Estimation of a hierarchical Exploratory Structural Equation Model (ESEM) using ESEMwithin-CFA

Alexandre J.S. Morin, Substantive Methodological Synergy Research Laboratory, Department of Psychology, Concordia University, Canada & Tihomir Asparouhov, Muthén & Muthén, Los Angeles, CA

Cite as: Morin, A.J.S., & Asparouhov, T. (2018). *Estimation of a hierarchical Exploratory Structural Equation Model (ESEM) using ESEM-within-CFA*. Montreal, QC: Substantive Methodological Synergy Research Laboratory.

Morin, Arens and Marsh (2016, also see Marsh, Morin, Parker, & Kaur, 2014; Morin, Marsh & Nagengast, 2013), based on earlier work by Marsh, Nagengast & Morin (2013) and Joreskög (1969; also see Muthén & Muthén, 2009, slides 133–146) introduced ESEM-Within-CFA (EWC) as a workaround some limitations of exploratory Structural Equation Models (ESEM). Essentially, EWC starts with an ESEM model, and re-express it in the CFA framework using the starts values generated from the initial ESEM model. More precisely, using the exact starts values generated form the initial ESEM model is estimated by adding m² constraints for identification purposes. To do so, selected parameter estimates are fixed to the values obtained from the ESEM solution. Typically:

(1) The m factor variances are fixed to 1 (in a single-group ESEM, for the first group in a multiple group solution, or the first time point for a longitudinal solution).

(2) A referent indicator is selected for each factor that has a large (target) loading for the factor it is designed to measure and small (non-target) cross-loadings. Then, for purposes of identification, these small cross-loadings are fixed (@) to their estimated values from the ESEM solution.

(3) For all other parameter estimates, the pattern of fixed and free estimates should be the same as in the selected ESEM solution.

(4) It should be noted that the mean structure from the EWC solution can be identified as in a standard CFA model (while using the ESEM start values when possible).

For most applications proposed by Morin and colleagues, this EWC approach works fine. However, we recently realized that this approach was suboptimal for the estimation of higher-order ESEM models reported in Morin, Arens and Marsh (2016). More precisely, to fully re-express the ESEM model, the first-order factor variances have to be set to a value of 1 [i.e., the constraints described under (1) above]. However, in the higher-order EWC models reported in Morin, Arens and Marsh (2016), the constraints described in (1) resulted in into a EWC solution in which the residual variance of the first-order factors were fixed to 1, rather than their variance. In addition, having the factor loading of the first indicator on the higher-order factor fixed to 1 created further interference with the model estimation, taking it even further from the initial ESEM model. More precisely, if we consider one of the first-order factor (F1) and the Higher-order factor (HF):

Var(F1) = residual variance (F1) + loading_HF² * Var(HF)

So that if the constraints described above are imposed: Var(F1) = 1 + 1 * Var(HF)

To circumvent this issue, we proposed an alternative (and simpler) EWC solution in which the variance of the first-order factors can be freely estimated:

(1) A referent indicator is selected for each factor that has a large (target) loading for the factor it is designed to measure and small (non-target) cross-loadings. Then, for purposes of identification, these large main loadings and small cross-loadings are fixed (@) to their estimated values from the ESEM solution. All factor variances are freely estimated. Note here that it is important to use the referent indicator approach. Fixing some other arbitrary m^2 loadings may compromise the efficiency of the estimation.

(2) For all other parameter estimates, the pattern of fixed and free estimates should be the same as in the selected ESEM solution.

(3) It should be noted that the mean structure from the EWC solution can be identified as in a standard CFA model (while using the ESEM start values when possible).

For most other contexts, the typical EWC approach would work. For instance, Morin, Arens and Marsh (2016) show how to re-express a partial mediation ESEM model with EWC in order to obtain bias-corrected bootstrap confidence intervals. In this example, the residual variance of the outcome ESEM factors has to be fixed to 1 in the EWC model to ensure its equivalence with the ESEM model in which they are also fixed to 1. Likewise, Morin, Marsh and Nagengast (2013) illustrated how EWC could be used to estimate latent change scores in the context of a longitudinal ESEM solution. In this context, the residual variance of the Time 2 factors should not be fixed to 1 in the EWC solution. However, this constraint is not required for this model to match the ESEM solution in which, due to measurement invariance, the variance of the Time 2 factors was allowed to be freely estimated. Still, we urge readers to carefully consider their specific EWC application in order to find the approach that best work with their data.

The revised approach proposed here would lead to new sample inputs for the examples provided by Morin, Arens and Marsh (2016) on pages 8 (middle) and X of their online supplemental materials, as well as different fit indices associated with their Higher-Order EWC solutions:

Table 1.

Adjusted Goodness of Fit Statistics and Information Criteria for the Re-Estimated Higher-Order ESEM models

Model	χ^2	df	CFI	TLI	RMSEA	RMSEA	AIC	CAIC	BIC	SBIC
						90% CI				
Simulated data	100.432*	33	.996	.991	.036	.028; .044	40021	403385	403328	40146
SDQ-I	5813.763*	2071	.949	.929	.030	.029; .031	360300	366425	365494	362536
SDQ-I without	6219.130*	2113	.944	.924	.032	.031; .032	360835	366684	365795	362971
method control										

Note. df = Degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root mean square error of approximation; CI = confidence interval; AIC = Akaike information criterion; CAIC = Constant AIC; BIC = Bayesian information criterion; ABIC = Sample size adjusted BIC. ESEM models were conducted with target oblique rotation. * All χ^2 values are significant (p < .01).

Title: Hierarchical ESEM using ESEM-Within-CFA (Simulated Data)

! The previous ESEM model is re-expressed using CFA. No rotation is necessary.

! The model section uses the exact values of the non-standardized loadings and cross loadings

! estimated from the previous model as starts values (using *). First-order factor variances are also freely

- ! estimated, whereas the variance of the higher-order factor is fixed to 1 for identification purposes.
- ! For the first-order factors, one item per factor has all loadings and cross loadings
- ! constrained to be exactly equal to their ESEM values (using @).

! These 3 factors define a higher-order factor HF, with all higher-order loadings freely estimated.. Model:

f1 BY x1*0.74674; f1 BY x2*0.80372; f1 BY x3@0.80739; f1 BY x4*0.83759;

f1 BY y1*-0.05015; f1 BY y2*0.20610; f1 BY y3*-0.09183; f1 BY y4@0.03835;

f1 BY z1*0.22881; f1 BY z2*0.02457; f1 BY z3*0.01376; f1 BY z4@-0.13088;

f2 BY y1*0.79513; f2 BY y2*0.80701; f2 BY y3*0.95053; f2 BY y4@0.90008;

f2 BY x1*-0.12434; f2 BY x2*0.15514; f2 BY x3@-0.07168; f2 BY x4*0.08193;

f2 BY z1*0.06430; f2 BY z2*0.31927; f2 BY z3*-0.14645; f2 BY z4@-0.00922;

f3 BY z1*0.71349; f3 BY z2*0.66022; f3 BY z3*0.96202; f3 BY z4@0.95145;

f3 BY x1*0.11211; f3 BY x2*-0.13255; f3 BY x3@0.15235; f3 BY x4*-0.02669;

f3 BY y1*0.16258; f3 BY y2*-0.02858; f3 BY y3*0.07700; f3 BY y4@-0.01649;

f1-f3*1; HF BY F1*1 F2 F3;

HF@1;

Title: Hierarchical ESEM Model of the SDQ-I Using ESEM-Within-CFA (Real Data) ! [...] Analysis and Model sections only

Model:

esteem BY sdq_1*-0.03101; esteem BY sdq_2*0.01217; esteem BY sdq_3*-0.09151; esteem BY sdq_4@0.02081; esteem BY sdq_5*0.03906; esteem BY sdq_6*-0.04812; esteem BY sdq_7*-0.06562; esteem BY sdq_8*0.07463; esteem BY sdq_9*0.03260; esteem BY sdq_10*-0.01524; esteem BY sdq_11*-0.05772; esteem BY sdq_12*0.12921; esteem BY sdq_13*-0.03180; esteem BY sdq_14*-0.07285; esteem BY sdq_15*-0.11861; esteem BY sdq_16@-0.02130; esteem BY sdq_17*0.02080; esteem BY sdq_18*-0.03832; esteem BY sdq 19*0.00802; esteem BY sdq 20*-0.00514; esteem BY sdq 21@-0.12155; esteem BY sdq 22@-0.08714; esteem BY sdq 23*0.09885; esteem BY sdq 24*0.01615; esteem BY sdq_25*-0.03904; esteem BY sdq_26*0.01240; esteem BY sdq_27@-0.03013; esteem BY sdq_28*-0.00719; esteem BY sdq_29*0.22094; esteem BY sdq_30*0.18339; esteem BY sdq_31*0.11053; esteem BY sdq_32*0.07525; esteem BY sdq_33*0.08772; esteem BY sdq_34*-0.02310; esteem BY sdq_35*-0.05219; esteem BY sdq_36*0.14200; esteem BY sdq 37*0.35244; esteem BY sdq 38*-0.03335; esteem BY sdq 39@0.10041; esteem BY sdq 40*-0.00166; esteem BY sdq 41*-0.01108; esteem BY sdq 42*-0.00535; esteem BY sdq 43*0.04976; esteem BY sdq 44*0.08265; esteem BY sdq 45*0.43268; esteem BY sdq_46*0.17244; esteem BY sdq_47*0.19713; esteem BY sdq_48*0.00646; esteem BY sdq_49*0.05793; esteem BY sdq_50@-0.05201; esteem BY sdq_51@0.03668; esteem BY sdq_52*0.02084; esteem BY sdq_53*0.50177; esteem BY sdq_54*0.07961; esteem BY sdq_55*0.09049; esteem BY sdq_56@0.01561; esteem BY sdq_57@0.01464; esteem BY sdq_58*-0.00679; esteem BY sdq_59*0.03239; esteem BY sdq_60*0.15877; esteem BY sdq 61*0.44200; esteem BY sdq 62*0.34821; esteem BY sdq 63*0.14271; esteem BY sdq_64*-0.03137; esteem BY sdq_65*0.10076; esteem BY sdq_66*0.01167; esteem BY sdq 67*0.57164; esteem BY sdq 68*-0.01571; esteem BY sdq 69*0.21330; esteem BY sdq_70*0.42051; esteem BY sdq_71*0.09761; esteem BY sdq_72@0.64738; esteem BY sdq_73*0.17188; esteem BY sdq_74*0.64337; esteem BY sdq_75*0.09383; esteem BY sdq_76*0.59995; peer BY sdg 1*0.01483; peer BY sdg 2*0.00711; peer BY sdg 3*0.02157; peer BY sdq_4@0.02496; peer BY sdq_5*0.00559; peer BY sdq_6*-0.04748; peer BY sdq 7*0.60133; peer BY sdq 8*-0.01487; peer BY sdq 9*0.00059; peer BY sdq_10*-0.01116; peer BY sdq_11*0.01508; peer BY sdq_12*0.03398; peer BY sdq 13*0.05970; peer BY sdq 14*0.76648; peer BY sdq 15*0.03099; peer BY sdq_16@0.04426; peer BY sdq_17*0.04696; peer BY sdq_18*0.07575; peer BY sdq_19*-0.02550; peer BY sdq_20*-0.02445; peer BY sdq_21@0.89504; peer BY sdq_22@0.00709; peer BY sdq_23*0.02470; peer BY sdq_24*0.05091; peer BY sdq 25*0.01956; peer BY sdq 26*0.00629; peer BY sdq 27@0.04108; peer BY sdq_28*0.50873; peer BY sdq_29*0.06983; peer BY sdq_30*-0.05489; peer BY sdq 31*0.00798; peer BY sdq 32*0.01557; peer BY sdq 33*0.00357; peer BY sdq_34*0.10410; peer BY sdq_35*0.01648; peer BY sdq_36*0.37885; peer BY sdq 37*0.08214; peer BY sdq 38*0.33493; peer BY sdq 39@-0.00893; peer BY sdq_40*-0.01058; peer BY sdq_41*0.03624; peer BY sdq_42*0.08547; peer BY sdq 43*0.07033; peer BY sdq 44*0.59996; peer BY sdq 45*-0.07896; peer BY sdq_46*-0.00915; peer BY sdq_47*-0.00916; peer BY sdq_48*-0.01087; peer BY sdq 49*0.05702; peer BY sdq 50@-0.03239; peer BY sdq 51@-0.04187; peer BY sdq_52*0.64059; peer BY sdq_53*0.08961; peer BY sdq_54*0.06749; peer BY sdq 55*0.03405; peer BY sdq 56@-0.03591; peer BY sdq 57@0.00226; peer BY sdq 58*-0.03337; peer BY sdq 59*0.01515; peer BY sdq 60*0.57835; peer BY sdq 61*0.02987; peer BY sdq 62*0.00648; peer BY sdq 63*0.00454; peer BY sdq_64*0.02051; peer BY sdq_65*-0.00968; peer BY sdq_66*0.02470; peer BY sdq_67*0.09766; peer BY sdq_68*0.03386; peer BY sdq_69*0.64351; peer BY sdq_70*0.24271; peer BY sdq_71*0.02979; peer BY sdq_72@0.00827; peer BY sdq_73*0.03703; peer BY sdq_74*0.04893; peer BY sdq_75*-0.01164; peer BY sdq 76*0.00385;

appear BY sdq_1*0.71159; appear BY sdq_2*0.09873; appear BY sdq_3*0.13287; appear BY sdq_4@0.06279; appear BY sdq_5*0.00368; appear BY sdq_6*-0.00785; appear BY sdq 7*-0.04277; appear BY sdq 8*0.70614; appear BY sdq 9*0.11704; appear BY sdq_10*-0.01854; appear BY sdq_11*0.11321; appear BY sdq_12*-0.03001; appear BY sdq_13*0.02418; appear BY sdq_14*-0.00685; appear BY sdq_15*1.00287; appear BY sdq_16@0.07795; appear BY sdq_17*-0.12160; appear BY sdq_18*0.04556; appear BY sdq_19*0.01240; appear BY sdq_20*0.01631; appear BY sdq_21@-0.04602; appear BY sdq_22@1.02221; appear BY sdq_23*-0.00912; appear BY sdq_24*-0.10848; appear BY sdq_25*0.07942; appear BY sdq_26*0.03758; appear BY sdq_27@0.07097; appear BY sdq 28*-0.04027; appear BY sdq 29*0.05582; appear BY sdq 30*0.58827; appear BY sdq 31*-0.01727; appear BY sdq 32*0.11016; appear BY sdq 33*0.04432; appear BY sdq_34*-0.00522; appear BY sdq_35*0.02454; appear BY sdq_36*0.21725; appear BY sdq_37*0.18567; appear BY sdq_38*0.48975; appear BY sdq_39@0.02326; appear BY sdq_40*0.00452; appear BY sdq_41*0.01634; appear BY sdq_42*-0.01316; appear BY sdq_43*-0.02090; appear BY sdq_44*0.09312; appear BY sdq_45*0.23782; appear BY sdq 46*0.46624; appear BY sdq 47*-0.00479; appear BY sdq 48*-0.00881; appear BY sdq_49*-0.01399; appear BY sdq_50@0.00336; appear BY sdq_51@0.00420; appear BY sdq 52*0.05729; appear BY sdq 53*-0.01538; appear BY sdq 54*0.54715; appear BY sdq_55*0.01001; appear BY sdq_56@0.05502; appear BY sdq_57@0.02400; appear BY sdq_58*0.00958; appear BY sdq_59*0.03606; appear BY sdq_60*0.07554; appear BY sdq_61*-0.01190; appear BY sdq_62*0.40915; appear BY sdq_63*0.01776; appear BY sdq_64*0.08782; appear BY sdq_65*-0.04775; appear BY sdq_66*-0.04915; appear BY sdq_67*-0.04068; appear BY sdq_68*-0.03990; appear BY sdq_69*0.04566; appear BY sdq 70*-0.00037; appear BY sdq 71*-0.02092; appear BY sdq 72@0.21957; appear BY sdq_73*-0.04005; appear BY sdq_74*0.00244; appear BY sdq_75*-0.01976; appear BY sdq 76*-0.01995; phy BY sdq_1*0.02194; phy BY sdq_2*0.01452; phy BY sdq_3*0.78947; phy BY sdq_4@-0.02107; phy BY sdq_5*0.01981; phy BY sdq_6*0.01287; phy BY sdq_7*0.03353; phy BY sdq_8*0.06273; phy BY sdq_9*0.00662; phy BY sdq_10*0.59057; phy BY sdq_11*-0.02425; phy BY sdq 12*-0.06819; phy BY sdq 13*-0.01218; phy BY sdq 14*0.00452; phy BY sdq_15*-0.03428; phy BY sdq_16@0.03458; phy BY sdq_17*0.84509; phy BY sdq_18*0.01133; phy BY sdq_19*0.01286; phy BY sdq_20*-0.01088; phy BY sdq_21@0.03890; phy BY sdq_22@-0.05882; phy BY sdq_23*-0.00818; phy BY sdq 24*0.96238; phy BY sdq 25*0.00073; phy BY sdq 26*-0.00136; phy BY sdq_27@-0.02262; phy BY sdq_28*0.04810; phy BY sdq_29*0.06779; phy BY sdq_30*-0.01366; phy BY sdq_31*0.04801; phy BY sdq_32*0.44694; phy BY sdq_33*0.00927; phy BY sdq_34*-0.00148; phy BY sdq_35*0.03654; phy BY sdq_36*-0.02582; phy BY sdq_37*-0.05735; phy BY sdq_38*0.02221; phy BY sdq_39@0.05285; phy BY sdq_40*0.96105; phy BY sdq_41*0.05432; phy BY sdq_42*0.02684; phy BY sdq_43*0.04910; phy BY sdq_44*-0.03567; phy BY sdq_45*0.05679; phy BY sdq_46*0.31726; phy BY sdq_47*0.02376; phy BY sdq 48*0.89070; phy BY sdq 49*0.00098; phy BY sdq 50@-0.01488; phy BY sdq_51@0.03171; phy BY sdq_52*0.00920; phy BY sdq_53*0.06230; phy BY sdq_54*0.07194; phy BY sdq_55*0.02209; phy BY sdq_56@1.07046; phy BY sdq_57@0.01120; phy BY sdq_58*-0.02499; phy BY sdq_59*0.01162; phy BY sdq_60*0.03135; phy BY sdq_61*-0.03602; phy BY sdq_62*-0.02723; phy BY sdq_63*0.01613; phy BY sdq_64*0.72703; phy BY sdq_65*-0.00122; phy BY sdq 66*0.04326; phy BY sdq 67*0.04468; phy BY sdq 68*0.06114; phy BY sdq_69*0.01422; phy BY sdq_70*-0.04907; phy BY sdq_71*0.03776; phy BY sdq 72@0.02647; phy BY sdq 73*0.06399; phy BY sdq 74*0.01812; phy BY sdq_75*0.03129; phy BY sdq_76*0.04231; parent BY sdq_1*-0.02668; parent BY sdq_2*0.02864; parent BY sdq_3*-0.00981; parent BY sdq_4@0.02773; parent BY sdq_5*0.57959; parent BY sdq_6*0.07208; parent BY sdq_7*0.03752; parent BY sdq_8*0.00950; parent BY sdq_9*0.11439; parent BY sdq 10*0.05511; parent BY sdq 11*0.03639; parent BY sdq 12*0.39861;

parent BY sdq_13*-0.01614; parent BY sdq_14*-0.04690; parent BY sdq_15*0.00667; parent BY sdq_16@0.08799; parent BY sdq_17*-0.03809; parent BY sdq_18*0.02067; parent BY sdq 19*0.38859; parent BY sdq 20*0.03514; parent BY sdq 21@0.01897; parent BY sdq_22@0.02610; parent BY sdq_23*0.07107; parent BY sdq_24*-0.04255; parent BY sdq_25*0.06513; parent BY sdq_26*0.38376; parent BY sdq_27@0.01378; parent BY sdq_28*0.07242; parent BY sdq_29*0.02260; parent BY sdq_30*0.06201; parent BY sdq_31*0.05306; parent BY sdq_32*-0.00869; parent BY sdq_33*0.03554; parent BY sdq_34*0.73127; parent BY sdq_35*0.01952; parent BY sdq_36*-0.01827; parent BY sdq_37*0.11768; parent BY sdq_38*-0.02072; parent BY sdq_39@0.01320; parent BY sdq 40*-0.01890; parent BY sdq 41*0.06423; parent BY sdq 42*0.76171; parent BY sdq 43*0.03504; parent BY sdq 44*0.01979; parent BY sdq 45*0.11303; parent BY sdq_46*0.04475; parent BY sdq_47*0.06342; parent BY sdq_48*0.07274; parent BY sdq_49*0.00470; parent BY sdq_50@0.86884; parent BY sdq_51@-0.02296; parent BY sdq_52*-0.01037; parent BY sdq_53*0.13723; parent BY sdq_54*-0.01702; parent BY sdq_55*0.03126; parent BY sdq_56@-0.01330; parent BY sdq_57@0.06805; parent BY sdq 58*0.79620; parent BY sdq 59*0.00180; parent BY sdq 60*0.00609; parent BY sdq_61*0.20753; parent BY sdq_62*0.02179; parent BY sdq_63*0.01376; parent BY sdq 64*0.05815; parent BY sdq 65*0.04031; parent BY sdq 66*0.85028; parent BY sdq_67*0.01947; parent BY sdq_68*0.01100; parent BY sdq_69*-0.01439; parent BY sdq_70*0.00436; parent BY sdq_71*0.02078; parent BY sdq_72@-0.05797; parent BY sdq_73*-0.02819; parent BY sdq_74*-0.05795; parent BY sdq_75*0.03648; parent BY sdq_76*0.01392; schocom BY sdq_1*-0.03574; schocom BY sdq_2*0.31972; schocom BY sdq_3*0.06532; schocom BY sdq 4@0.19823; schocom BY sdq 5*-0.04472; schocom BY sdq 6*-0.09553; schocom BY sdq_7*-0.19154; schocom BY sdq_8*-0.17366; schocom BY sdq_9*0.17193; schocom BY sdq 10*-0.10055; schocom BY sdq 11*-0.09512; schocom BY sdq 12*-0.00304; schocom BY sdq_13*0.05550; schocom BY sdq_14*-0.01751; schocom BY sdq_15*0.00149; schocom BY sdq_16@0.41965; schocom BY sdq_17*-0.17914; schocom BY sdq_18*0.12824; schocom BY sdq_19*-0.07013; schocom BY sdq_20*-0.03820; schocom BY sdq_21@-0.08778; schocom BY sdg 22@0.04052; schocom BY sdg 23*-0.08808; schocom BY sdg 24*-0.17587; schocom BY sdq_25*-0.07910; schocom BY sdq_26*-0.06565; schocom BY sdq_27@0.10586; schocom BY sdq_28*-0.09862; schocom BY sdq_29*0.06475; schocom BY sdq_30*-0.17817; schocom BY sdq_31*0.34433; schocom BY sdq_32*0.14926; schocom BY sdq_33*0.04007; schocom BY sdq 34*0.09566; schocom BY sdq 35*-0.03328; schocom BY sdq 36*0.00935; schocom BY sdq_37*-0.12996; schocom BY sdq_38*0.14800; schocom BY sdq_39@0.26675; schocom BY sdg 40*-0.04308; schocom BY sdg 41*-0.03316; schocom BY sdg 42*0.15598; schocom BY sdq_43*0.09851; schocom BY sdq_44*0.05164; schocom BY sdq_45*-0.22275; schocom BY sdq 46*0.06105; schocom BY sdq 47*0.01216; schocom BY sdq 48*0.17752; schocom BY sdq_49*0.10702; schocom BY sdq_50@0.01514; schocom BY sdq_51@-0.07166; schocom BY sdq_52*0.11216; schocom BY sdq_53*-0.06347; schocom BY sdq_54*0.30532; schocom BY sdq_55*0.19671; schocom BY sdq_56@0.06650; schocom BY sdq_57@-0.03430; schocom BY sdq 58*0.00228; schocom BY sdq 59*0.07978; schocom BY sdq 60*0.18743; schocom BY sdq_61*-0.00385; schocom BY sdq_62*0.02041; schocom BY sdq_63*0.40308; schocom BY sdq_64*0.12476; schocom BY sdq_65*-0.08413; schocom BY sdq_66*0.10837; schocom BY sdq_67*0.11549; schocom BY sdq_68*-0.02362; schocom BY sdq_69*0.02854; schocom BY sdq 70*0.00562; schocom BY sdq 71*0.24421; schocom BY sdq 72@-0.01005; schocom BY sdq_73*0.18943; schocom BY sdq_74*0.08310; schocom BY sdq_75*0.02012; schocom BY sdq 76*0.06152; schoaff BY sdq 1*0.01267; schoaff BY sdq 2*0.30037; schoaff BY sdq 3*-0.06672; schoaff BY sdq 4@-0.02909; schoaff BY sdq 5*0.02703; schoaff BY sdq 6*0.01571; schoaff BY sdq_7*0.09787; schoaff BY sdq_8*0.06019; schoaff BY sdq_9*0.57874; schoaff BY sdq_10*0.09970; schoaff BY sdq_11*0.17712; schoaff BY sdq_12*0.02106; schoaff BY sdq_13*-0.05071; schoaff BY sdq_14*0.04516; schoaff BY sdq_15*0.02970; schoaff BY sdq_16@0.35375; schoaff BY sdq_17*0.12652; schoaff BY sdq_18*-0.05048; schoaff BY sdq 19*0.00282; schoaff BY sdq 20*0.16064; schoaff BY sdq 21@0.02939;

schoaff BY sdq_22@0.03393; schoaff BY sdq_23*0.20753; schoaff BY sdq_24*0.11611; schoaff BY sdq_25*0.19140; schoaff BY sdq_26*-0.02982; schoaff BY sdq_27@-0.00763; schoaff BY sdq 28*0.08785; schoaff BY sdq 29*0.09841; schoaff BY sdq 30*0.01285; schoaff BY sdq_31*0.20521; schoaff BY sdq_32*-0.15592; schoaff BY sdq_33*-0.07493; schoaff BY sdq_34*0.06088; schoaff BY sdq_35*0.12109; schoaff BY sdq_36*0.02556; schoaff BY sdq_37*0.06750; schoaff BY sdq_38*-0.04896; schoaff BY sdq_39@0.72990; schoaff BY sdq_40*-0.01937; schoaff BY sdq_41*0.17576; schoaff BY sdq_42*-0.02253; schoaff BY sdq_43*-0.05860; schoaff BY sdq_44*-0.04273; schoaff BY sdq_45*0.09265; schoaff BY sdq_46*0.03906; schoaff BY sdq_47*0.00893; schoaff BY sdq_48*-0.12509; schoaff BY sdq 49*-0.09122; schoaff BY sdq 50@-0.03307; schoaff BY sdq 51@0.08933; schoaff BY sdg 52*-0.09556; schoaff BY sdg 53*0.05800; schoaff BY sdg 54*-0.17392; schoaff BY sdq_55*0.66120; schoaff BY sdq_56@-0.04085; schoaff BY sdq_57@0.20644; schoaff BY sdq_58*0.00145; schoaff BY sdq_59*-0.04844; schoaff BY sdq_60*-0.18589; schoaff BY sdq_61*0.02385; schoaff BY sdq_62*-0.06655; schoaff BY sdq_63*0.37975; schoaff BY sdq_64*-0.07081; schoaff BY sdq_65*0.12569; schoaff BY sdq_66*-0.07108; schoaff BY sdq 67*-0.02117; schoaff BY sdq 68*0.12000; schoaff BY sdq 69*-0.04491; schoaff BY sdq_70*0.03310; schoaff BY sdq_71*0.72868; schoaff BY sdq_72@0.00713; schoaff BY sdq 73*-0.01735; schoaff BY sdq 74*-0.04215; schoaff BY sdq 75*-0.06356; schoaff BY sdq_76*0.03296; germcom BY sdq_1*0.02464; germcom BY sdq_2*0.31979; germcom BY sdq_3*0.11665; germcom BY sdq_4@0.88819; germcom BY sdq_5*0.00246; germcom BY sdq_6*0.06922; germcom BY sdq_7*0.00814; germcom BY sdq_8*-0.00219; germcom BY sdq_9*-0.01496; germcom BY sdq_10*-0.02036; germcom BY sdq_11*0.34848; germcom BY sdq_12*0.13294; germcom BY sdq 13*-0.12882; germcom BY sdq 14*0.06945; germcom BY sdq 15*0.02824; germcom BY sdq_16@0.42804; germcom BY sdq_17*-0.03356; germcom BY sdq_18*0.84978; germcom BY sdq 19*-0.01960; germcom BY sdq 20*0.02158; germcom BY sdq 21@0.11222; germcom BY sdq_22@-0.02171; germcom BY sdq_23*0.10716; germcom BY sdq_24*-0.05364; germcom BY sdq_25*0.14376; germcom BY sdq_26*0.00068; germcom BY sdq_27@0.00548; germcom BY sdq_28*0.01925; germcom BY sdq_29*-0.03785; germcom BY sdq_30*0.00515; germcom BY sdq 31*0.23068; germcom BY sdq 32*-0.15803; germcom BY sdq 33*0.76849; germcom BY sdq_34*-0.00141; germcom BY sdq_35*0.01786; germcom BY sdq_36*0.01015; germcom BY sdq 37*0.03312; germcom BY sdq 38*-0.01284; germcom BY sdq 39@-0.12649; germcom BY sdq_40*0.04597; germcom BY sdq_41*0.15598; germcom BY sdq_42*-0.07653; germcom BY sdq 43*-0.04550; germcom BY sdq 44*-0.02531; germcom BY sdq 45*-0.07370; germcom BY sdq_46*0.06314; germcom BY sdq_47*0.24289; germcom BY sdq_48*0.04927; germcom BY sdq_49*0.67107; germcom BY sdq_50@-0.05134; germcom BY sdq_51@0.09341; germcom BY sdq_52*-0.12721; germcom BY sdq_53*-0.00815; germcom BY sdq_54*-0.12946; germcom BY sdq_55*-0.13366; germcom BY sdq_56@0.06107; germcom BY sdq_57@0.18819; germcom BY sdq_58*-0.04104; germcom BY sdq_59*-0.04233; germcom BY sdq_60*-0.01171; germcom BY sdq 61*0.20377; germcom BY sdq 62*0.04860; germcom BY sdq 63*0.13074; germcom BY sdq_64*-0.16007; germcom BY sdq_65*0.28651; germcom BY sdq_66*-0.01054; germcom BY sdq 67*0.00605; germcom BY sdq 68*0.01225; germcom BY sdq 69*-0.02624; germcom BY sdq_70*-0.00307; germcom BY sdq_71*-0.16968; germcom BY sdq_72@-0.01015; germcom BY sdq_73*0.53200; germcom BY sdq_74*0.04742; germcom BY sdq_75*-0.03063; germcom BY sdq_76*-0.03434; germaff BY sdq 1*-0.03627; germaff BY sdq 2*-0.17220; germaff BY sdq 3*-0.03133; germaff BY sdq_4@0.01653; germaff BY sdq_5*0.03043; germaff BY sdq_6*-0.14578; germaff BY sdq_7*-0.02423; germaff BY sdq_8*-0.01526; germaff BY sdq_9*0.12656; germaff BY sdq 10*0.03245; germaff BY sdq 11*0.77733; germaff BY sdq 12*-0.08203; germaff BY sdq 13*0.03138; germaff BY sdq 14*-0.00193; germaff BY sdq 15*0.05813; germaff BY sdq_16@-0.23242; germaff BY sdq_17*-0.07994; germaff BY sdq_18*0.24452; germaff BY sdq_19*0.02966; germaff BY sdq_20*-0.02903; germaff BY sdq_21@-0.10068; germaff BY sdq_22@0.04173; germaff BY sdq_23*0.14279; germaff BY sdq_24*0.00064; germaff BY sdq_25*0.82360; germaff BY sdq_26*0.02056; germaff BY sdq_27@-0.00937; germaff BY sdq 28*-0.01456; germaff BY sdq 29*0.14622; germaff BY sdq 30*-0.02322;

germaff BY sdq 31*-0.01167; germaff BY sdq 32*0.11916; germaff BY sdq 33*0.21202; germaff BY sdq_34*0.00199; germaff BY sdq_35*0.00157; germaff BY sdq_36*-0.04778; germaff BY sdq 37*-0.13279; germaff BY sdq 38*0.02415; germaff BY sdq 39@0.23207; germaff BY sdq_40*-0.04781; germaff BY sdq_41*0.83719; germaff BY sdq_42*0.03849; germaff BY sdq_43*0.03811; germaff BY sdq_44*0.03801; germaff BY sdq_45*-0.00583; germaff BY sdq_46*-0.02773; germaff BY sdq_47*0.01603; germaff BY sdq_48*0.03247; germaff BY sdq_49*0.37662; germaff BY sdq_50@0.05242; germaff BY sdq_51@-0.08716; germaff BY sdq_52*0.09654; germaff BY sdq_53*-0.00154; germaff BY sdq_54*0.04087; germaff BY sdq_55*0.28296; germaff BY sdq_56@-0.02630; germaff BY sdq_57@0.89432; germaff BY sdq 58*-0.01001; germaff BY sdq 59*0.05214; germaff BY sdq 60*0.01003; germaff BY sdq 61*-0.16349; germaff BY sdq 62*0.02547; germaff BY sdq 63*-0.03054; germaff BY sdq_64*0.04280; germaff BY sdq_65*0.78931; germaff BY sdq_66*-0.05294; germaff BY sdq_67*0.01370; germaff BY sdq_68*0.01890; germaff BY sdq_69*0.00657; germaff BY sdq_70*-0.00344; germaff BY sdq_71*0.27667; germaff BY sdq_72@-0.03087; germaff BY sdq_73*0.37518; germaff BY sdq_74*0.03031; germaff BY sdq_75*0.00124; germaff BY sdq 76*0.03225; mathcom BY sdq 1*-0.01355; mathcom BY sdq 2*0.17807; mathcom BY sdq 3*-0.04975; mathcom BY sdq 4@-0.12521; mathcom BY sdq 5*0.00470; mathcom BY sdq 6*0.21715; mathcom BY sdq_7*0.06967; mathcom BY sdq_8*0.04412; mathcom BY sdq_9*-0.08619; mathcom BY sdq_10*0.00770; mathcom BY sdq_11*-0.02471; mathcom BY sdq_12*0.13379; mathcom BY sdq_13*0.94431; mathcom BY sdq_14*0.05180; mathcom BY sdq_15*0.02195; mathcom BY sdq_16@0.17164; mathcom BY sdq_17*-0.01023; mathcom BY sdq_18*-0.00722; mathcom BY sdq_19*0.00664; mathcom BY sdq_20*0.12631; mathcom BY sdq_21@0.08614; mathcom BY sdq 22@0.03202; mathcom BY sdq 23*-0.02866; mathcom BY sdq 24*-0.01810; mathcom BY sdq_25*0.06313; mathcom BY sdq_26*0.02995; mathcom BY sdq_27@0.97555; mathcom BY sdq 28*0.00675; mathcom BY sdq 29*-0.03438; mathcom BY sdq 30*0.08342; mathcom BY sdq_31*0.26082; mathcom BY sdq_32*0.04376; mathcom BY sdq_33*-0.00976; mathcom BY sdq_34*-0.05170; mathcom BY sdq_35*0.15805; mathcom BY sdq_36*-0.03068; mathcom BY sdq_37*0.05779; mathcom BY sdq_38*-0.09554; mathcom BY sdq_39@-0.03657; mathcom BY sdq 40*-0.01202; mathcom BY sdq 41*0.01682; mathcom BY sdq 42*-0.02365; mathcom BY sdq_43*0.82870; mathcom BY sdq_44*-0.05670; mathcom BY sdq_45*0.06601; mathcom BY sdq 46*-0.01572; mathcom BY sdq 47*0.16245; mathcom BY sdq 48*0.02372; mathcom BY sdq_49*0.02387; mathcom BY sdq_50@0.03635; mathcom BY sdq_51@0.10636; mathcom BY sdq 52*0.06893; mathcom BY sdq 53*0.00662; mathcom BY sdq 54*0.03602; mathcom BY sdq_55*-0.06226; mathcom BY sdq_56@-0.06294; mathcom BY sdq_57@0.01686; mathcom BY sdq_58*-0.01569; mathcom BY sdq_59*0.94183; mathcom BY sdq_60*0.00518; mathcom BY sdq_61*0.02473; mathcom BY sdq_62*-0.11578; mathcom BY sdq_63*0.25556; mathcom BY sdq 64*0.11057; mathcom BY sdq 65*0.04248; mathcom BY sdq 66*-0.13649; mathcom BY sdq_67*0.08974; mathcom BY sdq_68*0.20559; mathcom BY sdq_69*-0.08096; mathcom BY sdq 70*-0.13314; mathcom BY sdq 71*0.09010; mathcom BY sdq 72@-0.09731; mathcom BY sdq_73*0.08917; mathcom BY sdq_74*0.08093; mathcom BY sdq_75*0.84844; mathcom BY sdg 76*0.05491: mathaff BY sdq_1*0.02917; mathaff BY sdq_2*-0.04590; mathaff BY sdq_3*0.03817; mathaff BY sdq_4@0.11083; mathaff BY sdq_5*-0.00099; mathaff BY sdq_6*1.10437; mathaff BY sdq_7*-0.07729; mathaff BY sdq_8*0.02207; mathaff BY sdq_9*0.18071; mathaff BY sdq 10*-0.03058; mathaff BY sdq 11*-0.02118; mathaff BY sdq 12*-0.05929; mathaff BY sdq_13*0.17265; mathaff BY sdq_14*-0.05697; mathaff BY sdq_15*-0.03669; mathaff BY sdq 16@-0.02219; mathaff BY sdq_17*-0.03774; mathaff BY sdq_18*0.02009; mathaff BY sdq 19*-0.01505; mathaff BY sdq 20*1.09659; mathaff BY sdq 21@-0.11460; mathaff BY sdg 22@-0.04446; mathaff BY sdg 23*0.20464; mathaff BY sdg 24*-0.03226; mathaff BY sdq_25*-0.03306; mathaff BY sdq_26*-0.03018; mathaff BY sdq_27@0.03160; mathaff BY sdq_28*0.00992; mathaff BY sdq_29*0.03104; mathaff BY sdq_30*-0.00932; mathaff BY sdq_31*-0.04989; mathaff BY sdq_32*0.02745; mathaff BY sdq_33*0.07847; mathaff BY sdg 34*0.00078; mathaff BY sdg 35*1.06929; mathaff BY sdg 36*0.02782; mathaff BY sdq 37*-0.05197; mathaff BY sdq 38*0.05628; mathaff BY sdq 39@0.17280;

mathaff BY sdq_40*-0.00423; mathaff BY sdq_41*-0.03239; mathaff BY sdq_42*-0.00995; mathaff BY sdq_43*0.25704; mathaff BY sdq_44*0.06873; mathaff BY sdq_45*-0.03605; mathaff BY sdq 46*-0.00531; mathaff BY sdq 47*-0.01081; mathaff BY sdq 48*0.06323; mathaff BY sdq_49*-0.00535; mathaff BY sdq_50@0.00584; mathaff BY sdq_51@1.26654; mathaff BY sdq_52*-0.00616; mathaff BY sdq_53*-0.00407; mathaff BY sdq_54*-0.07068; mathaff BY sdq_55*0.23184; mathaff BY sdq_56@0.00812; mathaff BY sdq_57@-0.00597; mathaff BY sdq_58*-0.00621; mathaff BY sdq_59*0.20240; mathaff BY sdq_60*0.04015; mathaff BY sdq_61*-0.02459; mathaff BY sdq_62*0.09024; mathaff BY sdq_63*-0.05669; mathaff BY sdq_64*0.03170; mathaff BY sdq_65*-0.03723; mathaff BY sdq_66*0.10015; mathaff BY sdq 67*-0.00482; mathaff BY sdq 68*0.95882; mathaff BY sdq 69*0.06475; mathaff BY sdq 70*0.09384; mathaff BY sdq 71*0.13859; mathaff BY sdq 72@0.06366; mathaff BY sdq_73*-0.09910; mathaff BY sdq_74*-0.05801; mathaff BY sdq_75*0.18125; mathaff BY sdq_76*-0.04185; esteem*1 peer*1 appear*1 phy*1 parent*1; schocom*1 schoaff*1 Germcom*1 Germaff*1 MathAff*1 MathCom*1; ! Higher-order factor general by esteem*1 peer appear phy parent schocom schoaff Germcom Germaff MathAff MathCom; general@1; ! Method Factor (negative items) MF BY SDQ_30* SDQ_17 SDQ_12 SDQ_21 SDQ_47 SDQ_23 SDQ_33 SDQ_65 SDQ_75 SDQ_6 SDQ_37 SDQ_61; MF@1; [MF@0]; MF WITH general@0 esteem@0 peer@0 appear@0 phy@0 parent@0 schocom@0 schoaff@0 Germcom@0 Germaff@0 MathAff@0 MathCom@0; ! correlated uniquenesses between parallel worded items SDQ 11 with SDQ 51 SDQ 71; SDQ 51 with SDQ 71; SDQ_25 with SDQ_35 SDQ_39; SDQ_35 with SDQ_39; SDQ_41 with SDQ_68 SDQ_9; SDQ_68 with SDQ_9; SDQ_57 with SDQ_20 SDQ_55; SDQ_20 with SDQ_55; SDO 23 with SDO 6 SDO 65; SDO 6 with SDO 65; SDQ_4 with SDQ_27 SDQ_16; SDQ_27 with SDQ_16; SDQ_18 with SDQ_59 SDQ_2; SDQ_59 with SDQ_2; SDQ_49 with SDQ_13 SDQ_63; SDQ_13 with SDQ_63; SDQ 73 with SDQ 43 SDQ 31; SDQ 43 with SDQ 31; SDQ_47 with SDQ_75 SDQ_33; SDQ_75 with SDQ_33;

References:

- Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. *Psychometrika*, *34*, 183–202.
- Morin, A. J. S., Arens, A., & Marsh, H. (2016). A bifactor exploratory structural equation modeling framework for the identification of distinct sources of construct-relevant psychometric multidimensionality. *Structural Equation Modeling*, 23, 116-139
- Marsh, H.W., Morin, A.J.S., Parker, P.D., & Kaur, G. (2014). Exploratory structural equation modelling: An integration of the best features of exploratory and confirmatory factor analyses. *Annual Review of Clinical Psychology*, 10, 85-110.
- Marsh, H.W., Nagengast, B., & Morin, A.J.S. (2013). Measurement invariance of big-five factors Construct-Relevant Multidimensionality over the life span: ESEM tests of gender, age, plasticity, maturity, and La Dolce Vita effects. *Developmental Psychology*, 49, 1194-1218.
- Morin, A. J. S., Marsh, H. W., & Nagengast, B. (2013). Exploratory structural equation modeling. In Hancock, G. R., & Mueller, R. O. (Eds.). *Structural equation modeling: A second course* (2nd ed., pp. 395-436). Charlotte, NC: Information Age Publishing, Inc.
- Muthén, L. K., & Muthén, B. O. (2009). Mplus short courses: Topic 1: Exploratory factor analysis, confirmatory factor analysis, and structural equation modeling for continuous outcomes. Los Angeles CA: Muthén & Muthén. Retrieved from http://www.statmodel.com/course_materials.shtml