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1 Introduction

In this note we illustrate with several examples how to compute the strictly
positive robust chi-square test described in Satorra and Bentler (2010). This
robust chi-square can be used as an alternative to the robust chi-square pro-
posed in Satorra and Bentler (2001) which can sometimes produce negative
test statistics due to its asymptotic nature. We will illustrate this computa-
tion using a simple factor analysis model estimated with the MLR estimator
in Mplus. Suppose that we have a model M1 and and a more restricted
model M0. We denote by Fi the robust test of fit for model Mi, by Li the
log-likelihood value for model Mi, by ci the correction factor for Fi, by bi the
correction factor for Li, di the degrees of freedom for Fi, and pi the num-
ber of parameters in model Mi. All of these quantities can be easily found
in the Mplus output. In Mplus the standard robust chi-square for testing
M0 against M1 can be computed in two different ways, using the test of fit
and its correction factor, or using the log-likelihood and its correction factor.
The two lead to the same result. One of the advantages of the log-likelihood
approach is that it does not require the existence of a test of fit and it can be
used for any pair of nested models. Using the test of fit the robust chi-square
for testing M0 against M1 is computed as follows

F =
(F0c0 − F1c1)(d0 − d1)

c0d0 − c1d1
(1)

Using the log-likelihood values the robust chi-square for testing M0 against
M1 is computed as follows

F =
2(L1 − L0)(p1 − p0)

b1p1 − b0p0
(2)

Both versions produce exactly the same result (up to a round off error). The
quantity

F0c0 − F1c1 = 2(L1 − L0)

is the unadjusted chi-square statistic while

c0d0 − c1d1
d0 − d1

=
b1p1 − b0p0
p1 − p0

(3)

is the correction factor for testing M0 against M1. In the above formulas the
numerators are guaranteed to be positive however the denominators are not,
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i.e., in all applications we have

F0c0 > F1c1

L1 > L0

d0 > d1

p1 > p0

but in some applications the asymptotic inequalities

c0d0 > c1d1

b1p1 > b0p0

will not hold. To avoid this problem the Satorra and Bentler (2010) use a new
test of fit correction factor c10 or a likelihood correction factor b10 which are
obtained from a model M10. This model M10 can be viewed as unoptimized
M1 model having the M0 parameter estimates. More specifically the model
M10 is the same as the M1 model except that its parameter estimates have
not been optimized to convergence but instead its parameter estimates are
those of the M0 model. In addition the log-likelihood value of M10 is the
same as that of M0. With these quantities the new Satorra and Bentler
(2010) chi-square is computed as follows

F ∗ =
(F0c0 − F1c1)(d0 − d1)

c0d0 − c10d1
(4)

or equivalently using the log-likelihood values

F ∗ =
2(L1 − L0)(p1 − p0)

b10p1 − b0p0
, (5)

where c10 and b10 are the correction factors obtained from the model M10

estimation while all other quantities are as in formulas (1) and (2). In this
improved version the denominators are guaranteed to be positive, i.e.,

c0d0 > c10d1

b10p1 > b0p0

not just asymptotically but also for small sample sizes.
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It is important to focus not just on the fact that the new test has a positive
value, but what really is at stake is the quality of the results measured by the
type I error of the test and the power of the test. These issues are however
beyond the scope of this note. We can just mention that alternative tests
such as those obtained with the estimators BAYES, MLM, MLMV, WLSM,
WLSMV, ULSMV, could actually yield more accurate results than both the
new and the regular Satorra-Bentler tests. All of these test statistics are
solid asymptotically however there is little guidance for small sample size
situations. Usually a simulation study can reveal the quality of the results
in small sample size cases.

The new Satorra-Bentler test should be used instead of the traditional
version when the test statistic is negative. However, there are probably other
situations when the new version should be used. For example when the
correction factor (3) is very small (almost negative) we should probably be
using the new version as well. This line of arguments leads to the problem of
when to actually compute the new SB test statistic. More research is needed
to answer this question.

2 Example 1

Consider the factor analysis model with 5 indicator variables and 1 latent
factor

Yj = νj + λjη + εj

where Yj for j = 1, ..., 5 are the observed variables, η is an unobserved nor-
mally distributed latent variable, εj are zero mean normally distributed resid-
uals with a variance covariance Θ. For identification purposes λ1 = 1. In
model M0 we estimate the following parameters: 5 parameters νj, j = 1, ..., 5;
4 loading parameters λj, j = 2, ..., 5; the variance of η parameter ψ, the 5
residual variance parameters θjj, j = 1, ..., 5; and a residual covariance pa-
rameter θ12 for a total of 16 parameters. In model M1 in addition to the
M0 parameters we estimate the residual covariance θ23. The results of the
M0 and M1 estimation using a data set with 50 non-normal observations are
presented in Table 1. Now using formula (1) we get that F = −1.420. Using
formula (2) we get F = −1.435. The small difference between the two ver-
sions is due to the round off error in the values that Mplus reports (up to the
third digit after the decimal point). Thus this example illustrates the prob-
lems with the standard robust chi-square which leads to a negative value.
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Table 1: Results for models M0 and M1.

Model M0 M1

Test of fit Fi 18.902 7.301
Degrees of freedom di 4 3

Correction factor for test of fit ci 0.515 1.095
Log-likelihood Li -250.888 -250.015

Number of estimated parameters pi 16 17
Correction factor for log-likelihood bi 1.843 1.663

In contrast, when we estimate M10 we obtain c10 = 0.034 and b10 = 1.850
and when we use the new chi-square F ∗ using formula (4) we get F ∗ = 0.889
and using formula (5) we get F ∗ = 0.890. Again the small difference is due
to the round off error. Our illustration confirms that the test statistic F ∗

yields positive values. This result is also close to the T-value test statis-
tic based on the robust standard errors for the additional parameter ψ23:
(T − value)2 = (0.823)2 = 0.677.

3 Practical Aspects of the Estimation

The main issue in the estimation is how to construct an Mplus run that yields
the correction factors c10 and b10. The first step in doing so is actually in
the estimation of model M0. Using the SVALUES option of the OUTPUT
command we obtain the model M10 written in the Mplus language. Copy
and paste that model specification into the input file used for the M1 es-
timation. You will need to add the command for the extra parameters in
model M1, in our example that is the command Y2 WITH Y ∗

3 0; which sets a
starting value for the θ23 parameter. Once we have this model setup for M10

we need to make Mplus estimate all quantities with 0 iterations, i.e., for this
exact same parameters. This is achieved by specifying the option CONVER-
GENCE=100000000 in the ANALYSIS command1. This option specifies the

1For some models the command that accomplishes this is MITER=1. These are the
models that are estimated with the EM algorithm such as mixture models and models that
require numerical integration. Both options can be used if it is not clear which option is ap-
propriate. Alternatively, the commands MCONVERGENCE=100000000; ALGO=ODLL;
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convergence criterion in Mplus which is typically 0.00005. The result of this
command is that in the very first attempt to optimize the parameters, the
log-likelihood derivatives will be computed and will be compared against the
convergence value. Because the convergence value is so large Mplus will con-
clude that convergence has already been achieved and that the parameters
are optimized. Then Mplus will provide the needed output which includes
the correction factors c10 and b10. When running the model M10 include
the TECH5 option of the OUTPUT command. This option will show all
iterations that have been taken. We want to make sure that no iterations
are taken in that run. Usually there are some iterations in that run with
the heading ”TECHNICAL OUTPUT FROM EM ALGORITHM ITERA-
TIONS FOR THE H1 MODEL”. Those iterations do not count as they
are used for computing the sample statistics. You should expect to see no
iterations in the sections ”ITERATIONS USING GRADIENT” and ”ITER-
ATIONS USING QUASI-NEWTON”. In addition one should check that the
log-likelihood value of the M10 model is the same as that for the M0 model.

Finally we want to point out that the example we presented here is a
bit simpler than the examples used in practical situations such as tests of
invariance and tests of partial invariance. In such more complicated examples
additional steps may be necessary to specify the model M10. The basic
definition of this model is that it has the parameterization of M1, i.e., is
parameterized as an M1 model and it has the same number of parameters
as the M1 model but it has the same log-likelihood value as the M0 model.
The model M10 always exists. Its existence is guaranteed by the fact that
M0 is nested within M1. To construct the M10 model one simply needs to
understand how and why exactly M0 is nested within M1. Three further
examples of how to construct M10 are given in Sections 4 - 6.

The input files for the three models used in this example are presented
below in Appendix A.

4 Example 2

In certain cases the robust test of fit itself, that is, the test against a com-
pletely unrestricted model, will have the problem of negative chi-square val-

can be used for this estimation. The OUTPUT options TECH5 and TECH8 can be used
to verify that the parameter estimates are not altered and no maximization iterations
occur.

6



ues. Consider as an example the same model as in Example 1 with added
residual covariance parameters θ12, θ23, θ45, θ15. Here the model M1 is the
unrestricted mean and variance model. The test of fit for this model yields
a negative value. To construct the M10 model in this case we can use the
RESIDUAL option of the OUTPUT command to obtain the estimated mean
and variance covariance for the observed variables Yj for the M0 model. To
setup M10 we setup an unrestricted model for Yj where all means, variance
and covariance starting values are set at the estimated quantities from the
M0 model. In this situation only formula (5) can be used. From the 3 runs
we get L0 = −249.800, L1 = −246.017, b0 = 1.721, b1 = 1.644, p0 = 19 and
p1 = 20. Using (5) we get the test of fit value F ∗ = 41.801.

5 Example 3

In some cases the construction of M10 involves non-standard approaches be-
cause the difference between M0 and M1 is not as simple as having an ad-
ditional parameters in M1. Consider as an example a factor analysis model
as in Example 1, without any residual correlations, but conducted as a two
group model. The standard setup for this M0 model is that the the resid-
ual variances for the observed variables and the factor variance are group
specific, the observed variable intercepts are group invariant as well as the
loading parameters, and the factor mean is estimated as a free parameter in
the second group. Suppose that we need to test the loading invariance across
the two groups, i.e., we consider the more flexible model where the loadings
are not held equal across the two groups. To construct the M10 model in
this case we simply need to use the SVALUES option of the OUTPUT com-
mand in the M0 estimation, copy and paste this model in the M1 input file
and remove the parameter labels that hold the loadings equal across the two
groups.

6 Example 4

In some cases the construction of M10 involves actual computations that re-
veal how exactly the M0 model is nested within the M1 model. Consider for
example the M0 model we used in the previous section and the M1 model
which has varying across group observed variables intercepts, which necessar-
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ily eliminates also the factor means from the second group for identification
purposes. To construct the M10 model in this case we use both the SVAL-
UES and RESIDUAL options of the OUTPUT command in the M0 model
estimation. The M10 construction is started with the model produced by
SVALUES but we modify it in three steps. Step 1 would be to fix the factor
mean in the second group to 0. Step 2 is to remove the equality labels in
the two groups for the intercept parameters. Step 3 is to replace the starting
values for the intercept parameters in the second group with the estimated
values found in the RESIDUAL output in the M0 model estimation. This
example illustrates how quickly the complexity of the construction of the
M10 model can escalate. In many cases the values that are needed will not
be available in the RESIDUAL output, for example if there is a covariate in
the above model.
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7 Appendix A: Mplus input for example 1

Inputs for the other examples are available at
http:\\www.statmodel.com\examples\webnote.shtml # web12

title: M0 model
variable: names are y1-y5;
data: file=1.dat;
analysis: estimator=mlr;
model: f1 by y1-y5; y1 with y2;
output: svalues;
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title: M1 model
variable: names are y1-y5;
data: file=1.dat;
analysis: estimator=mlr;
model: f1 by y1-y5; y1 with y2; y3 with y2;
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title: M10 model
variable: names are y1-y5;
data: file=1.dat;
analysis: estimator=mlr; convergence=100000000;
model: y3 WITH y2*0;
f1 BY y1@1;
f1 BY y2*0.599;
f1 BY y3*0.814;
f1 BY y4*0.893;
f1 BY y5*0.818;
y1 WITH y2*-0.031;
[ y1*0.280 ];
[ y2*0.380 ];
[ y3*0.400 ];
[ y4*0.420 ];
[ y5*0.420 ];
y1*0.167;
y2*0.337;
y3*0.378;
y4*0.385;
y5*0.420;
f1*0.274;
output: tech5;
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