
%BETWEEN%
y WITH m*0.1 b*0.1 a*0.1 c*0.1;
m WITH b*0.1 a*0.1 c*0.1;
a WITH b*0.1 c*0.1;
b WITH c*0.1;
y*1 m*1 a*1 b*1 c*1;
[a*0.4 b*0.5 c*0.6];

Input For Two-Level Mediation
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ANALYSIS:

TYPE = TWOLEVEL RANDOM;
MODEL:

%WITHIN%
c | y ON x;
b | y ON m;
a | m ON x;
m*1; y*1;
%BETWEEN%
y WITH M*0.1 b*0.1 a*0.1 c*0.1;
m WITH b*0.1 a*0.1 c*0.1;
a WITH b*0.1 (cab);
a WITH c*0.1;
b WITH c*0.1;
y*1 m*1 a*1 b*1 c*1;
[a*0.4] (ma);
[b*0.5] (mb);
[c*0.6];

MODEL CONSTRAINT:
NEW(m*0.3);
m=ma*mb+cab;

Input For Two-Level Mediation (Continued)
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Estimates S.E. M. S. E. 95% % Sig

Population Average Std.Dev. Average Cover Coeff

Within Level

Residual 
variances

Y 1.000 1.0020 0.0530 0.0530 0.0028 0.960 1.000

M 1.000 1.0011 0.0538 0.0496 0.0029 0.910 1.000

Between Level

Y WITH

B 0.100 0.1212 0.1246 0.114 0.0158 0.910 0.210

A 0.100 0.1086 0.1318 0.1162 0.0173 0.910 0.190

C 0.100 0.0868 0.1121 0.1237 0.0126 0.940 0.090 

M WITH

B 0.100 0.1033 0.1029 0.1085 0.0105 0.940 0.120 

A 0.100 0.0815 0.1081 0.1116 0.0119 0.950 0.070 

C 0.100 0.1138 0.1147 0.1165 0.0132 0.970 0.160 

A WITH

B 0.100 0.0964 0.1174 0.1101 0.0137 0.920 0.150 

C 0.100 0.0756 0.1376 0.1312 0.0193 0.910 0.110 

Output Excerpts Two Level Mediation
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B WITH

C 0.100 0.0892 0.1056 0.1156 0.0112 0.960 0.070

Y WITH

M 0.100 0.1034 0.1342 0.1285 0.0178 0.940 0.140

Means

Y 0.000 0.0070 0.1151 0.1113 0.0132 0.950 0.050

M 0.000 -0.0031 0.1102 0.1056 0.0120 0.950 0.050

C 0.600 0.5979 0.1229 0.1125 0.0150 0.930 1.000

B 0.500 0.5022 0.1279 0.1061 0.0162 0.890 1.000

A 0.400 0.3854 0.0972 0.1072 0.0096 0.970 0.970

Variances

Y 1.000 1.0071 0.1681 0.1689 0.0280 0.910 1.000

M 1.000 1.0113 0.1782 0.1571 0.0316 0.930 1.000

C 1.000 0.9802 0.1413 0.1718 0.0201 0.980 1.000

B 1.000 0.9768 0.1443 0.1545 0.0212 0.950 1.000

A 1.000 1.0188 0.1541 0.1587 0.0239 0.950 1.000

New/Additional Parameters

M 0.300 0.2904 0.1422 0.1316 0.0201 0.950 0.550

Output Excerpts Two-Level Mediation (Continued)
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Two-Level Factor Analysis
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Two-Level Factor Analysis

• Recall random effects ANOVA (individual i in cluster j ):

yij = ν + ηj + εij = yB + yW

• Two-level factor analysis (r = 1, 2, …, p items):

yrij = νr + λB ηB +  εB + λW   ηWij + εWrij

j ij

r j rj r

(between-cluster
variation)

(within-cluster
variation)
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Two-Level Factor Analysis (Continued)

• Covariance structure:

V(y) = V(yB) + V(yw) = ΣB + Σw,

ΣB = ΛB ΨB ΛB' + ΘB,

ΣW = ΛW ΨW ΛW' + ΘW .

• Two interpretations:
– variance decomposition, including decomposing the 

residual
– random intercept model
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Muthén & Satorra (1995; Sociological Methodology): Monte
Carlo study using two-level data (200 clusters of varying size
and varying intraclass correlations), a latent variable model
with 10 variables, 2 factors, conventional ML using the
regular sample covariance matrix ST , and 1,000 replications (d.f. = 34).

ΛB = ΛW = ΨB, ΘB reflecting different icc’s

yij = ν + Λ(ηB + ηW   ) + εB + εW

V(y) = ΣB + ΣW =  Λ(ΨB + ΨW) Λ' + ΘB + ΘW

Two-Level Factor Analysis And Design Effects

1
1
1
1
1
0
0
0
0
0

0
0
0
0
0
1
1
1
1
1

j ij j ij
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Inflation of χ2 due to clustering

Intraclass
Correlation

0.05
Chi-square mean 35 36 38 41
Chi-square var 68 72 80 96
5% 5.6 7.6 10.6 20.4
1% 1.4 1.6 2.8 7.7

Cluster Size
7            15            30           60

0.10
Chi-square mean 36 40 46 58
Chi-square var 75 89 117 189
5% 8.5 16.0 37.6 73.6
1% 1.0 5.2 17.6 52.1

0.20
Chi-square mean 42 52 73 114
Chi-square var 100 152 302 734
5% 23.5 57.7 93.1 99.9
1% 8.6 35.0 83.1 99.4

Two-Level Factor Analysis And Design Effects (Continued)
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Two-Level Factor Analysis And Design Effects (Continued)

• Regular analysis, ignoring clustering

• Inflated chi-square, underestimated SE’s

• TYPE = COMPLEX

• Correct chi-square and SE’s but only if model aggregates, 
e.g. ΛB = ΛW

• TYPE = TWOLEVEL

• Correct chi-square and SE’s

84

SIMS Variance Decomposition

The Second International Mathematics Study (SIMS; Muthén, 
1991, JEM).  

• National probability sample of school districts selected 
proportional to size; a probability sample of schools 
selected proportional to size within school district, and two 
classes randomly drawn within each school

• 3,724 students observed in 197 classes from 113 schools 
with class sizes varying from 2 to 38; typical class size of 
around 20

• Eight variables corresponding to various areas of eighth-
grade mathematics

• Same set of items administered as a pretest in the Fall of 
eighth grade and as a posttest in the Spring.
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SIMS Variance Decomposition (Continued)

Muthén (1991). Multilevel factor analysis of class and student
achievement components. Journal of Educational Measurement, 28,
338-354.
• Research questions: “The substantive questions of interest in 

this article are the variance decomposition of the subscores with 
respect to within-class student variation and between-class 
variation and the change of this decomposition from pretest to 
posttest. In the SIMS … such variance decomposition relates to 
the effects of tracking and differential curricula in eighth-grade 
math. On the one hand, one may hypothesize that effects of 
selection and instruction tend to increase between-class 
variation relative to within-class variation, assuming that the 
classes are homogeneous, have different performance levels to 
begin with, and show faster growth for higher initial 
performance level. On the other hand, one may hypothesize that 
eighth-grade exposure to new topics will increase individual 
differences among students within each class so that posttest 
within-class variation will be sizable relative to posttest 
between-class variation.”
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yrij = νr + λBr ηBj + εBrj + λwr ηwij + εwrij

V(yrij) =      BF   + BE    + WF   + WE

Between reliability: BF / (BF + BE)
– BE often small (can be fixed at 0)

Within reliability: WF / (WF + WE)
– sum of a small number of items gives a large WE

Intraclass correlation:
ICC = (BF + BE) / (BF + BE + WF + WE)

Large measurement error large WE small ICC

True ICC = BF / (BF + WF)

SIMS Variance Decomposition (Continued)
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Between Within
rpp_pre

fb_pre

fract_pre

eqexp_pre

intnum_pre

testi_pre

aeravol_pre

coorvis_pre

pfigure_pre

fw_pre

rpp_post

fb_post

fract_post

eqexp_post

intnum_post

testi_post

aeravol_post

coorvis_post

pfigure_post

fw_post

88

Table 4: Variance Decomposition of SIMS Achievement Scores
(percentages of total variance in parenthesis)

RPP

FRACT

EQEXP

INTNUM

TESTI

AREAVOL

COORVIS

PFIGURE

8

8

6

2

5

2

3

5

Number
of Items Between Within

Prop-
Between Between Within

Prop-
Between

1.542
(34.0)

2.990
(66.0) .34 2.084

(38.5)
3.326
(61.5) .38

Pretest Posttest % Increase
In Variance

ANOVA FACTOR ANALYSIS

Error-free
Prop. Between

Error-free
% Increase
In Variance

Between Within Between WithinPre Post

35 11 .54 .52 29 41

31 17 .60 .58 29 41

92 18 .65 .64 113 117

54 24 .63 .61 29 41

29 41

29 41

29 41

87 136

15 8

66 9

59 4

96 19

.58 .56

.54 .52

.57 .55

.60 .54

1.460
(38.2)

.543
(26.9)

.127
(25.2)

.580
(33.3)

.094
(17.2)

.173
(20.9)

.363
(22.9)

2.366
(61.8)

1.473
(73.1)

.358
(70.9)

1.163
(66.7)

.451
(82.8)

.656
(79.1)

1.224
(77.1)

.38

.27

.29

.33

.17

.21

.23

1.906
(40.8)

1.041
(38.7)

.195
(30.6)

.664
(34.5)

.156
(24.1)

.275
(28.7)

.711
(42.9)

2.767
(59.2)

1.646
(61.3)

.442
(69.4)

1.258
(65.5)

.490
(75.9)

.680
(68.3)

1.451
(67.1)

.41

.39

.31

.34

.24

.32

.33



89

Item Distributions for Cohort 3: Fall 1st Grade (n=362 males in 27 classrooms)

Exploratory Factor Analysis Of Aggression Items

Almost 
Never Rarely Sometimes Often Very Often

Almost 
Always

(scored as 1) (scored as 2) (scored as 3) (scored as 4) (scored as 5) (scored as 6)

Stubborn                       42.5 21.3 18.5 7.2 6.4 4.1

Breaks Rules 37.6 16.0 22.7 7.5 8.3 8.0

Harms Others 69.3 12.4 9.40 3.9 2.5 2.5

Breaks Things 79.8 6.60 5.20 3.9 3.6 0.8

Yells at Others 61.9 14.1 11.9 5.8 4.1 2.2
Takes Others’
Property 72.9 9.70 10.8 2.5 2.2 1.9

Fights 60.5 13.8 13.5 5.5 3.0 3.6

Harms Property 74.9 9.90 9.10 2.8 2.8 0.6

Lies 72.4 12.4 8.00 2.8 3.3 1.1
Talks Back to 
Adults 79.6 9.70 7.80 1.4 0.8 1.4

Teases Classmates 55.0 14.4 17.7 7.2 4.4 1.4
Fights With 
Classmates 67.4 12.4 10.2 5.0 3.3 1.7

Loses Temper 61.6 15.5 13.8 4.7 3.0 1.4

90

Hypothesized Aggressiveness Factors
• Verbal aggression

– Yells at others
– Talks back to adults
– Loses temper
– Stubborn 

• Property aggression 
– Breaks things
– Harms property
– Takes others’ property 
– Harms others

• Person aggression
– Fights
– Fights with classmates
– Teases classmates
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Within

Between

Two-Level Factor Analysis

y1 y2 y3 y4 y5 y6

fw1 fw2

y7 y8 y9 y10 y11 y12 y13

fw3

y1 y2 y3 y4 y5 y6

fb1

y7 y8 y9 y10 y11 y12

fb2

y13

fb3
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Reasons For Finding Dimensions 

Different dimensions may have different 

• Predictors
• Effects on later events
• Growth curves
• Treatment effects



Categorical Outcomes, Latent Dimensions, 
And Computational Demand

• ML requires numerical integration (see end of Topic 8)
– increasingly time consuming for increasing number of 

continuous latent variables and increasing sample size
• Bayes analysis
• Limited information weighted least squares estimation
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Two-Level Weighted Least Squares

• New simple alternative (Asparouhov & Muthén, 2007):
– computational demand virtually independent of number of 

factors/random effects
– high-dimensional integration replaced by multiple instances of one-

and two-dimensional integration
– possible to explore many different models in a time-efficient 

manner 
– generalization of the Muthen (1984) single-level WLS
– variables can be categorical, continuous, censored, combinations
– residuals can be correlated (no conditional independence 

assumption)
– model fit chi-square testing
– can produce unrestricted level 1 and level 2 correlation matrices for 

EFA
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Input For Two-Level EFA of Aggression 
Using WLSM And Geomin Rotation 

TITLE: two-level EFA of 13 TOCA aggression items

DATA: FILE IS Muthen.dat;

VARIABLE: NAMES ARE id race lunch312 gender u1-u13 sgsf93;
MISSING are all (999);
USEOBS = gender eq 1;  !males
USEVARIABLES = u1-u13;
CATEGORICAL = u1-u13;
CLUSTER = sgsf93;

ANALYSIS: TYPE = TWOLEVEL EFA 1 3 UW 1 3 UB;
PROCESS = 4;

SAVEDATA: SWMATRIX = sw.dat;
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Output Excerpts Two-Level EFA of Aggression 
Using WLSM And Geomin Rotation 

Number of clusters 27

Average cluster size 13.407

Estimated Intraclass Correlations for the Y Variables

Intraclass Intraclass Intraclass

Variable Correlation Variable Correlation Variable Correlation

U1 0.110 U2 0.121 U3 0.208

U4 0.378 U5 0.213 U6 0.250

U7 0.161 U8 0.315 U9 0.208

U10 0.140 U11 0.178 U12 0.162

U13 0.172



Two-Level EFA Model Test Result For 
Aggressive-Disruptive Items

Within-level Between-level

Factors Factors Df Chi-Square CFI RMSEA

unrestricted 1 65 66(p=0.43) 1.000 0.007

1 1 130 670 0.991 0.107

2 1 118 430 0.995 0.084

3 1 107 258 0.997 0.062

4* 1 97 193 0.998 0.052

*4th factor has no significant loadings
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Property Verbal Person General

Stubborn 0.00 0.78* 0.01 0.65*

Breaks Rules 0.31* 0.25* 0.32* 0.61*

Harms Others and Property 0.64* 0.12 0.25* 0.68*

Breaks Things 0.98* 0.08 -0.12* 0.98*

Yells At Others 0.11 0.67* 0.10 0.93*

Takes Others’ Property 0.73* -0.15* 0.31* 0.80*

Fights 0.10 0.03 0.86* 0.79*

Harms Property 0.81* 0.12 0.05 0.86*

Lies 0.60* 0.25* 0.10 0.86*

Talks Back To Adults 0.09 0.78* 0.05 0.81*

Teases Classmates 0.12 0.16* 0.59* 0.83*

Fights With Classmates -0.02 0.13 0.88* 0.84*

Loses Temper -0.02 0.85* 0.05 0.87*
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Within-Level Loadings Between-Level Loadings

Two-Level EFA Of Aggressive-Disruptive Items:
Geomin Rotated Factor Loading Matrix



IRT

Single-level IRT:
P(uik = 1 | θi, ak, bk) = Φ(akθi –bk), (1)

for individual i and item k.

• a is discrimination (slope)
• b is difficulty
• θ is the ability (continuous latent variable)
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Two-Level IRT (Fox, 2005)

Two-level IRT (Fox, 2005, p.21; Fox & Glas, 2001):
P(uijk = 1 | θij, ak, bk) = Φ(akθij –bk), (1)
for individual i, cluster j, and item k.

θij = β0j + β1j SESij + β2j Genderij + β3j IQij + eij,
β0j = γ00 + γ1j Leaderj + γ02 Climatej + u0j,
β1j = γ10 , (21)
β2j = γ20 ,
β3j = γ30

100
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Two-Level Factor Analysis With Covariates

102

y1

y2

y3

y4

y5

y6

fbw

Within Between

y1

y2

y3

y4

y5

y6

fw1

fw2

x1

x2

Two-Level Factor Analysis With Covariates
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Input For Two-Level Factor Analysis 
With Covariates

TITLE: this is an example of a two-level CFA with 
continuous factor indicators with two factors on the 
within level and one factor on the between level

DATA: FILE IS ex9.8.dat;

VARIABLE: NAMES ARE y1-y6 x1 x2 w clus;
WITHIN = x1 x2;

BETWEEN = w;

CLUSTER IS clus;

ANALYSIS: TYPE IS TWOLEVEL;

MODEL: %WITHIN%

fw1 BY y1-y3;

fw2 BY y4-y6;
fw1 ON x1 x2;

fw2 ON x1 x2;

%BETWEEN%

fb BY y1-y6;
fb ON w;
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TITLE: This is an example of a two-level CFA with 
continuous factor indicators with two 
factors on the within level and one factor 
on the between level

MONTECARLO:
NAMES ARE y1-y6 x1 x2 w;
NOBSERVATIONS = 1000;
NCSIZES = 3;
CSIZES = 40 (5) 50 (10) 20 (15);
SEED = 58459;
NREPS = 1;
SAVE = ex9.8.dat;
WITHIN = x1 x2;
BETWEEN = w;

ANALYSIS: TYPE = TWOLEVEL;

Input For Monte Carlo Simulations For 
Two-Level Factor Analysis With Covariates
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MODEL POPULATION:

%WITHIN%
x1-x2@1;
fw1 BY y1@1 y2-y3*1;
fw2 BY y4@1 y5-y6*1;
fw1-fw2*1;
y1-y6*1;
fw1 ON x1*.5 x2*.7;
fw2 ON x1*.7 x2*.5;

%BETWEEN%
[w@0]; w*1;
fb BY y1@1 y2-y6*1;
y1-y6*.3;
fb*.5;
fb ON w*1;

Input For Monte Carlo Simulations For 
Two-Level Factor Analysis With Covariates 

(Continued)
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MODEL:

%WITHIN%

fw1 BY y1@1 y2-y3*1;
fw2 BY y4@1 y5-y6*1;
fw1-fw2*1;
y1-y6*1;
fw1 ON x1*.5 x2*.7;
fw2 ON x1*.7 x2*.5;

%BETWEEN%

fb BY y1@1 y2-y6*1;
y1-y6*.3;
fb*.5;
fb ON w*1;

OUTPUT:

TECH8 TECH9;

Input For Monte Carlo Simulations For 
Two-Level Factor Analysis With Covariates 

(Continued)
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• The data—National Education Longitudinal Study 
(NELS:88)

• Base year Grade 8—followed up in Grades 10 and 12

• Students sampled within 1,035 schools—approximately 
26 students per school, n = 14,217 

• Variables—reading, math, science, history-citizenship-
geography, and background variables

• Data for the analysis—reading, math, science, history-
citizenship-geography

NELS Data
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NELS Two-Level Longitudinal Factor Analysis 
With Covariates

Within Between

fw1

r88 m88 s88 h88 r90 m90 s90 h90 r92 m92 s92 h92

fw2 fw3

female stud_ses

fb1

r88 m88 s88 h88 r90 m90 s90 h90 r92 m92 s92 h92

per_adva private

fb2 fb3

catholic mean_ses
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TITLE: two-level factor analysis with covariates using the NELS 
data

DATA: FILE = NELS.dat;
FORMAT = 2f7.0 f11.4 12f5.2 11f8.2;

VARIABLE: NAMES = id school f2pnlwt r88 m88 s88 h88 r90 m90 s90 h90 
r92 m92 s92 h92 stud_ses female per_mino urban size rural 
private mean_ses catholic stu_teac per_adva; 

!Variable Description
!m88 = math IRT score in 1988
!m90 = math IRT score in 1990
!m92 = math IRT score in 1992
!r88 = reading IRT score in 1988

!r90 = reading IRT score in 1990
!r92 = reading IRT score in 1992

Input For NELS Two-Level Longitudinal Factor 
Analysis With Covariates
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!s88 = science IRT score in 1988

!s90 = science IRT score in 1990
!s92 = science IRT score in 1992
!h88 = history IRT score in 1988
!h90 = history IRT score in 1990
!h92 = history IRT score in 1992

!female = scored 1 vs 0
!stud_ses = student family ses in 1990 (f1ses)
!per_adva = percent teachers with an MA or higher
!private = private school (scored 1 vs 0)

!catholic = catholic school (scored 1 vs 0)
!private = 0, catholic = 0 implies public school

MISSING = BLANK;
CLUSTER = school;

Input For NELS Two-Level Longitudinal Factor 
Analysis With Covariates (Continued)

USEV = r88 m88 s88 h88 r90 m90 s90 h90 r92 m92 s92 h92
female stud_ses per_adva private catholic mean_ses;
WITHIN = female stud_ses;
BETWEEN = per_adva private catholic mean_ses;
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ANALYSIS: TYPE = TWOLEVEL;

MODEL: %WITHIN%
fw1 BY r88-h88;
fw2 BY r90-h90;
fw3 BY r92-h92;
r88 WITH r90; r90 WITH r92; r88 WITH r92;
m88 WITH m90; m90 WITH m92; m88 WITH m92;
s88 WITH s90; s90 WITH s92;
h88 WITH h90; h90 WITH h92;
fw1-fw3 ON female stud_ses;

Input For NELS Two-Level Longitudinal Factor 
Analysis With Covariates (Continued)

%BETWEEN%
fb1 BY r88-h88;
fb2 BY r90-h90;
fb3 BY r92-h92;
fb1-fb3 ON per_adva private catholic mean_ses;

OUTPUT: SAMPSTAT STANDARDIZED TECH1 TECH8 MODINDICES;
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Output Excerpts NELS Two-Level Longitudinal 
Factor Analysis With Covariates

R88 0.067 M88 0.129 S88 0.100
H88 0.105 R90 0.076 M90 0.117
S90 0.110 H90 0.106 R92 0.073
M92 0.111 S92 0.099 H92 0.091

Summary Of Data

Number of patterns 15
Number of clusters 913

Average cluster size 15.572

Estimated Intraclass Correlations for the Y Variables

Variable
Intraclass
Correlation Variable

Intraclass
Correlation Variable

Intraclass
Correlation
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Output Excerpts NELS Two-Level Longitudinal 
Factor Analysis With Covariates (Continued)

Tests Of Model Fit
Chi-Square Test of Model Fit

Value
Degrees of Freedom
P-Value
Scaling Correction Factor

for MLR

4883.539
146

0.0000
1.046

Chi-Square Test of Model Fit for the Baseline Model
Value
Degrees of Freedom
P-Value

150256.855
202

0.0000

CFI/TLI
CFI
TLI

0.968
0.956

Loglikelihood
H0 Value
H1 Value

-487323.777
-484770.257

*

114

Information Criteria

Number of Free Parameters
Akaike (AIC)
Bayesian (BIC)
Sample-Size Adjusted BIC

(n* = (n + 2) / 24)

94
974835.554
975546.400
975247.676

RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.048

SRMR (Standardized Root Mean Square Residual
Value for Between
Value for Within

0.041
0.027

Output Excerpts NELS Two-Level Longitudinal 
Factor Analysis With Covariates (Continued)
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Model Results

Within Level
FW1       BY

R88 1.000 0.000 0.000 6.528 0.812
M88 0.940 0.010 94.856 6.135 0.804
S88 1.005 0.010 95.778 6.559 0.837
H88 1.041 0.011 97.888 6.796 0.837

FW2       BY
R90 1.000 0.000 0.000 8.038 0.842
M90 0.911 0.008 109.676 7.321 0.838
S90 1.003 0.010 99.042 8.065 0.859
H90 0.939 0.008 113.603 7.544 0.855

Estimates S.E. Est./S.E. Std StdYX

Output Excerpts NELS Two-Level Longitudinal 
Factor Analysis With Covariates (Continued)
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FW3       BY
R92 1.000 0.000 0.000 8.460 0.832
M92 0.939 0.009 101.473 7.946 0.845
S92 1.003 0.011 90.276 8.482 0.861
H92 0.934 0.009 102.825 7.905 0.858

FW1       ON
FEMALE -0.403 0.128 -3.150 -0.062 -0.031
STUD_SES 3.378 0.096 35.264 0.517 0.418

FW2        ON
FEMALE -0.621 0.157 -3.945 -0.077 -0.039
STUD_SES 4.169 0.110 37.746 0.519 0.420

FW3        ON
FEMALE -1.027 0.169 -6.087 -0.121 -0.064
STUD_SES 4.418 0.122 36.124 0.522 0.422

Output Excerpts NELS Two-Level Longitudinal 
Factor Analysis With Covariates (Continued)
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Residual Variances
R88 22.021 0.383 57.464 22.021 0.341
M88 20.618 0.338 61.009 20.618 0.354
S88 18.383 0.323 56.939 18.383 0.299
H88 19.805 0.370 53.587 19.805 0.300
R90 26.546 0.491 54.033 26.546 0.291
M90 22.756 0.375 60.748 22.756 0.298
S90 23.150 0.383 60.516 23.150 0.262
H90 21.002 0.403 52.124 21.002 0.270
R92 31.821 0.617 51.562 31.821 0.308
M92 25.213 0.485 52.018 25.213 0.285
S92 25.155 0.524 47.974 25.155 0.259
H92 22.479 0.489 46.016 22.479 0.265
FW1 35.081 0.699 50.201 0.823 0.823
FW2 53.079 1.005 52.806 0.822 0.822
FW3 58.438 1.242 47.041 0.817 0.817

Output Excerpts NELS Two-Level Longitudinal 
Factor Analysis With Covariates (Continued)
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Between Level
FB1        BY

R88 1.000 0.000 0.000 1.952 0.933
M88 1.553 0.070 22.138 3.031 0.979
S88 1.061 0.058 18.255 2.071 0.887
H88 1.065 0.053 19.988 2.078 0.814

FB2        BY
R90 1.000 0.000 0.000 2.413 0.923
M90 1.407 0.058 24.407 3.395 1.003
S90 1.220 0.062 19.697 2.943 0.946
H90 0.973 0.047 20.496 2.348 0.829

FB3        BY

R92 1.000 0.000 0.000 2.472 0.947
M92 1.435 0.065 22.095 3.546 0.997
S92 1.160 0.065 17.889 2.868 0.938
H92 0.963 0.041 23.244 2.380 0.871

Output Excerpts NELS Two-Level Longitudinal 
Factor Analysis With Covariates (Continued)
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Between Level
FB1        ON

PER_ADVA 0.217 0.292 0.742 0.111 0.024
PRIVATE 0.303 0.344 0.883 0.155 0.042
CATHOLIC -0.696 0.277 -2.512 -0.357 -0.088
MEAN_SES 2.513 0.206 12.185 1.288 0.672

FB2        ON
PER_ADVA 0.280 0.338 0.828 0.116 0.025
PRIVATE 0.453 0.392 1.155 0.188 0.051
CATHOLIC -0.538 0.334 -1.609 -0.223 -0.055
MEAN_SES 3.054 0.239 12.805 1.266 0.660

FB3        ON

PER_ADVA 0.473 0.375 1.261 0.192 0.041
PRIVATE 0.673 0.435 1.547 0.272 0.074
CATHOLIC -0.206 0.372 -0.554 -0.084 -0.021
MEAN_SES 3.142 0.258 12.169 1.271 0.663

Output Excerpts NELS Two-Level Longitudinal 
Factor Analysis With Covariates (Continued)
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Residual Variances
R88 0.564 0.104 5.437 0.564 0.129
M88 0.399 0.093 4.292 0.399 0.042
S88 1.160 0.126 9.170 1.160 0.213
H88 2.203 0.203 10.839 2.203 0.338
R90 1.017 0.160 6.352 1.017 0.149
M90 -0.068 0.055 -1.225 -0.068 -0.006
S90 1.025 0.172 5.945 1.025 0.106
H90 2.518 0.216 11.636 2.518 0.313
R92 0.706 0.182 3.886 0.706 0.104
M92 0.076 0.076 1.000 0.076 0.006
S92 1.120 0.190 5.901 1.120 0.120
H92 1.810 0.211 8.599 1.810 0.242
FB1 1.979 0.245 8.066 0.520 0.520
FB2 3.061 0.345 8.875 0.526 0.526
FB3 3.010 0.409 7.363 0.493 0.493

Output Excerpts NELS Two-Level Longitudinal 
Factor Analysis With Covariates (Continued)
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Multiple-Group, Two-Level 
Factor Analysis With Covariates

122

• The data—National Education Longitudinal Study 
(NELS:88)

• Base year Grade 8—followed up in Grades 10 and 12

• Students sampled within 1,035 schools—approximately 
26 students per school

• Variables—reading, math, science, history-citizenship-
geography, and background variables

• Data for the analysis—reading, math, science, history-
citizenship-geography, gender, individual SES, school 
SES, and minority status, n = 14,217 with 913 schools 
(clusters)

NELS Data
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Between

Within

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16

mathbgb

ses mnrty

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

mathgw sc hcg

ses sex

y16

124

Input For NELS:88 Two-Group, Two-Level
Model For Public And Catholic Schools

TITLE: NELS:88 with listwise deletion
disaggregated model for two groups, public and 
catholic schools

DATA: FILE IS EX831.DAT;;

VARIABLE: NAMES = ses y1-y16 gender cluster minority group;

CLUSTER = cluster;

WITHIN = gender;
BETWEEN = minority;

GROUPING = group(1=public 2=catholic);

DEFINE: minority = minority/5;

ANALYSIS: TYPE = TWOLEVEL;
H1ITER = 2500;

MITER = 1000;
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MODEL: %WITHIN%
generalw BY y1* y2-y6 y8-y16 y7@1;

mathw BY y6* y8* y9* y11 y7@1;
scw BY y10 y11*.5 y12*.3 y13*.2;
hcgw BY y14*.7 y16*2 y15@1;

generalw WITH mathw-hcgw@0;
mathw WITH scw-hcgw@0;
scw WITH hcgw@0;

generalw mathw scw hcgw ON gender ses;

%BETWEEN%
generalb BY y1* y2-y6 y8-y16 y7@1;
mathb BY y6* y8 y9 y11 y7@1;

y1-y16@0;

generalb WITH mathb@0;

generalb mathb ON ses minority;

Input For NELS:88 Two-Group, Two-Level
Model For Public And Catholic Schools (Continued)
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Summary Of Data
Group PUBLIC

Number of clusters 195
Size (s) Cluster ID with Size s

Output Excerpts NELS:88 Two-Group, Two-Level
Model For Public And Catholic Schools

1 68114 68519
2 72872
7 72765

8 45991 72012
9 68071
10 7298 72187
11 72463 7105 72405
12 24083 68971 7737 68390

13 45861 72219 72049
14 68511 72148 72175 72176 25464
15 68023 25071 68748 45928 7915 78324
16 45362 7403 72415 77204 77219 72456
17 45502

25835
68487
7591

45824
68155

7203
68295

24948 7829 72612 7892
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18 72133
7348

25580 24910 68614 25074 72990 68328 25404

19 7671
68340

68662
72956

68671
25642

45385
25658

7438
24856

7332
78283

25615
68030

72799

20 72617
7451

72715
68461

7211
78162

25422
78232

7330
72170

72292
25130

72060 72993

21 45394
77254

7193
77634

68180
68448

24589
45271

7205
7584

25894
25227

25958
78598

68391

22 68254
24813

68397 68648 72768 7192 7117 7119 68753

23 68456
25163
7792

25361
45041
78311

7157
77351
68048

25702
45183
68453

25804
77684

45620
78101

24858
68788

7658
68817

24 77222
7778

24053
72042

7000
25360

77403
25977

24138
45747

68297
7616

78011
78886

25536

25 68906
77537

68720
72075

25354 68427 72833 77268 7269 68520

26 72973 45555 24828 68315 45087 25328 77710 25848

27 45831 25618 68652 72080 45900 25208 45452 7103

Output Excerpts NELS:88 Two-Group, Two-Level
Model For Public And Catholic Schools (Continued)
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28 25666 68809 25076 25224 68551
30 7343 45978 25722 45924
31 77109 7230 68855
32 25178

33 45330 25745 25825
35 25667
36 72129
37 25834
38 45287

39 45197 7090
43 45366

Output Excerpts NELS:88 Two-Group, Two-Level
Model For Public And Catholic Schools (Continued)
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Group PUBLIC

Number of clusters 195
Average cluster size 21.292

Estimated Intraclass Correlations for the Y Variables

Variable
Intraclass
Correlation Variable

Intraclass
Correlation Variable

Intraclass
Correlation

Y1 .111 Y7 .100 Y12 .115
Y2 .105 Y8 .124 Y13 .185

Y3 .213 Y9 .069 Y14 .094
Y4 .160 Y10 .147 Y15 .132
Y5 .081 Y11 .105 Y16 .159
Y6 .159

Output Excerpts NELS:88 Two-Group, Two-Level
Model For Public And Catholic Schools (Continued)
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Group CATHOLIC

Number of clusters 40
Average cluster size 26.016

Estimated Intraclass Correlations for the Y Variables

Variable
Intraclass
Correlation Variable

Intraclass
Correlation Variable

Intraclass
Correlation

Y1 .010 Y7 .029 Y12 .056
Y2 .039 Y8 .061 Y13 .176
Y3 .180 Y9 .056 Y14 .078
Y4 .091 Y10 .079 Y15 .071

Y5 .055 Y11 .056 Y16 .154
Y6 .118

Output Excerpts NELS:88 Two-Group, Two-Level
Model For Public And Catholic Schools (Continued)
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Tests Of Model Fit
Loglikelihood

Value
Degrees of Freedom
P-Value
Scaling Correction Factor

for MLR

1716.922
575

0.0000
0.872

Chi-Square Test of Model
Value
Degrees of Freedom
P-Value

35476.471
608

0.0000

CFI/TLI
CFI
TLI

0.967
0.965

Loglikelihood
H0 Value
H1 Value

-130332.921
-129584.053

*

Output Excerpts NELS:88 Two-Group, Two-Level
Model For Public And Catholic Schools (Continued)
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Estimates    S.E.    Est./S.E.   Std      StdYX

Group Public
Within Level

GENERALW  ON
GENDER -0.193 0.029 -6.559 -0.256 -0.128
SES 0.233 0.016 14.269 0.309 0.279

MATHW      ON
GENDER 0.266 0.025 10.534 0.510 0.255
SES 0.054 0.014 3.879 0.103 0.093

SCW        ON
GENDER 0.452 0.032 14.005 0.961 0.480
SES 0.018 0.015 1.244 0.039 0.035

HCGW       ON
GENDER 0.152 0.023 6.588 0.681 0.341
SES 0.002 0.007 0.239 0.007 0.007

Output Excerpts NELS:88 Two-Group, Two-Level
Model For Public And Catholic Schools (Continued)
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Estimates    S.E.    Est./S.E.   Std      StdYX

Group Catholic
Within Level

GENERALW  ON
GENDER -0.294 0.059 -5.000 -0.403 -0.201
SES 0.169 0.021 7.892 0.232 0.193

MATHW      ON
GENDER 0.332 0.051 6.478 0.627 0.313
SES -0.030 0.017 -1.707 -0.056 -0.047

SCW        ON
GENDER 0.555 0.063 8.860 1.226 0.613
SES -0.022 0.014 -1.592 -0.049 -0.041

HCGW       ON
GENDER 0.160 0.029 5.610 0.785 0.392
SES 0.001 0.007 0.089 0.003 0.002

Output Excerpts NELS:88 Two-Group, Two-Level
Model For Public And Catholic Schools (Continued)
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Estimates    S.E.    Est./S.E.   Std      StdYX

Group Public
Between Level

GENERALB  ON
SES 0.505 0.079 6.390 1.244 0.726
MINORITY -0.217 0.088 -2.452 -0.534 -0.188

MATHB      ON
SES 0.198 0.070 2.825 0.984 0.574
MINORITY -0.031 0.087 -0.354 -0.153 -0.054

GENERALB WITH       
MATHB 0.000 0.000 0.000 0.000 0.000

Intercepts
GENERALB 0.000 0.000 0.000 0.000 0.000
MATHB 0.000 0.000 0.000 0.000 0.000

Output Excerpts NELS:88 Two-Group, Two-Level
Model For Public And Catholic Schools (Continued)
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Estimates    S.E.    Est./S.E.   Std      StdYX

Group Catholic
Between Level

GENERALB  ON
SES 0.262 0.067 3.929 0.975 0.538
MINORITY -0.327 0.069 -4.707 -0.216 -0.573

MATHB      ON
SES 0.205 0.071 2.901 0.746 0.412
MINORITY -0.213 0.095 -2.241 -0.778 -0.367

GENERALB WITH       
MATHB 0.000 0.000 0.000 0.000 0.000

Intercepts
GENERALB 0.466 0.163 2.854 1.734 1.734
MATHB 0.573 0.177 3.239 2.087 2.087

Output Excerpts NELS:88 Two-Group, Two-Level
Model For Public And Catholic Schools (Continued)
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Harnqvist, K., Gustafsson, J.E., Muthén, B, & Nelson, G. (1994).  Hierarchical 
models of ability at class and individual levels.  Intelligence, 18, 165-187. 
(#53)

Hox, J. (2002).  Multilevel analysis. Techniques and applications.  Mahwah, 
NJ:  Lawrence Erlbaum 

Longford, N. T., & Muthén, B. (1992).  Factor analysis for clustered 
observations. Psychometrika, 57, 581-597. (#41)

Muthén, B. (1989).  Latent variable modeling in heterogeneous populations.  
Psychometrika, 54, 557-585. (#24)
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NJ, June 1990.  UCLA Statistics Series 62.  (#32)

Muthén, B. (1991).  Multilevel factor analysis of class and student 
achievement components.  Journal of Educational Measurement, 28, 338-
354. (#37)

Further Readings On 
Two-Level Factor Analysis
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Muthén, B.  (1994).  Multilevel covariance structure analysis.  In J. Hox & I. 
Kreft (eds.), Multilevel Modeling, a special issue of Sociological Methods 
& Research, 22, 376-398.  (#55)

Muthen, B., Khoo, S.T. & Gustafsson, J.E. (1997). Multilevel latent variable 
modeling in multiple populations. Under review Sociological Methods & 
Research. 

Further Readings On 
Two-Level Factor Analysis (Continued)
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Two-Level Structural Equation Modeling
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Within Between

Predicting Juvenile Delinquency From First 
Grade Aggressive Behavior.  

Two-Level Logistic Regression On A Factor

fb juvdelfw juvdel

140

Input Excerpts Two-Level Logistic Regression 
On A Factor 

VARIABLE:    CLUSTER=classrm;
USEVAR = juv99 gender stub1F bkRule1F harmO1F 
bkThin1F yell1F takeP1F fight1F lies1F tease1F;
CATEGORICAL = juv99;
MISSING = ALL (999);
WITHIN = gender;

ANALYSIS:    TYPE = TWOLEVEL;

MODEL: %WITHIN%
fw BY stub1F bkRule1F harmO1F bkThin1F yell1F
takeP1F fight1F lies1F tease1F;
juv99 ON gender fw;
%BETWEEN%
fb BY stub1F bkRule1F harmO1F bkThin1F yell1F
takeP1F fight1F lies1F tease1F;
juv99 ON fb;

OUTPUT: TECH1 TECH8;
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u1

u2

u3

u4

u5

u6

x1

x2

fw1

fw2

u1

u2

u3

u4

u5

u6

w

f

fb

y1 y2 y3 y4

Two-Level SEM With Categorical Factor Indicators 
On The Within Level And Cluster-Level Continuous 
Observed And Random Intercept Factor Indicators 

On the Between Level

Within Between
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Two-Level SEM With Categorical Factor Indicators 
On The Within Level And Cluster-Level Continuous 
Observed And Random Intercept Factor Indicators 

On the Between Level

TITLE: this is an example of a two-level SEM with 
categorical factor indicators on the within level 
and cluster-level continuous observed and random 
intercept factor indicators on the between level

DATA:   FILE IS ex9.9.dat;
VARIABLE: NAMES ARE u1-u6 y1-y4 x1 x2 w clus;

CATEGORICAL = u1-u6;
WITHIN = x1 x2;
BETWEEN = w y1-y4;
CLUSTER IS clus;

ANALYSIS: TYPE IS TWOLEVEL;
ESTIMATOR = WLSMV;

MODEL:
%WITHIN%
fw1 BY u1-u3;
fw2 BY u4-u6;
fw1 fw2 ON x1 x2;
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%BETWEEN%

fb BY u1-u6;
f BY y1-y4;

fb ON w f;

f ON w;
SAVEDATA: SWMATRIX = ex9.9sw.dat;

Two-Level SEM With Categorical Factor Indicators 
On The Within Level And Cluster-Level Continuous 
Observed And Random Intercept Factor Indicators 

On the Between Level
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Between

Within

f1w

y1

y2

y4

y3

f2w

y5

y6

y8

y7

s

f1b

y1

y2

y4

y3

f2b

y5

y6

y8

y7

x s

Two-Level SEM: Random Slopes
For Regressions Among Factors
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Two-Level Estimators In Mplus
• Maximum-likelihood:

– Outcomes: Continuous, censored, binary, ordered and unordered 
categorical, counts and combinations

– Random intercepts and slopes; individually-varying times of 
observation; random slopes for time-varying covariates; random slopes 
for dependent variables; random slopes for latent independent and 
dependent variables

– Missing data
• Limited information weighted least-squares:

– Outcomes: Continuous, categorical, and combinations
– Random intercepts 
– Missing data

• Muthen's limited information estimator (MUML): 
– Outcomes: Continuous 
– Random intercepts 
– No missing data 

Non-normality robust SEs and chi-square test of model fit.  
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Size Of The Intraclass Correlation

• The importance of the size of an intraclass correlation 
depends on the size of the clusters

• Small intraclass correlations can be ignored but important 
information about between-level variability may be missed 
by conventional analysis

• Intraclass correlations are attenuated by individual-level 
measurement error

• Effects of clustering not always seen in intraclass 
correlations

Practical Issues Related To The
Analysis Of Multilevel Data
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Sample Size

• There should be at least 30-50 between-level units 
(clusters)

• Clusters with only one observation are allowed
• More clusters than between-level parameters

Practical Issues Related To The
Analysis Of Multilevel Data (Continued)
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1) Explore SEM model using the sample covariance matrix 
from the total sample

2) Estimate the SEM model using the pooled-within sample 
covariance matrix with sample size n - G

3) Investigate the size of the intraclass correlations and 
DEFF’s

4) Explore the between structure using the estimated 
between covariance matrix with sample size G

5) Estimate and modify the two-level model suggested by 
the previous steps

Muthén, B. (1994). Multilevel covariance structure analysis. In J. Hox & 
I. Kreft (eds.), Multilevel Modeling, a special issue of Sociological 
Methods & Research, 22, 376-398. (#55)

Steps In SEM Multilevel Analysis
For Continuous Outcomes
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Multivariate Approach To Multilevel Modeling

150

Multivariate Modeling Of Family Members

• Multilevel modeling: clusters independent, model for 
between- and within-cluster variation, units within a 
cluster statistically equivalent

• Multivariate approach: clusters independent, model for all 
variables for each cluster unit, different parameters for 
different cluster units.

• Used in latent variable growth modeling where the 
cluster units are the repeated measures over time

• Allows for different cluster sizes by missing data 
techniques

• More flexible than the multilevel approach, but 
computationally convenient only for applications  with 
small cluster sizes (e.g. twins, spouses)
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Twin Modeling
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y1

C1 E1A1

a c e

y2

C2 E2A2

a c e

1.0 for MZ    1.0
0.5 for DZ

Twin1 Twin2

Neale & Cardon (1992)
Prescott (2004)



Two-Level Mixture Modeling: 
Within-Level Latent Classes

153

154

Regression Mixture Analysis



Two-Level Regression Mixture Model

yij | Cij=c = β0cj + β1cj xij + rij , (3)

P(Cij = c | zij) = (4)

β0cj = γ00c + γ01cw0j + u0j , (5)
β1cj = γ10c + γ11cw1j + u1j , (6)
acj = γ20c + γ21cw2j + u2cj (7)

Muthén & Asparouhov (2009), JRSS-A

155
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Two-Level Data

• Education studies of students within schools

• LSAY (3,000 students in 54 schools, grades 7-12)
• NELS (14,000 students in 900 schools, grades 8-12),
• ECLS (22,000 students in 1,000 schools, K- grade 8)

• Public health studies of patients within hospitals, individuals
within counties
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NELS Data: Grade 12 Math Related To Gender And SES
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BetweenWithin

NELS Two-Level Math Achievement Regression
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Output Excerpts NELS Two-Level Regression
Estimates S.E. Est./S.E.

Between Level

Means
M92 55.279 0.174 317.706
S_FEMALE -0.850 0.188 -4.507
S_SES 5.450 0.132 41.228

Variances
M92 11.814 1.197 9.870
S_FEMALE 5.762 1.426 4.041
S_SES 0.905 0.538 1.682

S_FEMALE WITH
M92 -4.936 1.071 -4.610
S_SES 0.068 0.635 0.107

S_SES WITH
M92 1.314 0.541 2.431

160

Random Effect Estimates For Each School:
Slopes For Female Versus Intercepts For Math
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Is The Conventional Two-Level Regression 
Model Sufficient?

• Conventional Two-Level Regression of Math Score Related to
Gender and Student SES

• Loglikelihood = -39,512, number of parameters = 10, BIC = 
79,117

• New Model

• Loglikelihood = -39,368, number of parameters = 12, BIC = 
78,848

- Which model would you choose?

162

Within (Students) Between (Schools)

m92

cw#1

Two-Level Regression With Latent Classes
For Students

female

stud_ses

m92

cw
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Model Results For NELS Two-Level Regression
Of Math Score Related To Gender And Student SES

Model Loglikelihood # parameters BIC
(1) Conventional 2-level regression
with random intercepts
and random slopes
(2) Two-level regression mixture, 
2 latent classes for students
(3) Two-level regression mixture, 
3 latent classes for students

-39,512

-39,368

-39,280

10

12

19

79,117

78,848

78,736

164

• Estimated Female slope means for the 3 latent classes for
students do not include positive values.

• The class with the least Female disadvantage (right-most bar) has
the lowest math mean

Estimated Two-Level Regression Mixture             
With 3 Latent Classes For Students

• Significant between-level variation in cw (the random mean of
the latent class variable for students): Schools have a significant
effect on latent class membership for students
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TITLE: NELS 2-level regression
DATA: FILE = comp.dat;

FORMAT = 2f7.0 f11.4 13f5.2 79f8.2 f11.7;
VARIABLE:

NAMES = school m92 female stud_ses; 
CLUSTER = school;
USEV = m92 female stud_ses;
WITHIN = female stud_ses;
CENTERING = GRANDMEAN(stud_ses);
CLASSES = cw(3);

ANALYSIS:
TYPE = TWOLEVEL MIXTURE;
PROCESS = 2;
INTERACTIVE = control.dat;
!STARTS = 1000 100;
STARTS = 0;

Input For Two-Level Regression With Latent Classes 
For Students

166

MODEL:
%WITHIN%
%OVERALL%
m92 ON female stud_ses;
cw#1-cw#2 ON female stud_ses;

! [m92] class-varying by default
%cw#1%
m92 ON female stud_ses;
%cw#2%
m92 ON female stud_ses;
%cw#3%
m92 ON female stud_ses; 
%BETWEEN%
%OVERALL%
f BY cw#1 cw#2;

Input For Two-Level Regression With Latent Classes 
For Students (Continued)
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Cluster-Randomized Trials And NonCompliance

168

Randomized Trials With NonCompliance
• Tx group (compliance status observed)

– Compliers
– Noncompliers

• Control group (compliance status unobserved)
– Compliers
– NonCompliers

Compliers and Noncompliers are typically not randomly equivalent
subgroups.

Four approaches to estimating treatment effects:
1. Tx versus Control (Intent-To-Treat; ITT)
2. Tx Compliers versus Control (Per Protocol)
3. Tx Compliers versus Tx NonCompliers + Control (As-Treated)
4. Mixture analysis (Complier Average Causal Effect; CACE):

• Tx Compliers versus Control Compliers
• Tx NonCompliers versus Control NonCompliers

CACE: Little & Yau (1998) in Psychological Methods
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Randomized Trials with NonCompliance: Complier
Average Causal Effect (CACE) Estimation

c

y

Txx
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Individual level
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Cluster level
(Between)
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Two-Level Regression Mixture Modeling:
Cluster-Randomized CACE
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Further Readings On Non-Compliance Modeling

Dunn, G., Maracy, M., Dowrick, C., Ayuso-Mateos, J.L., Dalgard, O.S., Page, H., 
Lehtinen, V., Casey, P., Wilkinson, C., Vasquez-Barquero, J.L., & Wilkinson, 
G. (2003). Estimating psychological treatment effects from a randomized 
controlled trial with both non-compliance and loss to follow-up. British 
Journal of Psychiatry, 183, 323-331. 

Jo, B. (2002). Statistical power in randomized intervention studies with 
noncompliance. Psychological Methods, 7, 178-193. 

Jo, B. (2002). Model misspecification sensitivity analysis in estimating causal 
effects of interventions with noncompliance. Statistics in Medicine, 21, 3161-
3181. 

Jo, B. (2002). Estimation of intervention effects with noncompliance: Alternative 
model specifications. Journal of Educational and Behavioral Statistics, 27, 
385-409. 

Further Readings On Non-Compliance Modeling:
Two-Level Modeling

Jo, B., Asparouhov, T. & Muthén, B. (2008). Intention-to-treat analysis in 
cluster randomized trials with noncompliance. Statistics in Medicine, 27, 
5565-5577.

Jo, B., Asparouhov, T., Muthén, B. O., Ialongo, N. S., & Brown, C. 
H. (2008). Cluster Randomized Trials with Treatment 
Noncompliance. Psychological Methods, 13, 1-18.
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Latent Class Analysis
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Two-Level Latent Class Analysis

Within Between

175

176

Input For Two-Level 
Latent Class Analysis

TITLE: this is an example of a two-level LCA with 
categorical latent class indicators

DATA: FILE IS ex10.3.dat;

VARIABLE: NAMES ARE u1-u6 x w c clus;
USEVARIABLES = u1-u6 x w;

CATEGORICAL = u1-u6;

CLASSES = c (3);
WITHIN = x;

BETWEEN = w;

CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL MIXTURE;
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MODEL: %WITHIN% 
%OVERALL%
c#1 c#2 ON x;

%BETWEEN%
%OVERALL% 
f BY c#1 c#2;
f ON w;

OUTPUT: TECH1 TECH8; 

Input For Two-Level 
Latent Class Analysis (Continued)

178

Two-Level Mixture Modeling: 
Between-Level Latent Classes
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Regression Mixture Analysis

180
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NELS Two-Level Regression With Latent Classes 
For Students And Schools

Within (Students) Between (Schools)

m92

cb

sf

cw#1

ss

female

stud_ses

m92

cw

ss

sf
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Model Results For NELS Two-Level Regression
Of Math Score Related To Gender And Student SES

Model Loglikelihood # parameters BIC
(1) Conventional 2-level regression
with random intercepts
and random slopes
(2) Two-level regression mixture, 
2 latent classes for students
(3) Two-level regression mixture, 
3 latent classes for students
(4) Two-level regression mixture,
2 latent classes for schools,
2 latent classes for students
(5) Two-level regression mixture,
2 latent classes for schools,
3 latent classes for students

-39,512

-39,368

-39,280

-39,348

-39,260

10

12

19

19

29

79,117

78,848

78,736

78,873

78,789
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Latent Class Analysis

184

Two-Level LCA With Categorical Latent Class Indicators 
And A Between-Level Categorical Latent Variable
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TITLE: this is an example of a two-level LCA with 
categorical latent class indicators and a between-
level categorical latent variable

DATA: FILE = ex4.dat;
VARIABLE: NAMES ARE u1-u10 dumb dumw clus;

USEVARIABLES = u1-u10;
CATEGORICAL = u1-u10;
CLASSES = cb(5) cw(4);
WITHIN = u1-u10;
BETWEEN = cb;
CLUSTER = clus;

ANALYSIS: TYPE = TWOLEVEL MIXTURE; 
PROCESSORS = 2;
STARTS = 100 10;

MODEL:
%WITHIN%
%OVERALL%
%BETWEEN%
%OVERALL%
cw#1-cw#3 ON cb#1-cb#4;

Input For Two-Level 
Latent Class Analysis
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MODEL cw:
%WITHIN%
%cw#1%
[u1$1-u10$1];
[u1$2-u10$2];
%cw#2%
[u1$1-u10$1];
[u1$2-u10$2];
%cw#3%
[u1$1-u10$1];
[u1$2-u10$2];
%cw#4%
[u1$1-u10$1];
[u1$2-u10$2];

OUTPUT: TECH1 TECH8;

Input For Two-Level 
Latent Class Analysis (Continued)
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