Mplus Short Courses Topic 7

Multilevel Modeling With Latent Variables Using Mplus: Cross-Sectional Analysis

Linda K. Muthén Bengt Muthén

Copyright © 2009 Muthén & Muthén www.statmodel.com 3/04/2009

1

Table Of Contents General Latent Variable Modeling Framework 5 Analysis With Multilevel Data 9 Complex Survey Data Analysis 13 Intraclass Correlation 14 Design Effects 16 Random Effects ANOVA 17 Two-Level Regression Analysis 26 Two-Level Logistic Regression 52 Two-Level Path Analysis 59 Two-Level Mediation With Random Slopes 72 Two-Level Factor Analysis 78 SIMS Variance Decomposition 84 89 Exploratory Factor Analysis Of Aggression Items 100 Two-Level IRT Two-Level Factor Analysis With Covariates 101 Multiple Group, Two-Level Factor Analysis 121 Two-Level SEM 138 Two-Level Estimators In Mplus 145 Practical Issues Related To The Analysis Of Multilevel Data 147 2

Twin Modeling Two-Level Mixture Modeling: Within-Level Latent Classes Regression Mixture Analysis Cluster-Randomized Trials And NonCompliance Latent Class Analysis Two-Level Mixture Modeling: Between-Level Latent Classes Regression Mixture Analysis Latent Class Analysis References	1.7
 Fwo-Level Mixture Modeling: Within-Level Latent Classes Regression Mixture Analysis Cluster-Randomized Trials And NonCompliance Latent Class Analysis Fwo-Level Mixture Modeling: Between-Level Latent Classes Regression Mixture Analysis Latent Class Analysis References 	151
Regression Mixture Analysis Cluster-Randomized Trials And NonCompliance Latent Class Analysis Two-Level Mixture Modeling: Between-Level Latent Classes Regression Mixture Analysis Latent Class Analysis References	153
Cluster-Randomized Trials And NonCompliance Latent Class Analysis Two-Level Mixture Modeling: Between-Level Latent Classes Regression Mixture Analysis Latent Class Analysis References	154
Latent Class Analysis Two-Level Mixture Modeling: Between-Level Latent Classes Regression Mixture Analysis Latent Class Analysis References	167
Fwo-Level Mixture Modeling: Between-Level Latent Classes Regression Mixture Analysis Latent Class Analysis References	173
Regression Mixture Analysis Latent Class Analysis References	178
Latent Class Analysis References	179
References	183
	187

Analysis With Multilevel Data

Intraclass Correlation	
Consider nested, random-effects ANOVA for unit <i>i</i> in clust	ter <i>j</i> ,
$y_{ij} = v + \eta_j + \varepsilon_{ij}; i = 1, 2,, n_j; j = 1, 2,, J. $ (4 Random sample of <i>J</i> clusters (e.g. schools).	4)
With timepoint as <i>i</i> and individual as <i>j</i> , this is a repeated measures model with random intercepts.	
Consider the covariance and variances for cluster members and $i = l$,	<i>i</i> = <i>k</i>
$Cov(y_{kj}, y_{lj}) = V(\eta),$ $V(y_{kj}) = V(y_{lj}) = V(\eta) + V(\varepsilon),$	(45) (46)
resulting in the intraclass correlation	
$\rho(y_{kj}, y_{lj}) = V(\eta) / [V(\eta) + V(\varepsilon)].$	(47)
Interpretation: Between-cluster variability relative to total variation, intra-cluster homogeneity.	

Household	# of Households*	Intraclass Cor	relations for Siblings
(# of respondents	3)	Year	Heavy Drinking
Single	5,944	1982	0.19
Two	1,985	1983	0.18
Three	634	1984	0.12
Four	170	1985	0.09
Five	32	1988	0.04
Six	5	1989	0.06
Total number of	households: 8,770		
Total number of	respondents: 12,686		
Average number	of respondents per hous	ehold: 1.4	

Output Excerpts Two-Level
Random Effects ANOVA Analysis

Model Results				
	Estimates	S.E.	Est./S.E.	
Within Level				
Variances Y	0.779	0.025	31.293	
Between Level				
Means				
Y	0.003	0.038	0.076	
Variances				
Y	0.212	0.028	7.496	

R	Input For Complex Random Effects ANOVA Analysis					
TITLE:	Random effects ANOVA data Complex analysis with balanced data					
DATA:	<pre>FILE = anova.dat;</pre>					
VARIABLE:	NAMES = y cluster; USEV = y; CLUSTER = cluster;					
ANALYSIS:	TYPE = COMPLEX;					
		20				

Output Excerpts Complex Random Effects ANOVA Analysis						
Model Results	5					
	Estimates	S.E.	Est./S.E.			
Means						
Y	0.003	0.038	0.076			
Variances						
Y	0.990	0.036	27.538			
				2'		

Ignoring Clustering				
TITLE:	Random effects ANOVA data Ignoring clustering			
DATA:	<pre>FILE = anova.dat;</pre>			
VARIABLE:	NAMES = y cluster; USEV = v;			
!	CLUSTER = cluster;			
ANALYSIS:				

Estimates S.E. Est./S.E. leans Y 0.003 0.022 0.131 fariances Y 0.990 0.031 31.623 Note: The estimated mean has SE = 0.022 instead of the correct 0.038	louer Result	S			
Ideans Y 0.003 0.022 0.131 Variances Y 0.990 0.031 31.623 Note: The estimated mean has SE = 0.022 instead of the correct 0.038		Estimates	S.E.	Est./S.E.	
Y 0.003 0.022 0.131 Variances Y 0.990 0.031 31.623 Note: The estimated mean has SE = 0.022 instead of the correct 0.038	Means				
Y 0.990 0.031 31.623 Y 0.990 0.031 31.623 Note: The estimated mean has SE = 0.022 instead of the correct 0.038	Y	0.003	0.022	0.131	
Y 0.990 0.031 31.623 Note: The estimated mean has $SE = 0.022$ instead of the correct 0.038	Variances				
Note: The estimated mean has $SE = 0.022$ instead of the correct 0.038	Y	0.990	0.031	31.623	
	Note: The es	stimated mean has	SE = 0.022 in	nstead of the correct	0.038

WITHIN And BETWEEN Options Of The VARIABLE Command

- WITHIN
 - Measured on individual level
 - Modeled on within
 - No variance on between
- BETWEEN
 - Measured on cluster level
 - Modeled on between
- Not on WITHIN or BETWEEN
 - Measured on individual level
 - Modeled on within and between

TITLE:	NELS math achievement regression
DATA:	<pre>FILE IS completev2.dat; ! National Education Longitudinal Study (NELS) FORMAT IS f8.0 12f5.2 f6.3 f11.4 23f8.2 f18.2 f8.0 4f8.2;</pre>
VARIABLE:	NAMES ARE school r88 m88 s88 h88 r90 m90 s90 h90 r92 m92 s92 h92 stud_ses f2pnlwt transfer minor coll_asp algebra retain aca_back female per_mino hw_time salary dis_fair clas_dis mean_col per_high unsafe num_frie teaqual par_invo ac_track urban size rural private mean_ses catholic stu_teac per_adva tea_exce tea_res;
	<pre>USEV = m92 female stud_ses per_adva private catholic mean_ses;</pre>
	<pre>!per_adva = percent teachers with an MA or higher</pre>
	WITHIN = female stud_ses; BETWEEN = per_adva private catholic mean_ses; MISSING = blank; CLUSTER = school; CENTERING = GRANDMEAN (stud ses per adva mean ses);

nput Fo	put For NELS Math Achievement Regression (Continued)					
ANALYSIS:	TYPE = TWOLEVEL RANDOM;					
MODEL:	%WITHIN% s1 m92 ON female; s2 m92 ON stud_ses;					
	%BETWEEN% m92 s1 s2 ON per_adva private catholic mean_ses; m92 WITH s1 s2;					
OUTPUT:	TECH8 SAMPSTAT;					

	Outj A	put E chiev	xcer] vemen	pts N 1t Re	ELS gress	Matl ion	1	
			N = 2	10,933				
Summary	y of Data							
Number	of clust	ers	902					
Size (s) Clust	er ID w	ith Siz	e s				
1	89863	75862	52654	1995	32661	89239	56214	
2	41743 4570	81263 27159	45025 11662	26790 87842	60281 38454	82860	56241	21474
3	65407 40402 66512	61407 93469	83048 98582	42640 68595	41412 11517	67708 17543	83085 75498	39685 81069
4	31646 5095 98461	68153 10904 44395	85508 93569 95317	26234 38063 64112	83390 86733 50880	60835 66125 77381	74400 51670 12835	20770 10910 47555
5	9208 14464	93859 74791	35719 18219	67574 10468 68028	20048 72193 70718	34139 97616 3496	25784 15773 6842	80675 877 45854
5	9471	03234	00254	00020	,0,10	5120	0012	1000

Output Excerpts NELS Math
Achievement Regression (Continued)

22	79570	15426	97947	93599	85125	10926	4603	
23	6411	60328	70024	67835				
24	36988	22874	50626	19091				
25	56619	59710	34292	18826	62209			
26	44586	67832	16515					
27	82887							
28	847	76909						
30	36177							
31	12786	53660	47120	94802				
32	80553							
34	53272							
36	89842	31572						
42	99516							
43	75115							
Average clu	uster size	12.187	,					
Estimated 2	Intraclass	Correla	tions f	or the Y	Y Variab	les		
:	Intraclass							
Variable Co	orrelation							
M92	0.107							35

Out Achieve	tput Excerj ement Regi	pts NE ression	LS Math (Continue	ed)
Tests of Model	Fit			
Loglikelihood H0 Val	ue	-393	90.404	
Information Crit Number Akaike Bayesi Sample (n*	ceria c of Free parame e (AIC) an (BIC) Size Adjusted c = (n + 2) / 24	ters 788 789 BIC 789)	21 822.808 976.213 909.478	
Model Results				
	Estimates	S.E.	Est./S.E.	
Within Level				
Residual Variances				
M92	70.577	1.149	61.442	
Between Level				
S1 ON				
PER_ADVA	0.084	0.841	0.100	
PRIVATE	-0.134	0.844	-0.159	
CATHOLIC	-0.736	0.780	-0.944	

	Out	put Excer	pts NE	LS Math	
A	Achieve	ment Reg	ressior	n (Continu	ed)
S2	ON	Estimates	S.E.	Est./S.E.	
PER_A	DVA	1.348	0.521	2.587	
PRIVA	TE	-1.890	0.706	-2.677	
CATHO	LIC	-1.467	0.562	-2.612	
MEAN_	SES	1.031	0.283	3.640	
492	ON				
PER_A	DVA	0.195	0.727	0.268	
PRIVA	TE	1.505	1.108	1.358	
CATHOLIC		0.765	0.650	1.178	
MEAN_	SES	3.912	0.399	9.814	
31	WITH				
M92		-4.456	1.007	-4.427	
S2	WITH				
M92		0.128	0.399	0.322	
Intercep	ts				
M92		55.136	0.185	297.248	
S1		-0.819	0.211	-3.876	
S2		4.841	0.152	31.900	
Residua	l Variances	3			
M92		8.679	1.003	8.649	
S1		5.740	1.411	4.066	
S2		0.307	0.527	0.583	

Cross-Level Influence (Continued)

Cross-level interaction, or between-level (level 2) variable moderating a within level (level 1) relationship:

Random slope

$$y_{ij} = \beta_{0j} + \beta_{1j} x_{ij} + r_{ij}$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11} w_j + u_{1j}$$

Mplus:

MODEL:

```
%WITHIN%;
betal | y ON x;
%BETWEEN%;
betal ON w; ! estimates gammall
```

39

Random Slopes In Mplus

Mplus allows random slopes for predictors that are

- Observed covariates
- Observed dependent variables
- Continuous latent variables

Two-Level Variable Decomposition (Continued)

The same decomposition can be made for x_{ii} ,

 $x_{ij} = x_{wij} + x_{bj}$

where x_{wij} and x_{bj} are latent covariates,

$$y_{wij} = \beta_w x_{wij} + r_{ij}$$

$$y_{bj} = \gamma_{00} + \beta_b x_{bj} + u_{0j}$$

Mplus can work with either manifest or latent covariates.

See also User's Guide example 9.1.b

Bias With Manifest Covariates

Comparing the manifest and latent covariate approach shows a bias in the manifest between-level slope

$$E(\hat{\gamma}_{01}) - \beta_b = (\beta_w - \beta_b) \frac{1}{s} \frac{(1 - icc_x)}{icc_x + (1 - icc_x)/s}$$

Bias increases with decreasing cluster size *s* and decreasing icc_x . Example: $(\beta_w - \beta_b) = 0.5$, s = 10, $icc_x = 0.1$ gives bias = 0.25

No bias for latent covariate approach Asparouhov-Muthen (2006), Ludtke et al. (2008)

44

Further Readings On Multilevel Regression Analysis

Enders, C.K. & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: A new look at an old Issue. <u>Psychological Methods</u>, 12, 121-138.

- Lüdtke, O., Marsh, H.W., Robitzsch, A., Trautwein, U., Asparouhov, T., & Muthén, B. (2008). The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies. <u>Psychological Methods</u>, 13, 203-229.
- Raudenbush, S.W. & Bryk, A.S. (2002). <u>Hierarchical linear models:</u> <u>Applications and data analysis methods</u>. Second edition. Newbury Park, CA: Sage Publications.
- Snijders, T. & Bosker, R. (1999). <u>Multilevel analysis. An introduction</u> to basic and advanced multilevel modeling. Thousand Oakes, CA: Sage Publications.

45

Logistic And Probit Regression

Logistic Regression And Log Odds (Continued)

- $logit = log odds = \beta_0 + \beta_1 x$
- When x changes one unit, the *logit* (*log odds*) changes β_1 units
- When x changes one unit, the *odds* changes e^{β_1} units

51

Two-Level Logistic Regression

Two-Level Logistic Regression Model

With *i* denoting individual and *j* denoting cluster,

$$P(u_{ij} = 1 | x_{ij}) = \frac{1}{1 + e^{-(\beta_{0j} + \beta_{1j} x_{ij})}}$$
$$logit_{ij} = log \left[\frac{P(u_{ij} = 1 | x)}{P(u_{ij} = 0 | x)} \right] = \beta_{0j} + \beta_{1j} x_{ij}$$

where

$$\beta_{0j} = \beta_0 + u_{0j}$$
$$\beta_{1j} = \beta_1 + u_{1j}$$

High/low β_{0i} value means high/low logit (high/low log odds)

53

Predicting Juvenile Delinquency From First Grade Aggressive Behavior

- Cohort 1 data from the Johns Hopkins University Preventive Intervention Research Center
- n= 1,084 students in 40 classrooms, Fall first grade
- Covariates: gender and teacher-rated aggressive behavior

Output Excerpts Two-Level Logistic Regression

MODEL RESULTS						
		Estimates	S.E	Est./S.E.		
Within Level						
JUV99	ON					
MALE		1.071	0.149	7.193		
AGGRESS		0.060	0.010	6.191		
Between Level						
Thresholds						
JUV99\$1		2.981	0.205	14.562		
Variances						
JUV99		0.807	0.250	3.228		
						57

Input For A Two-Level Path Analysis Model With A Categorical Outcome And Missing Data On The Mediating Variable

TITLE: a DATA: F VARIABLE: N a S C	a twolevel path analysis with a categorical outcome and missing data on the mediating variable FILE = lsayfull_dropout.dat; NAMES = female mothed homeres math7 math10 expel arrest hisp black hsdrop expect lunch droptht7 schcode;
DATA: F VARIABLE: N a s C	FILE = lsayfull_dropout.dat; NAMES = female mothed homeres math7 math10 expel arrest hisp black hsdrop expect lunch droptht7 schcode;
VARIABLE: N a s C	NAMES = female mothed homeres math7 math10 expel arrest hisp black hsdrop expect lunch droptht7 schcode;
C	
	CATEGORICAL = hsdrop;
C	CLUSTER = schcode;
We	WITHIN = female mothed homeres expect math7 lunch expel arrest droptht7 hisp black;
ANALYSIS: T	TYPE = TWOLEVEL;
E	ESTIMATOR = ML;
А	ALGORITHM = INTEGRATION;
I	INTEGRATION = MONTECARLO (500);

Output Excerpts A Two-Level Path Analysis Model With A Categorical Outcome And Missing Data On The Mediating Variable

	Numbow	٥f	nottowna		2
	Number	of	clusters		2 44
Size	(s)		Cluster	ID with	Size s
1:	2		304		
11	3		305		
30	5		307	122	
38	3		106	112	
39	9		138	109	
40)		103		
41	L		308		
42	2		146	120	
43	3		102	101	
44	1		303	143	
4	5		141		

Output Excerp With A Cate On The M	ots A Two gorical O Aediating	-Level utcom Varia	Path e And ble ((Anal Miss Contin	ysis N sing D nued)	/lode ata
Size (s)	Cluster	ID with	Size s	3		
46	144					
47	140					
49	108					
50	126	111	110			
51	127	124				
52	137	117	147	118	301	136
53	142	131				
55	145	123				
57	135	105				
58	121					
59	119					
73	104					
89	302					
93	309					
118	115					

Output Excerpts A Two-Level Path Analysis Model With A Categorical Outcome And Missing Data On The Mediating Variable (Continued)

Model Results					
	Estimates	S.E.	Est./S.E.	Std	StdYX
Within Level					
HSDROP ON					
FEMALE	0.323	0.171	1.887	0.323	0.077
MOTHED	-0.253	0.103	-2.457	-0.253	-0.121
HOMERES	-0.077	0.055	-1.401	-0.077	-0.061
EXPECT	-0.244	0.065	-3.756	-0.244	-0.159
MATH7	-0.011	0.015	-0.754	-0.011	-0.055
MATH10	-0.031	0.011	-2.706	-0.031	-0.197
LUNCH	0.008	0.006	1.324	0.008	0.074
EXPEL	0.947	0.225	4.201	0.947	0.121
ARREST	0.068	0.321	0.212	0.068	0.007
DROPTHT7	0.757	0.284	2.665	0.757	0.074
HISP	-0.118	0.274	-0.431	-0.118	-0.016
BLACK	-0.086	0.253	-0.340	-0.086	-0.013
					67

Output Excerpts A Two-Level Path Analysis Model With A Categorical Outcome And Missing Data On The Mediating Variable (Continued)

	Estimates	S.E. E	st./S.E.	Std	StdYX
MATH10 ON					
FEMALE	-0.841	0.398	-2.110	-0.841	-0.031
MOTHED	0.263	0.215	1.222	0.263	0.020
HOMERES	0.568	0.136	4.169	0.568	0.070
EXPECT	0.985	0.162	6.091	0.985	0.100
MATH7	0.940	0.023	40.123	0.940	0.697
LUNCH	-0.039	0.017	-2.308	-0.039	-0.059
EXPEL	-1.293	0.825	-1.567	-1.293	-0.026
ARREST	-3.426	1.022	-3.353	-3.426	-0.054
DROPTHT7	-1.424	1.049	-1.358	-1.424	-0.022
HISP	-0.501	0.728	-0.689	-0.501	-0.010
BLACK	-0.369	0.733	-0.503	-0.369	-0.009
					68

Output Excerpts A Two-Level Path Analysis Model With A Categorical Outcome And Missing Data On The Mediating Variable (Continued)

	Estimates	S.E. E	st./S.E.	Std	StdYX
Residual Varian MATH10	ces 62.010	2.162	28.683	62.010	0.341
Between Level					
Means					
MATH10 Thresholds	10.226	1.340	7.632	10.226	5.276
HSDROP\$1	-1.076	0.560	-1.920		
Variances				0.005	
HSDROP MATH10	0.286	0.133	2.150	0.286	1.000
PIATITE	5.757	1.210	5.011	5.757	1.000
					69

		E	stimates		S.E.	M. S. E.	95%	% Sig
		Population	Average	Std.Dev.	Average		Cover	Coeff
Within	Level							
Residua var	al iances							
Y		1.000	1.0020	0.0530	0.0530	0.0028	0.960	1.000
М		1.000	1.0011	0.0538	0.0496	0.0029	0.910	1.000
Betweer	n Level							
Y	WITH							
В		0.100	0.1212	0.1246	0.114	0.0158	0.910	0.21
A		0.100	0.1086	0.1318	0.1162	0.0173	0.910	0.19
С		0.100	0.0868	0.1121	0.1237	0.0126	0.940	0.09
М	WITH							
В		0.100	0.1033	0.1029	0.1085	0.0105	0.940	0.12
A		0.100	0.0815	0.1081	0.1116	0.0119	0.950	0.07
С		0.100	0.1138	0.1147	0.1165	0.0132	0.970	0.16
A	WITH							
В		0.100	0.0964	0.1174	0.1101	0.0137	0.920	0.15
C		0.100	0.0756	0.1376	0.1312	0.0193	0.910	0.11

Output Excerpts Two-Level Mediation (Continued)

В	WITH							
С		0.100	0.0892	0.1056	0.1156	0.0112	0.960	0.070
Y	WITH							
М		0.100	0.1034	0.1342	0.1285	0.0178	0.940	0.140
Means								
Y		0.000	0.0070	0.1151	0.1113	0.0132	0.950	0.050
М		0.000	-0.0031	0.1102	0.1056	0.0120	0.950	0.050
С		0.600	0.5979	0.1229	0.1125	0.0150	0.930	1.000
В		0.500	0.5022	0.1279	0.1061	0.0162	0.890	1.000
A		0.400	0.3854	0.0972	0.1072	0.0096	0.970	0.970
Varianc	es							
Y		1.000	1.0071	0.1681	0.1689	0.0280	0.910	1.000
М		1.000	1.0113	0.1782	0.1571	0.0316	0.930	1.000
С		1.000	0.9802	0.1413	0.1718	0.0201	0.980	1.000
В		1.000	0.9768	0.1443	0.1545	0.0212	0.950	1.000
A		1.000	1.0188	0.1541	0.1587	0.0239	0.950	1.000
New/Add	litional Pa	rameters						
М		0.300	0.2904	0.1422	0.1316	0.0201	0.950	0.550
								77

Two-Level Factor Analysis And Design Effects

Muthén & Satorra (1995; Sociological Methodology): Monte Carlo study using two-level data (200 clusters of varying size and varying intraclass correlations), a latent variable model with 10 variables, 2 factors, conventional ML using the regular sample covariance matrix S_T , and 1,000 replications (d.f. = 34).

$$\Lambda_{B} = \Lambda_{W} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \qquad \Psi_{B}, \Theta_{B} \text{ reflecting different icc's}$$

$$y_{ij} = v + \Lambda(\eta_{Bj} + \eta_{Wij}) + \varepsilon_{Bj} + \varepsilon_{Wij}$$

$$y_{ij} = v + \Lambda(\eta_{Bj} + \eta_{Wij}) + \varepsilon_{Bj} + \varepsilon_{Wij}$$

$$V(y) = \Sigma_{B} + \Sigma_{W} = \Lambda(\Psi_{B} + \Psi_{W}) \Lambda' + \Theta_{B} + \Theta_{W}$$

Inflation of χ^2 due to clustering								
Intraclass			Clust	er Size				
Correlation	_	7	15	30	60			
0.05								
	Chi-square mean	35	36	38	41			
	Chi-square var	68	72	80	96			
	5%	5.6	7.6	10.6	20.4			
	1%	1.4	1.6	2.8	7.7			
0.10								
	Chi-square mean	36	40	46	58			
	Chi-square var	75	89	117	189			
	5%	8.5	16.0	37.6	73.6			
	1%	1.0	5.2	17.6	52.1			
0.20								
	Chi-square mean	42	52	73	114			
	Chi-square var	100	152	302	734			
	5%	23.5	57.7	93.1	99.9			
	1%	8.6	35.0	83.1	99.4			

- Regular analysis, ignoring clustering
 - Inflated chi-square, underestimated SE's
- TYPE = COMPLEX
 - Correct chi-square and SE's but only if model aggregates, e.g. $\Lambda_B = \Lambda_W$

83

- TYPE = TWOLEVEL
 - Correct chi-square and SE's

SIMS Variance Decomposition The Second International Mathematics Study (SIMS; Muthén, 1991, JEM). National probability sample of school districts selected ٠ proportional to size; a probability sample of schools selected proportional to size within school district, and two classes randomly drawn within each school 3,724 students observed in 197 classes from 113 schools with class sizes varying from 2 to 38; typical class size of around 20 Eight variables corresponding to various areas of eighthgrade mathematics Same set of items administered as a pretest in the Fall of eighth grade and as a posttest in the Spring. 84

SIMS Variance Decomposition (Continued)

Muthén (1991). Multilevel factor analysis of class and student achievement components. Journal of Educational Measurement, 28, 338-354.

• Research questions: "The substantive questions of interest in this article are the variance decomposition of the subscores with respect to within-class student variation and between-class variation and the change of this decomposition from pretest to posttest. In the SIMS ... such variance decomposition relates to the effects of tracking and differential curricula in eighth-grade math. On the one hand, one may hypothesize that effects of selection and instruction tend to increase between-class variation relative to within-class variation, assuming that the classes are homogeneous, have different performance levels to begin with, and show faster growth for higher initial performance level. On the other hand, one may hypothesize that eighth-grade exposure to new topics will increase individual differences among students within each class so that posttest within-class variation."

					ANOVA	1				FA	CTOR A	ANALYSI	s
			Pretest			Posttest		% Inci In Var	rease iance	Erro Prop. I	r-free Between	Error % Inc In Var	-free rease iance
	Number of Items	Between	Within	Prop- Between	Between	Within	Prop- Between	Between	Within	Pre	Post	Between	Withir
RPP	8	1.542 (34.0)	2.990 (66.0)	.34	2.084 (38.5)	3.326 (61.5)	.38	35	11	.54	.52	29	41
FRACT	8	1.460 (38.2)	2.366 (61.8)	.38	1.906 (40.8)	2.767 (59.2)	.41	31	17	.60	.58	29	41
EQEXP	6	.543 (26.9)	1.473 (73.1)	.27	1.041 (38.7)	1.646 (61.3)	.39	92	18	.65	.64	113	117
INTNUM	2	.127 (25.2)	.358 (70.9)	.29	.195 (30.6)	.442 (69.4)	.31	54	24	.63	.61	29	41
TESTI	5	.580 (33.3)	1.163 (66.7)	.33	.664 (34.5)	1.258 (65.5)	.34	15	8	.58	.56	29	41
AREAVOL	2	.094 (17.2)	.451 (82.8)	.17	.156 (24.1)	.490 (75.9)	.24	66	9	.54	.52	29	41
COORVIS	3	.173 (20.9)	.656 (79.1)	.21	.275 (28.7)	.680 (68.3)	.32	59	4	.57	.55	29	41
PFIGURE	5	.363 (22.9)	1.224 (77.1)	.23	.711 (42.9)	1.451 (67.1)	.33	96	19	.60	.54	87	136

	Iter	n Distributions	for Cohort 3: F	Fall 1st Grade (1	n=362 males in	27 classroom
	Almost Never	Rarely	Sometimes	Often	Very Often	Almost Always
	(scored as 1)	(scored as 2)	(scored as 3)	(scored as 4)	(scored as 5)	(scored as 6
Stubborn	42.5	21.3	18.5	7.2	6.4	4.1
Breaks Rules	37.6	16.0	22.7	7.5	8.3	8.0
Harms Others	69.3	12.4	9.40	3.9	2.5	2.5
Breaks Things	79.8	6.60	5.20	3.9	3.6	0.8
Yells at Others	61.9	14.1	11.9	5.8	4.1	2.2
Takes Others' Property	72.9	9.70	10.8	2.5	2.2	1.9
Fights	60.5	13.8	13.5	5.5	3.0	3.6
Harms Property	74.9	9.90	9.10	2.8	2.8	0.6
Lies	72.4	12.4	8.00	2.8	3.3	1.1
Talks Back to Adults	79.6	9.70	7.80	1.4	0.8	1.4
Teases Classmates	55.0	14.4	17.7	7.2	4.4	1.4
Fights With Classmates	67.4	12.4	10.2	5.0	3.3	1.7
Loses Temper	61.6	15.5	13.8	4.7	3.0	1.4

Hypothesized Aggressiveness Factors

- Verbal aggression
 - Yells at others
 - Talks back to adults
 - Loses temper
 - Stubborn
- Property aggression
 - Breaks things
 - Harms property
 - Takes others' property
 - Harms others
- Person aggression
 - Fights
 - Fights with classmates
 - Teases classmates

Categorical Outcomes, Latent Dimensions, And Computational Demand

- ML requires numerical integration (see end of Topic 8)
 - increasingly time consuming for increasing number of continuous latent variables and increasing sample size
- Bayes analysis
- Limited information weighted least squares estimation

Input For Two-Level EFA of Aggression Using WLSM And Geomin Rotation

Output Excerpts Two-Level EFA of Aggression Using WLSM And Geomin Rotation										
Ni	umber of clust	cers		27						
Average cluster size 13.407										
Estimated Intraclass Correlations for the Y Variables										
	Intraclass		Intraclass		Intraclass					
Variable	Correlation	Variable	Correlation	Variable	Correlation					
U1	0.110	U2	0.121	U3	0.208					
U4	0.378	U5	0.213	U6	0.250					
U7	0.161	U8	0.315	U9	0.208					
U10	0.140	U11	0.178	U12	0.162					
U13	0.172									
					96					

Two-Level EFA Model Test Result For Aggressive-Disruptive Items

'I RMSEA
0.007
0.107
0.084
0.062
0.052

 $^{\rm *4^{th}}$ factor has no significant loadings

97

Two-Level EFA Of Aggressive-Disruptive Items: Geomin Rotated Factor Loading Matrix

	Withir	Within-Level Loadings		Between-Level Loading
	Property	Verbal	Person	General
Stubborn	0.00	0.78*	0.01	0.65*
Breaks Rules	0.31*	0.25*	0.32*	0.61*
Harms Others and Property	0.64*	0.12	0.25*	0.68*
Breaks Things	0.98*	0.08	-0.12*	0.98*
Yells At Others	0.11	0.67*	0.10	0.93*
Takes Others' Property	0.73*	-0.15*	0.31*	0.80*
Fights	0.10	0.03	0.86*	0.79*
Harms Property	0.81*	0.12	0.05	0.86*
Lies	0.60*	0.25*	0.10	0.86*
Talks Back To Adults	0.09	0.78*	0.05	0.81*
Teases Classmates	0.12	0.16*	0.59*	0.83*
Fights With Classmates	-0.02	0.13	0.88*	0.84*
Loses Temper	-0.02	0.85*	0.05	0.87*

IRT

Single-level IRT:

 $P(u_{ik} = 1 \mid \theta_i, a_k, b_k) = \Phi(a_k \theta_i - b_k), \quad (1)$

for individual i and item k.

- *a* is discrimination (slope)
- *b* is difficulty
- θ is the ability (continuous latent variable)

Input For Two-Level Factor Analysis With Covariates

TITLE:	this is an example of a two-level CFA with continuous factor indicators with two factors on the within level and one factor on the between level	e
DATA:	FILE IS ex9.8.dat;	
VARIABLE:	NAMES ARE y1-y6 x1 x2 w clus;	
	WITHIN = x1 x2;	
	BETWEEN = w;	
	CLUSTER IS clus;	
ANALYSIS:	TYPE IS TWOLEVEL;	
MODEL:	%WITHIN%	
	fwl BY y1-y3;	
	fw2 BY y4-y6;	
	fwl ON x1 x2;	
	fw2 ON x1 x2;	
	%BETWEEN%	
	fb BY yl-y6;	
	fb ON w;	103

Input For Monte Carlo Simulations For Two-Level Factor Analysis With Covariates (Continued)

MODEL POPULATION: %WITHIN% x1-x2@1; fw1 BY y1@1 y2-y3*1; fw2 BY y4@1 y5-y6*1; fw1-fw2*1; y1-y6*1; fw1 ON x1*.5 x2*.7; fw2 ON x1*.7 x2*.5; %BETWEEN% [w@0]; w*1; fb BY y1@1 y2-y6*1; y1-y6*.3; fb*.5; fb ON w*1;

Input For NELS Two-Level Longitudinal Factor Analysis With Covariates

TITLE:	two-level factor analysis with covariates using the NELS data
DATA:	FILE = NELS.dat; FORMAT = 2f7.0 f11.4 12f5.2 11f8.2;
VARIABLE:	NAMES = id school f2pnlwt r88 m88 s88 h88 r90 m90 s90 h90 r92 m92 s92 h92 stud_ses female per_mino urban size rural private mean_ses catholic stu_teac per_adva;
	!Variable Description
	!m88 = math IRT score in 1988
	!m90 = math IRT score in 1990
	!m92 = math IRT score in 1992
	!r88 = reading IRT score in 1988
	<pre>!r90 = reading IRT score in 1990</pre>
	!r92 = reading IRT score in 1992
	109

ANALYSIS:	TYPE = TWOLEVEL;
MODEL:	<pre>%WITHIN% fw1 BY r88-h88; fw2 BY r90-h90; fw3 BY r92-h92; r88 WITH r90; r90 WITH r92; r88 WITH r92; m88 WITH m90; m90 WITH m92; m88 WITH m92; s88 WITH s90; s90 WITH s92; h88 WITH h90; h90 WITH h92;</pre>
OUTPUT:	<pre>fwl-fw3 ON female stud_ses; %BETWEEN% fb1 BY r88-h88; fb2 BY r90-h90; fb3 BY r92-h92; fb1-fb3 ON per_adva private catholic mean_ses; SAMPSTAT STANDARDIZED TECH1 TECH8 MODINDICES;</pre>

Outpu	t Excerpt Factor A	s NELS Analysis	Two-Lev With Cov	el Longi variates	itudinal
Summa	ary Of Data				
Num] Num]	ber of patterr ber of cluster	ns 15 rs 913			
Average	cluster size	15.572			
Est	imated Intracl	ass Correla	ations for the	Y Variable	s
Variable	Intraclass Correlation	Variable	Intraclass Correlation	Variable	Intraclass Correlation
R88	0.067	M88	0.129	S88	0.100
Н88	0.105	R90	0.076	м90	0.117
S90	0.110	Н90	0.106	R92	0.073
M92	0.111	S92	0.099	Н92	0.091
					112

Tests Of Model Fit

Chi-Square Te	st of Model Fit			
	Value Degrees of Freedom P-Value Scaling Correction for MLR	Factor	4883.539* 146 0.0000 1.046	
Chi-Square Te	st of Model Fit for	the Baseline Mode	1	
	Value Degrees of Freedom P-Value		150256.855 202 0.0000	
CFI/TLI				
	CFI TLI		0.968 0.956	
Loglikelihood				
	H0 Value	-	487323.777	
	H1 Value	-	484770.257	113

Output Excerpts NELS Two-Level Longitudinal Factor Analysis With Covariates (Continued)						
Information Criteria						
Number of Free Parameters Akaike (AIC) Bayesian (BIC) Sample-Size Adjusted BIC (n* = (n + 2) / 24)	94 974835.554 975546.400 975247.676					
RMSEA (Root Mean Square Error Of Approximatic	on)					
Estimate	0.048					
SRMR (Standardized Root Mean Square Residual						
Value for Between Value for Within	0.041 0.027					
	11/					

Model Res	ults					
		Estimates	S.E. E	St./S.E.	Std	StdYX
Within L	evel					
FW1	BY					
R88		1.000	0.000	0.000	6.528	0.812
M88		0.940	0.010	94.856	6.135	0.804
S88		1.005	0.010	95.778	6.559	0.837
Н88		1.041	0.011	97.888	6.796	0.837
FW2	BY					
R90		1.000	0.000	0.000	8.038	0.842
M90		0.911	0.008	109.676	7.321	0.838
S90		1.003	0.010	99.042	8.065	0.859
Н90		0.939	0.008	113.603	7.544	0.855
						115

Output Excerpts NELS Two-Level Longitudinal Factor Analysis With Covariates (Continued)

_							
FW3	BY						
R92		1.000	0.000	0.000	8.460	0.832	
M92		0.939	0.009	101.473	7.946	0.845	
S92		1.003	0.011	90.276	8.482	0.861	
Н92		0.934	0.009	102.825	7.905	0.858	
FW1	ON						
FEMAL	Æ	-0.403	0.128	-3.150	-0.062	-0.031	
STUD_	SES	3.378	0.096	35.264	0.517	0.418	
FW2	ON						
FEMAL	Æ	-0.621	0.157	-3.945	-0.077	-0.039	
STUD_	SES	4.169	0.110	37.746	0.519	0.420	
FW3	ON						
FEMAL	Æ	-1.027	0.169	-6.087	-0.121	-0.064	
STUD_	SES	4.418	0.122	36.124	0.522	0.422	
						116	

Residual Variand	ces				
R88	22.021	0.383	57.464	22.021	0.341
M88	20.618	0.338	61.009	20.618	0.354
S88	18.383	0.323	56.939	18.383	0.299
H88	19.805	0.370	53.587	19.805	0.300
R90	26.546	0.491	54.033	26.546	0.291
м90	22.756	0.375	60.748	22.756	0.298
S90	23.150	0.383	60.516	23.150	0.262
Н90	21.002	0.403	52.124	21.002	0.270
R92	31.821	0.617	51.562	31.821	0.308
M92	25.213	0.485	52.018	25.213	0.285
S92	25.155	0.524	47.974	25.155	0.259
Н92	22.479	0.489	46.016	22.479	0.265
FW1	35.081	0.699	50.201	0.823	0.823
FW2	53.079	1.005	52.806	0.822	0.822
FW3	58.438	1.242	47.041	0.817	0.817
					117

Output Excerpts NELS Two-Level Longitudinal Factor Analysis With Covariates (Continued)

Between FB1	Level					
R88	DI	1 000	0 000	0 000	1 952	0 93
M88		1.553	0.070	22.138	3.031	0.95
S88		1.061	0.058	18.255	2.071	0.88
Н88		1.065	0.053	19.988	2.078	0.81
FB2	ВҮ					
R90		1.000	0.000	0.000	2.413	0.92
M90		1.407	0.058	24.407	3.395	1.00
S90		1.220	0.062	19.697	2.943	0.94
Н90		0.973	0.047	20.496	2.348	0.82
FB3	BY					
R92		1.000	0.000	0.000	2.472	0.94
M92		1.435	0.065	22.095	3.546	0.99
S92		1.160	0.065	17.889	2.868	0.93
Н92		0.963	0.041	23.244	2.380	0.87
						11

FBL	ON					
PER_	ADVA	0.217	0.292	0.742	0.111	0.
PRIV	ATE	0.303	0.344	0.883	0.155	0.0
CATH	IOLIC	-0.696	0.277	-2.512	-0.357	-0.0
MEAN	I_SES	2.513	0.206	12.185	1.288	0.
FB2	ON					
PER_	ADVA	0.280	0.338	0.828	0.116	0.
PRIV	ATE	0.453	0.392	1.155	0.188	0.
CATH	IOLIC	-0.538	0.334	-1.609	-0.223	-0.
MEAN	I_SES	3.054	0.239	12.805	1.266	0.
FB3	ON					
PER_	ADVA	0.473	0.375	1.261	0.192	0.
PRIV	ATE	0.673	0.435	1.547	0.272	0.
CATH	IOLIC	-0.206	0.372	-0.554	-0.084	-0.
	1 9F9	3.142	0.258	12.169	1.271	0.

Output Exce Factor Ana	erpts NELS alysis With	S Two- Covai	Level	Longit Contin	udina ued)
Residual Varia	ances				
R88	0.564	0.104	5.437	0.564	0.129
M88	0.399	0.093	4.292	0.399	0.042
S88	1.160	0.126	9.170	1.160	0.213
H88	2.203	0.203	10.839	2.203	0.338
R90	1.017	0.160	6.352	1.017	0.149
M90	-0.068	0.055	-1.225	-0.068	-0.006
S90	1.025	0.172	5.945	1.025	0.106
Н90	2.518	0.216	11.636	2.518	0.313
R92	0.706	0.182	3.886	0.706	0.104
M92	0.076	0.076	1.000	0.076	0.006
S92	1.120	0.190	5.901	1.120	0.120
H92	1.810	0.211	8.599	1.810	0.242
FB1	1.979	0.245	8.066	0.520	0.520
FB2	3.061	0.345	8.875	0.526	0.526
FB3	3.010	0.409	7.363	0.493	0.493
					120

Multiple-Group, Two-Level Factor Analysis With Covariates

121

<list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Input For NELS:88 Two-Group, Two-Leve Model For Public And Catholic Schools						
TITLE:	NELS:88 with listwise deletion disaggregated model for two groups, public and catholic schools					
DATA:	FILE IS EX831.DAT;;					
VARIABLE:	<pre>NAMES = ses y1-y16 gender cluster minority group; CLUSTER = cluster; WITHIN = gender; BETWEEN = minority; GROUPING = group(1=public 2=catholic);</pre>					
DEFINE:	<pre>minority = minority/5;</pre>					
ANALYSIS:	TYPE = TWOLEVEL; H1ITER = 2500; MITER = 1000;					
		12				

Output E Model For	Xcerpt r Publi	s NEl c And	L <mark>S:88</mark> I Catl	Two nolic S	-Grou Schoo	ıp, Tv ols (Co	vo-Le ontinu	vel 1ed)
18	72133 7348	25580	24910	68614	25074	72990	68328	25404
19	7671 68340	68662 72956	68671 25642	45385 25658	7438 24856	7332 78283	25615 68030	72799
20	72617 7451	72715 68461	7211 78162	25422 78232	7330 72170	72292 25130	72060	72993
21	45394 77254	7193 77634	68180 68448	24589 45271	7205 7584	25894 25227	25958 78598	68391
22	68254 24813	68397	68648	72768	7192	7117	7119	68753
23	68456 25163 7792	25361 45041 78311	7157 77351 68048	25702 45183 68453	25804 77684	45620 78101	24858 68788	7658 68817
24	77222 7778	24053 72042	7000 25360	77403 25977	24138 45747	68297 7616	78011 78886	25536
25	68906 77537	68720 72075	25354	68427	72833	77268	7269	68520
26	72973	45555	24828	68315	45087	25328	77710	25848
27	45831	25618	68652	72080	45900	25208	45452	7103

28	25666	68809	25076	25224	68551
30	7343	45978	25722	45924	
31	77109	7230	68855		
32	25178				
33	45330	25745	25825		
35	25667				
36	72129				
37	25834				
38	45287				
39	45197	7090			
43	45366				

Average cl	luster size 21	1.292			
Estimated	Intraclass Co	orrelations	for the Y Va	riables	
Variable	Intraclass Correlation	Variable	Intraclass Correlation	Variable	Intraclas Correlati
Y1	.111	¥7	.100	Y12	.115
Y2	.105	Ү8	.124	Y13	.185
Y3	.213	Y9	.069	Y14	.094
Y4	.160	Y10	.147	Y15	.132
Y5	.081	Y11	.105	Y16	.159
Y6	.159				

<section-header><section-header><section-header><section-header><section-header>

1716.922* Freedom 575 0.0000 rection Factor 0.872
35476.471 Freedom 608 0.0000
0.967 0.965

Output Excerpts NELS:88 Two-Group, Two-Level Model For Public And Catholic Schools (Continued)						
		Estimates	S.E.	Est./S.E.	Std	StdYX
Group Pub Within Le	olic evel					
GENERALW	ON					
GENDER	2	-0.193	0.029	-6.559	-0.256	-0.128
SES		0.233	0.016	14.269	0.309	0.279
MATHW	ON					
GENDER	2	0.266	0.025	10.534	0.510	0.255
SES		0.054	0.014	3.879	0.103	0.093
SCW	ON					
GENDER	1	0.452	0.032	14.005	0.961	0.480
SES		0.018	0.015	1.244	0.039	0.035
HCGW	ON					
GENDER	1	0.152	0.023	6.588	0.681	0.341
SES		0.002	0.007	0.239	0.007	0.007

	Estimates	S.E.	Est./S.E.	Std	StdYX
Group Catholic Within Level					
GENERALW ON					
GENDER	-0.294	0.059	-5.000	-0.403	-0.201
SES	0.169	0.021	7.892	0.232	0.193
MATHW ON					
GENDER	0.332	0.051	6.478	0.627	0.313
SES	-0.030	0.017	-1.707	-0.056	-0.047
SCW ON					
GENDER	0.555	0.063	8.860	1.226	0.613
SES	-0.022	0.014	-1.592	-0.049	-0.041
HCGW ON					
GENDER	0.160	0.029	5.610	0.785	0.392
SES	0.001	0.007	0.089	0.003	0.002
					133

Output Excerpts NELS:88 Two-Group, Two-Level Model For Public And Catholic Schools (Continued)

	Estimates	S.E.	Est./S.E.	Std	StdYX
Group Public Between Level					
GENERALB ON					
SES	0.505	0.079	6.390	1.244	0.726
MINORITY	-0.217	0.088	-2.452	-0.534	-0.188
MATHB ON					
SES	0.198	0.070	2.825	0.984	0.574
MINORITY	-0.031	0.087	-0.354	-0.153	-0.054
GENERALB WITH					
MATHB	0.000	0.000	0.000	0.000	0.000
Intercepts					
GENERALB	0.000	0.000	0.000	0.000	0.000
MATHB	0.000	0.000	0.000	0.000	0.000
					134

	Estimates	S.E.	Est./S.E.	Std	StdYX
Group Catholic Between Level					
GENERALB ON					
SES	0.262	0.067	3.929	0.975	0.538
MINORITY	-0.327	0.069	-4.707	-0.216	-0.573
MATHB ON					
SES	0.205	0.071	2.901	0.746	0.412
MINORITY	-0.213	0.095	-2.241	-0.778	-0.367
GENERALB WITH					
MATHB	0.000	0.000	0.000	0.000	0.000
Intercepts					
GENERALB	0.466	0.163	2.854	1.734	1.734
MATHB	0.573	0.177	3.239	2.087	2.087
					135

Further Readings On Two-Level Factor Analysis (Continued)

Muthén, B. (1994). Multilevel covariance structure analysis. In J. Hox & I. Kreft (eds.), Multilevel Modeling, a special issue of <u>Sociological Methods</u> <u>& Research</u>, 22, 376-398. (#55)

Muthen, B., Khoo, S.T. & Gustafsson, J.E. (1997). Multilevel latent variable modeling in multiple populations. Under review <u>Sociological Methods & Research</u>.

137

Two-Level Structural Equation Modeling

Input Excerpts Two-Level Logistic Regression On A Factor					
VARIABLE:	CLUSTER=classrm; USEVAR = juv99 gender stublF bkRulelF harmOlF bkThin1F yell1F takeP1F fight1F lies1F tease1F; CATEGORICAL = juv99; MISSING = ALL (999); WITHIN = gender;				
ANALYSIS:	TYPE = TWOLEVEL;				
MODEL:	%WITHIN% fw BY stublF bkRulelF harmOlF bkThinlF yelllF takePlF fightlF lieslF teaselF; juv99 ON gender fw; %BETWEEN% fb BY stublF bkRulelF harmOlF bkThinlF yelllF takePlF fightlF lieslF teaselF; juv99 ON fb;				
OUTPUT:	TECH1 TECH8;	1/10			

Two-Level SEM With Categorical Factor Indicators On The Within Level And Cluster-Level Continuous Observed And Random Intercept Factor Indicators On the Between Level

Two-Level SEM With Categorical Factor Indicators On The Within Level And Cluster-Level Continuous Observed And Random Intercept Factor Indicators On the Between Level

TITLE:	this is an example of a two-level SEM with categorical factor indicators on the within level and cluster-level continuous observed and random	
	intercept factor indicators on the between level	
DATA:	FILE IS ex9.9.dat;	
VARIABLE:	NAMES ARE ul-u6 yl-y4 x1 x2 w clus;	
	CATEGORICAL = u1-u6;	
	WITHIN = x1 x2;	
	BETWEEN = w y1-y4;	
	CLUSTER IS clus;	
ANALYSIS:	TYPE IS TWOLEVEL;	
	ESTIMATOR = WLSMV;	
MODEL:		
	%WITHIN%	
	fwl BY ul-u3;	
	fw2 BY u4-u6;	
	fwl fw2 ON x1 x2;	
	142	-

Two-Level SEM With Categorical Factor Indicators On The Within Level And Cluster-Level Continuous Observed And Random Intercept Factor Indicators On the Between Level

%BETWEEN%
fb BY ul-u6;
f BY yl-y4;
fb ON w f;
f ON w;
TA: SWMATRIX = ex9.9sw.dat;

SAVEDATA:

Practical Issues Related To The Analysis Of Multilevel Data (Continued)

Sample Size

- There should be at least 30-50 between-level units (clusters)
- Clusters with only one observation are allowed
- More clusters than between-level parameters

<equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Output Excerpt	s NELS Two-	Level Re	gression
	Estimates	S.E.	Est./S.E.
Between Level			
Means			
M92	55.279	0.174	317.706
S_FEMALE	-0.850	0.188	-4.507
S_SES	5.450	0.132	41.228
Variances			
M92	11.814	1.197	9.870
S_FEMALE	5.762	1.426	4.041
S_SES	0.905	0.538	1.682
S_FEMALE WITH			
M92	-4.936	1.071	-4.610
S_SES	0.068	0.635	0.107
S_SES WITH			
M92	1.314	0.541	2.431
			159

Is The Conventional Two-Level Regression Model Sufficient?

- Conventional Two-Level Regression of Math Score Related to Gender and Student SES
 - Loglikelihood = -39,512, number of parameters = 10, BIC = 79,117
- New Model
 - Loglikelihood = -39,368, number of parameters = 12, BIC = 78,848

161

- Which model would you choose?

Model Results For NELS Two-Level Regression Of Math Score Related To Gender And Student SES

Model	Loglikelihood	# parameters	BIC
(1) Conventional 2-level regression			
with random intercepts			
and random slopes	-39,512	10	79,117
(2) Two-level regression mixture,			
2 latent classes for students	-39,368	12	78,848
(3) Two-level regression mixture,			
3 latent classes for students	-39,280	19	78,736
			163

Input For Two-Level Regression With Latent Classes For Students

TITLE: DATA:	NELS 2-level regression FILE = comp.dat;
VARIABLE:	FORMAT = 2f7.0 fll.4 13f5.2 79f8.2 fll.7;
	<pre>NAMES = school m92 female stud_ses; CLUSTER = school; USEV = m92 female stud_ses; WITHIN = female stud_ses; CENTERING = GRANDMEAN(stud_ses); CLASSES = cw(3);</pre>
ANALYSIS:	
	<pre>TYPE = TWOLEVEL MIXTURE; PROCESS = 2; INTERACTIVE = control.dat; !STARTS = 1000 100; STARTS = 0;</pre>

Cluster-Randomized Trials And NonCompliance

Randomized Trials With NonCompliance

- Tx group (compliance status observed)
 - Compliers
 - Noncompliers
- Control group (compliance status unobserved)
 - Compliers
 - NonCompliers

Compliers and Noncompliers are typically not randomly equivalent subgroups.

Four approaches to estimating treatment effects:

- 1. Tx versus Control (Intent-To-Treat; ITT)
- 2. Tx Compliers versus Control (Per Protocol)
- 3. Tx Compliers versus Tx NonCompliers + Control (As-Treated)
- 4. Mixture analysis (Complier Average Causal Effect; CACE):
 - Tx Compliers versus Control Compliers
 - Tx NonCompliers versus Control NonCompliers
- CACE: Little & Yau (1998) in Psychological Methods

Further Readings On Non-Compliance Modeling

- Dunn, G., Maracy, M., Dowrick, C., Ayuso-Mateos, J.L., Dalgard, O.S., Page, H., Lehtinen, V., Casey, P., Wilkinson, C., Vasquez-Barquero, J.L., & Wilkinson, G. (2003). Estimating psychological treatment effects from a randomized controlled trial with both non-compliance and loss to follow-up. British Journal of Psychiatry, 183, 323-331.
- Jo, B. (2002). Statistical power in randomized intervention studies with noncompliance. Psychological Methods, 7, 178-193.
- Jo, B. (2002). Model misspecification sensitivity analysis in estimating causal effects of interventions with noncompliance. Statistics in Medicine, 21, 3161-3181.
- Jo, B. (2002). Estimation of intervention effects with noncompliance: Alternative model specifications. Journal of Educational and Behavioral Statistics, 27, 385-409.

171

Further Readings On Non-Compliance Modeling: Two-Level Modeling

- Jo, B., Asparouhov, T. & Muthén, B. (2008). Intention-to-treat analysis in cluster randomized trials with noncompliance. <u>Statistics in Medicine</u>, 27, 5565-5577.
- Jo, B., Asparouhov, T., Muthén, B. O., Ialongo, N. S., & Brown, C.
 H. (2008). Cluster Randomized Trials with Treatment Noncompliance. <u>Psychological Methods</u>, 13, 1-18.

<pre>TITLE: this is an example of a two-level LCA with categorical latent class indicators DATA: FILE IS ex10.3.dat; VARIABLE: NAMES ARE ul-u6 x w c clus; USEVARIABLES = ul-u6 x w; CATEGORICAL = ul-u6; CLASSES = c (3); WITHIN = x; BETWEEN = w; CLUSTER = clus; ANALYSIS: TYPE = TWOLEVEL MIXTURE;</pre>		Input For Two-Level	
<pre>TITLE: this is an example of a two-level LCA with categorical latent class indicators DATA: FILE IS ex10.3.dat; VARIABLE: NAMES ARE ul-u6 x w c clus; USEVARIABLES = ul-u6 x w; CATEGORICAL = ul-u6; CLASSES = c (3); WITHIN = x; BETWEEN = w; CLUSTER = clus; ANALYSIS: TYPE = TWOLEVEL MIXTURE;</pre>		Latent Class Analysis	
<pre>TITLE: this is an example of a two-level LCA with categorical latent class indicators DATA: FILE IS ex10.3.dat; VARIABLE: NAMES ARE ul-u6 x w c clus; USEVARIABLES = ul-u6 x w; CATEGORICAL = ul-u6; CLASSES = c (3); WITHIN = x; BETWEEN = w; CLUSTER = clus; ANALYSIS: TYPE = TWOLEVEL MIXTURE;</pre>			
DATA: FILE IS ex10.3.dat; VARIABLE: NAMES ARE ul-u6 x w c clus; USEVARIABLES = ul-u6 x w; CATEGORICAL = ul-u6; CLASSES = c (3); WITHIN = x; BETWEEN = w; CLUSTER = clus; ANALYSIS: TYPE = TWOLEVEL MIXTURE;	TLE:	this is an example of a two-level LCA with categorical latent class indicators	
<pre>VARIABLE: NAMES ARE ul-u6 x w c clus; USEVARIABLES = ul-u6 x w; CATEGORICAL = ul-u6; CLASSES = c (3); WITHIN = x; BETWEEN = w; CLUSTER = clus; ANALYSIS: TYPE = TWOLEVEL MIXTURE;</pre>	ATA:	FILE IS ex10.3.dat;	
USEVARIABLES = ul-u6 x w; CATEGORICAL = ul-u6; CLASSES = c (3); WITHIN = x; BETWEEN = w; CLUSTER = clus; ANALYSIS: TYPE = TWOLEVEL MIXTURE;	RIABLE:	NAMES ARE ul-u6 x w c clus;	
CATEGORICAL = u1-u6; CLASSES = c (3); WITHIN = x; BETWEEN = w; CLUSTER = clus; ANALYSIS: TYPE = TWOLEVEL MIXTURE;		USEVARIABLES = ul-u6 x w;	
CLASSES = c (3); WITHIN = x; BETWEEN = w; CLUSTER = clus; ANALYSIS: TYPE = TWOLEVEL MIXTURE;		CATEGORICAL = u1-u6;	
WITHIN = x; BETWEEN = w; CLUSTER = clus; ANALYSIS: TYPE = TWOLEVEL MIXTURE;		CLASSES = c (3);	
BETWEEN = w; CLUSTER = clus; ANALYSIS: TYPE = TWOLEVEL MIXTURE;		WITHIN = x;	
CLUSTER = clus; ANALYSIS: TYPE = TWOLEVEL MIXTURE;		BETWEEN = w;	
ANALYSIS: TYPE = TWOLEVEL MIXTURE;		CLUSTER = clus;	
	ALYSIS:	TYPE = TWOLEVEL MIXTURE;	
			47

MODEL: %WITHIN% %OVERALL% c#1 c#2 ON x; %BETWEEN% %OVERALL% f BY c#1 c#2; f ON w; OUTPUT: TECH1 TECH8;	Input For Two-Level Latent Class Analysis (Continued)		
<pre>%BETWEEN% %OVERALL% f BY c#1 c#2; f ON w; OUTPUT: TECH1 TECH8;</pre>	MODEL:	%WITHIN% %OVERALL% c#1 c#2 ON x;	
OUTPUT: TECH1 TECH8;		<pre>%BETWEEN% %OVERALL% f BY c#1 c#2; f ON w;</pre>	
	OUTPUT:	TECH1 TECH8;	
			1

Model	Loglikelihood	# parameters	BIC
(1) Conventional 2-level regression			
with random intercepts			
and random slopes	-39,512	10	79,117
(2) Two-level regression mixture,			
2 latent classes for students	-39,368	12	78,848
(3) Two-level regression mixture,			
3 latent classes for students	-39,280	19	78,736
(4) Two-level regression mixture,			
2 latent classes for schools,			
2 latent classes for students	-39,348	19	78,873
(5) Two-level regression mixture,			
2 latent classes for schools,			
3 latent classes for students	-39,260	29	78,789

Input For Two-Level Latent Class Analysis		
TITLE:	this is an example of a two-level LCA with categorical latent class indicators and a between- level categorical latent variable	
DATA:	FILE = ex4.dat;	
VARIABLE:	<pre>NAMES ARE ul-ul0 dumb dumw clus; USEVARIABLES = ul-ul0; CATEGORICAL = ul-ul0; CLASSES = cb(5) cw(4); WITHIN = ul-ul0;</pre>	
	BETWEEN = cb; CLUSTER = clus;	
ANALYSIS:	TYPE = TWOLEVEL MIXTURE; PROCESSORS = 2; STARTS = 100 10;	
MODEL:		
	%WITHIN% %OVERALL% %BETWEEN% %OVERALL%	
	cw#1-cw#3 ON cb#1-cb#4;	
	185	

	References (Continued)
На	rnqvist, K., Gustafsson, J.E., Muthén, B. & Nelson, G. (1994). Hierarchical models of ability at class and individual levels. <u>Intelligence</u> , 18, 165-187. (#53)
Не	ck, R.H. (2001). Multilevel modeling with SEM. In G.A. Marcoulides & R.E. Schumacker (eds.), <u>New developments and techniques in structural equation modeling</u> (pp. 89-127). Lawrence Erlbaum Associates.
Но	ox, J. (2002). <u>Multilevel analysis. Techniques and applications</u> . Mahwah, NJ Lawrence Erlbaum.
Jo,	B., Asparouhov, T. & Muthén, B. (2008). Intention-to-treat analysis in cluster randomized trials with noncompliance. <u>Statistics in Medicine</u> , 27, 5565-5577.
Jo,	B., Asparouhov, T., Muthén, B., Ialongo, N.S. & Brown, C.H. (2008). Cluster randomized trials with treatment non-compliance. <u>Psychological</u> <u>Methods</u> , 13, 1-18.
Ka	plan, D. & Elliott, P.R. (1997). A didactic example of multilevel structural equation modeling applicable to the study of organizations. <u>Structural Equation Modeling: A Multidisciplinary Journal</u> , 4, 1-24.
Ka	plan, D. & Ferguson, A.J (1999). On the utilization of sample weights in latent variable models. <u>Structural Equation Modeling</u> , 6, 305-321.
	188

References (Continued)	
Muthén, B. (1990). Mean and covariance structure analysis of hierar Paper presented at the Psychometric Society meeting in Princeto 1990. UCLA Statistics Series 62. (#32)	rchical data. n, N.J., June
Muthén, B. (1991). Multilevel factor analysis of class and student ac components. Journal of Educational Measurement, 28, 338-354.	chievement (#37)
Muthén, B. (1994). Multilevel covariance structure analysis. In J. H (eds.), Multilevel Modeling, a special issue of <u>Sociological Meth</u> <u>Research</u> , 22, 376-398. (#55)	ox & I. Kreft 10ds &
Muthén, B. & Asparouhov, T. (2009). Beyond multilevel regression Multilevel analysis in a general latent variable framework. To ap <u>Handbook of Advanced Multilevel Analysis</u> . J. Hox & J.K. Rob Taylor and Francis.	n modeling: opear in <u>The</u> erts (eds).
Muthén, B. & Asparouhov, T. (2009). Multilevel regression mixture Forthcoming in Journal of the Royal Statistical Society, Series A	e analysis.
Muthén, B., Khoo, S.T. & Gustafsson, J.E. (1997). Multilevel latent modeling in multiple populations. (#74)	variable
Muthén, B. & Satorra, A. (1995). Complex sample data in structural modeling. In P. Marsden (ed.), <u>Sociological Methodology 1995</u> , (#59)	l equation 216-316.
	190

