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1 Introduction

In mixture modeling, indicator variables are used to identify an underlying latent

categorical variable. In many practical applications we are interested in using

the latent categorical variable for further analysis and exploring the relationship

between that variable and other, auxiliary observed variables. If we use a direct

approach where the auxiliary variables are included in the mixture model the

latent class variable may have an undesirable shift in the sense that it is no longer

measured simply by the original latent class indicator variables but now it is also

measured by the auxiliary variables. The shift can be so substantial that the

analysis can yield meaningless results because it is no longer based on the original

latent class variable.

Different approaches have been proposed recently to remedy this problem.

Among these are the 3-step approach proposed by Vermunt (2010), the approach

of Lanza et al. (2013) and the 2-step estimation method proposed in Bakk and

Kuha (2018). All of these approaches are available in Mplus. These methods

follow the same general pattern. First, the latent class measurement model is

estimated. Then, a follow up analysis determines the relationship between the

latent class variable and the auxiliary variables.

The details of the Mplus implementation of the 3-step approach and Lanza’s

approach are discussed in Asparouhov and Muthén (2014). It is also shown that

the 3-step approach does not resolve the problem of shifting classes completely.

In some situations, when the auxiliary variable is included in the final stage, the

latent class variable can shift substantially and invalidate the results. Mplus

monitors the shift in classes with the 3-stage approach and if this shift is
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substantial results are not reported. This monitoring is conducted with the

automatic Mplus commands DU3STEP and DE3STEP. However, if a manual

3-step approach is conducted, the monitoring must be done manually as well.

Further simulation studies conducted in Bakk and Vermunt (2014) confirm the

finding that the 3-step approach fails in certain situations. Bakk and Vermunt

(2014) also point out that the approach of Lanza (2013) for distal continuous

outcomes, implemented in Mplus with the DCON command, can also fail due to

assumptions underlying this method, primarily related to unequal variance across

classes. The method yields poor results when the entropy is low and there is a

substantial difference between the variances of the distal outcome across classes. If

either one of these is not present then Lanza’s method works well. With categorical

distal outcome Lanza’s method can also fail. We illustrate below that if the distal

outcome is conditionally correlated to the latent class indicators (conditional on

the latent class), the estimates obtained with Lanza’s method can be biased.

A method proposed in Bray et al. (2014) appears to yield results similar to

the method in Lanza et al. (2013) for continuous distal outcomes. This method

also fails when the distal outcome has unequal variance across classes.

Bakk and Vermunt (2014) also consider in simulation studies the modified

BCH method, BCH for short, described in Vermunt (2010) and also in Bakk et

al. (2013). For the distal outcome model that evaluates the means across classes

for a continuous auxiliary variable these simulations show that the BCH method

substantially outperforms Lanza’s method and the 3-step method. The BCH

method avoids shifts in latent class in the final stage that the 3-step method is

susceptible to. In its final stage the BCH method uses a weighted multiple group

analysis, where the groups correspond to the latent classes, and thus the class
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shift is not possible because the classes are known. In addition, the BCH method

performs well when the variance of the auxiliary variable differs substantially

across classes, i.e., resolving the problems that Lanza’s method is susceptible to.

The BCH method uses weights wij which reflect the measurement error of the

latent class variable. In the estimation of the auxiliary model, the i-th observation

in class/group j is assigned a weight of wij and the auxiliary model is estimated

as a multiple group model using these weights. The main drawback of the BCH

method is that it is based on weighting the observations with weights that can take

negative values. If the entropy is large and the latent class variable is measured

without error then the weight wij is 1 if the i-th observation belongs to class j and

zero otherwise. If the entropy is low, however, the weights wij can become negative

and the estimates for the auxiliary model can become inadmissible. For example,

it is possible that the variance of the distal outcome is estimated to a negative

value or that the frequency table of a categorical auxiliary variable has a negative

value. In such cases it would be difficult to utilize the BCH method beyond the

basic distal outcome mean comparison model. Bakk and Vermunt (2014) show

that the means of a continuous distal outcomes can be estimated correctly even

when the sample group specific variances are negative. To obtain an admissible

solution the estimated model holds equal the variances across group/class. In

this simple model the mean and variance estimates are independent and thus the

equal variance restriction has no effect on the mean estimates. However, if one is

interested in evaluating the effect of the latent class variable on a more general

auxiliary model it is not clear how to resolve the problems with inadmissible

solutions due to negative weights.

Note, however, that the negative values in the BCH weights are a normal
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occurrence and not problematic in general. The negative weights are problematic

only when they lead to inadmissible model estimates. In fact, the BCH

weights will have negative values for every observation, unless the latent class

variable is measured without error. The BCH weights are obtained from the

inverse of a matrix H which can be found in the Mplus output under the

heading ”Classification Probabilities for the Most Likely Latent Class Membership

(Column) by Latent Class (Row)”. For each observation the BCH weights are

obtained from the j-th row of H−1, where j is the most likely class for that

observation. Since H contains only non-negative values, H−1 will have negative

values, unless H is the identity matrix, representing the case of no classification

error. It can also be seen from this computation that the BCH weights for each

observation add up to 1.

Two versions of the BCH method are implemented in Mplus. The first version

is referred to as the automatic version. This procedure evaluates the mean of a

continuous distal outcome variable across classes using the approach of Bakk and

Vermunt (2014). In this version one simply specifies the measurement model for

the latent class variable and specifies the auxiliary variable as such. The second

version is the manual version which allows us to estimate the effect of a latent class

variable on an arbitrary auxiliary model. This version requires two separate runs.

In the first run we estimate the latent class measurement model and save the BCH

weights. In the second run we estimate the general auxiliary model conditional on

the latent class variable using the BCH weights. Both BCH versions are illustrated

in the next two sections.
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2 The automatic BCH approach for estimating

the mean of a distal continuous outcome

across latent class

This approach is very similar to the DU3STEP and DE3STEP commands in

Mplus. With the following input file we estimate a latent class model using the 8

binary indicator variables U1, ..., U8. We also independently estimate the mean of

the auxiliary variable Y across the different classes with the BCH method.

Variable:

Names are U1-U8 Y;

Categorical = U1-U8;

Classes = C(4);

Auxiliary = Y(bch);

Data: file=a1.dat;

Analysis: Type = Mixture;

The model estimates for the latent class model are not affected by the auxiliary

variable and the results for the auxiliary variable mean estimates can be located

in the output file as shown in Figure 1.
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Figure 1: BCH output

3 Using Mplus to conduct the BCH method

with an arbitrary secondary model

In many situations it would be of interest to estimate a more advanced secondary

model with the BCH method. In the Mplus implementation the secondary model

can be an arbitrary model with any number and types of variables. The model

is essentially estimated as a multiple group model as if the latent class variable

is observed. The BCH method uses group specific weights for each observation

that are computed during the latent class model estimation. An outline of the

procedure is as follows. First estimate a latent class model using only the latent

class indicator variables and save the BCH weights. All variables that will be

used in the secondary model should be placed in the auxiliary variable command

without any specification. That way the auxiliary variables will be saved in the

same file as the BCH weights. This is step 1 of the estimation. In step 2 we simply

specify the auxiliary model and we use the BCH weights as training data.

7



3.1 Regression auxiliary model

In the following example we estimate the auxiliary regression model of a dependent

variable Y on a covariate X. We measure a 3-class latent variable using an LCA

model with 10 binary items and then use that latent variable to estimate class

specific regression Y on X. The example and the data are the same as the example

presented on page 332 in Asparouhov and Muthén (2014). In the first step we use

the following input file to estimate the LCA model and save the BCH weights

Variable:

Names=U1-U10 Y X;

Categorical = U1-U10;

Classes = C(3);

Usevar=U1-U10;

Auxiliary=Y X;

Data: file=manBCH.dat;

Analysis: Type = Mixture;

Savedata: File= manBCH2.dat; Save=bchweights;

Here the key command is Save=bchweights; which requests the BCH weight

for further analysis. In the second step the following input file can be used to

estimate the class specific regression of Y on X.

Variable:

Names = U1-U10 Y X W1-W3 MLC;
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Usevar are Y X W1-W3;

Classes = C(3);

Training=W1-W3(bch);

Data: file=manBCH2.dat;

Analysis: Type = Mixture; Starts=0; Estimator=mlr;

Model:

%overall%

Y on X;

%C#1%

Y on X;

%C#2%

Y on X;

%C#3%

Y on X;

Note that the latent class indicator variables U1-U10 are not on the USEVAR

list in this step. The key commands here are Training=W1-W3(bch); which

specifies the BCH weights to be used in this secondary analysis, Starts=0;

because this is a multiple group analysis and random starting values are not

needed, and Estimator=mlr; because that estimator leads to better standard

errors becasue the analysis utilizes weights, see Bakk and Vermunt (2014). The

results of the auxiliary model estimation are found as usual in the output file of

the second step run.
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3.2 Regression auxiliary model combined with latent class

regression

Distal outcomes are often studied in the presence of covariates so that the effect

of the latent class variable on the distal is controlled for by those covariates. This

is a variation on the modeling just discussed where the covariate X influences not

only Y but also the latent class variable. Following is an illustration of the manual

BCH estimation for such a model.

The auxiliary model we are interested in estimating with the BCH method is

given by the following two equations

Y |C = αc + βcX

P (C = c|X) =
Exp(γ0c + γ1cX)∑
cExp(γ0c + γ1cX)

We illustrate this BCH manual estimation with a four class model measured by 8

binary indicators Ui where

P (Ui = 1|C) = 1/(1 + Exp(sciτ))

where s1p = −1, s4p = 1, s2p = 1 for p = 1, ..., 4, s1p = −1 for p = 5, ..., 8, s3p = −1

for p = 1, ..., 4 and s3p = 1 for p = 5, ..., 8. We set the value of τ to 1 to generate

the data. We generate a single data set of size N = 50000 according to the above

model. The first step model input is as follows.

Variable:

10



Names are U1-U8 y x;

Usevar=U1-U18;

Categorical = U1-U8;

Classes = C(4);

Auxiliary=Y X;

Data: file=1.dat;

Analysis: Type = Mixture; starts=0;

Savedata: File= 2.dat; Save=bchweights;

Model:

%Overall%

%c#1%[
U1$1-U8$1*-1.0

]
;

%c#2%[
U1$1-U4$1*1.0 U5$1-U8$1*-1.0

]
;

%c#3%[
U1$1-U4$1*-1.0 U5$1-U8$1*1.0

]
;

%c#4%[
U1$1-U8$1*1.0

]
;

Starting values are provided so that the class order does not reverse from the

generated order. In real data analysis starting values are not needed. Instead, a

large number of random starting value should be set using the starts command.

The second step input is as follows

11



Variable:

Names = U1-U8 Y X W1-W4 MLC;

Usevar = Y X W1-W4;

Classes = c(4);

Training=W1-W4(bch);

Data: file=2.dat;

Analysis: Type = Mixture; starts=0;

Model:

%Overall%

C on X;

Y on X;

%c#1%

Y on X;

%c#2%

Y on X;

%c#3%

Y on X;

%c#4%

Y on X;

The results of this simulation are presented in Table 1. All estimates are

close to the true parameter values and all but one of them are within the implied

confidence limits. Thus we conclude that the manual BCH approach can be used

for more complex auxiliary models. If we remove the variable Y from the above
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Table 1: Manual BCH estimation

Parameter True Value Estimated Value SE

α1 0 0.013 0.035

α2 1 0.984 0.030

α3 0 0.123 0.042

α4 2 1.979 0.022

β1 1 0.964 0.037

β2 2 2.043 0.047

β3 -1 -0.910 0.046

β4 0 -0.005 0.027

γ11 1 1.004 0.027

γ12 0.5 0.542 0.029

γ13 -0.3 -0.246 0.030

example we get an example where the auxiliary variable is a latent class predictor.

Thus the BCH manual approach can be used as an alternative to the R3STEP

auxiliary command which uses a 3-step estimation approach.

3.3 Regression auxiliary model for categorical distal out-

come

In the following example we estimate the auxiliary regression model of a dependent

categorical variable Y on a covariate X. We measure a 2-class latent variable using

an LCA model with 5 binary items and then use that latent variable to estimate

class specific regression of a binary variable Y on X. The auxiliary model is given

by the following equation

P (Y = 1|C) =
1

1 + Exp(τc − βcX)
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We use the following montecarlo setup to generate data for this illustration

MONTECARLO:

names = y u1-u5 x;

nobs =20000;

nrep = 1;

classes=c(2);

genclasses=C(2);

save=1.dat;

generate=y(1) u1-u5(1);

categorical=y u1-u5;

ANALYSIS: type=mixture;

MODEL POPULATION:

%overall%

y on x*1; x*1;

%C#1%

[u1$1-u5$1*-1];

[y$1*0];

y on x*1;

%C#2%

[u1$1-u5$1*1];

[y$1*1];

y on x*0.2;

MODEL:

%overall%

y on x*1;
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%C#1%

[u1$1-u5$1*-1];

[y$1*0];

y on x*1;

%C#2%

[u1$1-u5$1*1];

[y$1*1];

y on x*0.2;

Next we estimate the 2-class LCA model using the 5 binary indicators U1,...,

U5 and save the BCH weights from this analysis. The Mplus model input is as

follows

VARIABLE:

names=y u1-u5 x;

classes=c(2);

usevar=u1-u5;

categorical=u1-u5;

auxiliary=y x;

DATA: file=1.dat;

ANALYSIS: type=mixture;

MODEL:

%overall%

%C#1%

[u1$1-u5$1*-1];

%C#2%

[u1$1-u5$1*1];
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savedata: file=2.dat; save=bch;

In the final step we estimate the auxiliary model only using the BCH weights

as training data with the following input file

VARIABLE:

names=u1-u5 y x bch1-bch2;

classes=c(2);

usevar=y x bch1-bch2;

categorical=y;

training=bch1-bch2(bch);

DATA: file=2.dat;

ANALYSIS: type=mixture; starts=0;

MODEL:

%overall%

y on x;

%C#1%

y on x;

%C#2%

y on x;

The results of this simulation are presented in Table 2. All estimates are

close to the true parameter values and all but one of them are within the implied

confidence limits. Thus we conclude that the manual BCH approach can be used

for estimating auxiliary models with categorical distal outcomes.
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Table 2: Manual BCH estimation for categorical distal regression

Parameter True Value Estimated Value SE

τ1 0 0.064 0.026

τ2 1 0.994 0.027

β1 1 0.986 0.033

β2 .2 0.186 0.027

4 Simulation study with a continuous distal

auxiliary outcome

In this section we extend the simulation studies presented in Section 6.1 of

Asparouhov and Muthén (2014) to include the BCH method and the Lanza et al.

(2013) method referred to as DCON. For completeness we describe the simulation

and include the results already presented in that article.

We estimate a 2-class model with 5 binary indicator variables. The distribution

for each binary indicator variable U is determined by the usual logit relationship

P (U = 1|C) = 1/(1 + Exp(τc))

where C is the latent class variable which takes values 1 or 2 and the threshold

value τc is the same for all 5 binary indicators. In addition we set τ2 = −τ1 for

all five indicators. We choose three values for τ1 to obtain different level of class

separation/entropy. Using the value of τ1 = 1.25 we obtain an entropy of 0.7,

with value τ1 = 1 we obtain an entropy of 0.6, and with value τ1 = 0.75 we obtain

an entropy of 0.5. The latent class variable is generated with proportions 43%

and 57%. In addition to the above latent class model we also generate a normally
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Table 3: Distal outcome simulation study: Bias/Mean Squared Error/Coverage

PC 3-step Lanza
N Entropy (E) (DU3STEP) (DCON) 1-step BCH

500 0.7 .10/.015/.76 .00/.007/.95 .00/.006/.92 .00/.006/.94 .00/.007/.94

500 0.6 .16/.029/.50 .01/.008/.94 .00/.007/.89 .00/.007/.94 .01/.008/.94

500 0.5 .22/.056/.24 .03/.017/.86 .00/.012/.80 .01/.012/.96 .03/.017/.86

2000 0.7 .10/.011/.23 .00/.002/.93 .00/.002/.89 .00/.002/.93 .00/.002/.93

2000 0.6 .15/.025/.03 .00/.002/.93 .00/.002/.87 .00/.002/.94 .00/.002/.94

2000 0.5 .22/.051/.00 .00/.004/.91 .00/.003/.80 .00/.003/.94 .00/.004/.91

distributed distal auxiliary variable with mean 0 in class one and mean 0.7 in class

2 and variance 1 in both classes. We apply the pseudo-class method, the 3-step

method, Lanza’s method, the 1-step method, and the BCH method to estimate

the mean of the auxiliary variable in the two classes.

Table 3 presents the results for the mean of the auxiliary variable in class 2.

We generate 500 samples of size 500 and 2000 and analyze the data with the five

methods. The results in Table 3 show that the BCH procedure and the 3-step

procedure have almost identical performance in terms of bias, MSE and coverage.

In this simulation the BCH method shows no bias and the coverage is near the

nominal level with the exception of the case of low entropy of 0.5 and sample size

of 500 where a small bias is observed which also leads to decrease of coverage.

Next we conduct a simulation study to compare the performance of the four

different methods DU3STEP, DE3STEP, Lanza’s method and the BCH method

in the situation when the distal variable variances are different across class. The

two 3-step approaches DU3STEP and DE3STEP differ in the third step. The

DU3STEP approach estimates different means and variances for the distal variable

in the different classes while the DE3STEP approach estimates different means but
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Table 4: Distal outcome with unequal variance simulation study: Bias/Mean
Squared Error/Coverage

N Entropy DE3STEP DU3STEP Lanza(DCON) BCH

500 0.7 .05/.147/.95 .00/.099/.94 .03/.129/.77 .00/.114/.93

500 0.6 .06/.174/.96 .00/.099/.95 .15/.397/.70 .00/.121/.94

500 0.5 .12/.822/.93 .01/.101/.95 1.20/5.755/.46 .04/.160/.94

2000 0.7 .05/.040/.92 .00/.027/.92 .03/.035/.76 .00/.029/.94

2000 0.6 .09/.056/.92 .00/.027/.93 .07/.056/.70 .00/.031/.93

2000 0.5 .11/.094/.95 .00/.029/.92 1.18/4.613/.44 .00/.041/.94

equal variances. The second approach is more robust and more likely to converge

but may suffer from the mis-specification that the variances are held equal in the

different classes. We use the same simulation as above except that we generate a

distal outcome in the second class with variance 20 instead of 1. The results for

the mean in the second class are presented in Table 4.

It is clear from these results that the unequal variance 3-step approach

(DU3STEP) is superior particularly when the class separation is poor (entropy

level of 0.6 or less). The equal variance approach (DE3STEP) can lead to severely

biased estimates when the class separation is poor and the variances are different

across classes. Lanza’s method appears to have completely failed particularly

when the class separation is poor. The BCH method appears to be slightly worse

than the DU3STEP approach in terms of bias and MSE but the coverage remains

good near the nominal level. Thus for the continuous distal variable estimation if

the distal variable variances are unequal across class we can recommend only the

DU3STEP and the BCH methods.
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5 Simulation study with a non-normal distal

auxiliary outcome

In Section 7.1 of Asparouhov and Muthén (2014) it was shown that when the

distal outcome is not normally distributed the 3-step estimation can fail due

to switching of the classes and the parameter estimates maybe severely biased.

Further simulations illustrating this point were conducted in Bakk and Vermunt

(2014). In this section we conduct a simulation study similar to the those in Bakk

and Vermunt (2014).

We estimate and generate data according to a 4 class LCA model with 8 binary

indicators. The class proportions are as follows: 0.375, 0.25, 0.1875 and 0.1875.

The measurement model is described as follows

P (Up = 1|C) = 1/(1 + Exp(scpτ))

where s2p = 1, s4p = −1, s1p = −1 for p = 1, ..., 5, s1p = 1 for p = 6, ..., 8, s3p = 1

for p = 1, ..., 5 and s3p = −1 for p = 6, ..., 8. We vary the value of τ to obtain

different entropy value and class separation. If τ = 1.5 the entropy is 0.7. If

τ = 1.25 the entropy is 0.6. If τ = 1 the entropy is 0.5. The distal outcome in

class 1 has the following bimodal distribution 0.5N(0, 0.1)+0.5N(−2, 0.1), in class

two it is also bimodal 0.75N(−2/3, 0.1) + 0.25N(2, 0.1), in class 3 it is the normal

distribution N(2, 0.1) and in class 4 it is the normal distribution N(0.5, 0.1). We

use three different sample sizes N=2000, 5000 and 10000 and generate and analyze

500 replications for each size. In this simulation we can expect that the DU3STEP,

DE3STEP, 1-step and PC method to fail due to non-normality and we can expect
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Table 5: Non-normal distal outcome simulation study

Method Bias MSE Coverage

DE3STEP - - -

DU3STEP - - -

Lanza 0.663 0.440 0.00

BCH 0.004 0.001 0.89

1-Step 0.647 0.419 0.00

2-Step 0.181 0.036 0.00

PC 0.151 0.024 0.00

Lanza’s method to fail due to varying variances across class. We also include in

this simulation study the 2-step estimation method proposed in Bakk and Kuha

(2018).

In Table 5 we present the results for the distal mean in class 2 for the most

favorable case where Entropy=0.7 and N = 10000 for all of the estimation

methods. No results are presented for the DE3STEP and DU3STEP because in

almost all replications there was no convergence due to large differences between

the step 1 class allocation and step 3 class allocation. Mplus will not report any

results if substantial shift in the classes occur in step 3. The remaining methods

fail dramatically as well with the exception of the BCH method. This simple

simulation suggest that BCH may indeed be much more robust than any other

method.

Next we evaluate the performance of the BCH method for different sample

sizes and entropy levels. The results are presented in Table 6. The estimates are

unbiased in all cases with small bias being visible for smaller sample sizes and

entropy levels. On the other hand the coverage drops substantially particularly

when the entropy is low. Also the ratio of the standard errors to the standard
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Table 6: Non-normal distal outcome simulation study for the BCH method

N Entropy Bias MSE Coverage Std. Err/Std. Dev.

2000 0.7 0.00 0.007 0.89 0.82

5000 0.7 0.00 0.003 0.89 0.83

10000 0.7 0.00 0.001 0.89 0.81

2000 0.6 0.00 0.016 0.80 0.62

5000 0.6 0.00 0.005 0.82 0.66

10000 0.6 0.00 0.003 0.82 0.67

2000 0.5 0.05 0.057 0.58 0.42

5000 0.5 0.01 0.021 0.59 0.43

10000 0.5 0.00 0.010 0.67 0.43

deviation, which should be near 1 for large sample sizes is consistently smaller

and it does not improve with increasing the sample size. For example in the

last row of Table 6 we see that even when the sample size is 10000 and entropy

is 0.5 the ratio is 0.43, i.e., the standard errors are underestimated by 57%

and should be nearly twice to what the method currently computes. This has

been noted also in Bakk and Vermunt (2014) and has been suggested there

that the underestimation occurs due to unaccounted variability of the posterior

probabilities that are used as weights in step 3. The BCH method heavily depends

on these posterior probabilities and one can expect that this effect is substantial.

When the class separation is large the underestimation disappears which also

reflects the diminished variability in the posterior probabilities. At this point no

reasonable method is available to resolve this shortcoming although bootstrapping

would resolve this problem and it can be run in Mplus as external montecarlo

where the bootstrap samples are obtained separately.
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6 Simulation study with a categorical distal

auxiliary outcome

In this section we compare the BCH method and the Lanza et al. (2013)

method for the case when the distal auxiliary outcome is a categorical variable.

Lanza’s method in this case is obtained in Mplus with the option AUXILIARY =

Y(DCAT), where Y is the name of the auxiliary variable. In Section 4 we showed

that Lanza’s method fails for a continuous distal outcome when the variance of the

outcome is not class invariant. For categorical outcomes, however, the variance

parameter does not exist and therefore there is no reason to suspect that Lanza’s

method would fail in that case as well. In addition, Lanza’s estimation method

for categorical distal outcomes is much more robust than it is for continuous distal

outcomes, because it is based on estimating an unconstrained contingency table

for the latent class variable and the distal outcome. It turns out, however, that

Lanza’s method is prone to failures even for categorical distal outcomes. There

are two reasons for that. First, the method is based on including the distal

outcome as a predictor in the LCA measurement model. It is well understood,

however, that including a predictor in the LCA measurement model can yield

a distortion of the latent class formation, particularly when there are direct

effects from the predictor to the latent class indicators. Such a distortion will

inevitably results in a distortion of the contingency table estimates and from

there in the distal outcome final results. The second reason for the failure

is the assumption of conditional independence. Lanza’s method assumes that

the LCA indicators and the distal outcome are independent conditional on the

latent class variable. Such an assumption, however, is often violated in practical
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settings. Furthermore, establishing conditional independence is not an easy task

and generally would involve the joint estimation of the LCA measurement model

and the distal outcome, which is precisely what we are trying to avoid with the

auxiliary modeling.

To illustrate these considerations with a simulation study, we utilize Mplus

User’s Guide example 7.4, where a 2-class LCA model is measured by 4 binary

indicators. We use a large single data set with N=10000 observations so that the

results we obtain are indicative of the asymptotic behavior of the estimators. The

model parameters are set as in Mplus User’s Guide example 7.4.

The auxiliary variable that we use in this study is set to be one of the binary

indicators of the LCA, i.e., this binary indicator is used both as an indicator

and also as a distal outcome. Thereby, we create the violation of conditional

independence. Such a choice for the auxiliary variable allows us to evaluate

the performance of the estimators precisely when the conditional assumption

underlying Lanza’s method is violated. We use 4 different estimations in this

illustration. The first method is Lanza’s method via the DCAT implementation

in Mplus. The second method is the BCH method where the binary auxiliary

variable is treated as continuous. Such a method is reasonable for the case when

the auxiliary variable is binary because E(Y ) = P (Y = 1) when the binary

variable is 0/1. This method is estimated in Mplus with the option AUXILIARY

= Y(BCH). The third method is the manual BCH method where the BCH weights

are saved in the LCA measurement model estimation and are subsequently used

to estimate the distal outcome model where the auxiliary variable is treated as a

categorical variable. This method can more generally be used when the categorical

auxiliary variable has more than two categories. The fourth method is the manual
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Table 7: Simulation study for a categorical distal outcome: estimates for P (Y = 1)

True Lanza BCH automated BCH manual Manual 3-step
Class value (DCAT) (continuous) (categorical) (categorical)

1 0.88 1.00 0.93 0.93 0.94

2 0.12 0.00 0.10 0.10 0.9

3-step method, as in Asparouhov and Muthén (2014), where the distal outcome

is treated as a categorical variable.

The results of the simulation study are given in Table 7. The two BCH methods

yield identical results and outperform Lanza’s method. The simulation study

confirms that Lanza’s method fails when the conditional independence between

the latent class indicators and the auxiliary outcome is violated. Note also that

the BCH automatic approach can be used only with binary auxiliary variables.

For auxiliary variables with more than 2 categories only the manual BCH method

applies. The manual 3-step method yields results similar to the BCH method.

7 Using the BCH method for models that re-

quire numerical integration

In Mplus Version 8.5, the BCH method has also been implemented for Mixture

models that require numerical integration. Examples of such models are growth

mixture models with categorical data (Muthén and Asparouhov; 2007), item

response mixture models (Muthén and Asparouhov; 2007), and random effect

LCA models (Qu et al.; 1996). No new theoretical issues arise because of

the numerical integration and the Mplus language and steps are identical to
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implementation for models without numerical integration. Both, the automatic

and the manual approach are implemented. For the manual BCH, numerical

integration can be used in the latent class measurement model. Currently,

numerical integration can not be used in the auxiliary model. Thus, in the

first step of the manual BCH approach, where the BCH weights are saved,

we can include ANALYSIS: ALGORITHM=INTEGRATION if the latent class

measurement model requires such a specification. However, in the second step of

the BCH approach, where the BCH weights are used as training data, the option

ANALYSIS: ALGORITHM=INTEGRATION should not be present, even if the

first step required it.

We illustrate the BCH method with numerical integration using a model

discussed in Qu et al. (1996). The model is an LCA model with 5 binary

indicators measuring a latent class variable with 2 classes. In the first class, two

of the indicators are not independent, conditional on the latent class variable, and

the residual correlation between the two indicators is modeled via a latent factor.

The existence of this conditional non-independence between LCA indicators is

generally know as a conditional independence violation. One way to resolve the

violation is to introduce a continuous latent variables in the LCA model, which

requires numerical integration. The model is given by the following equation

P (Uj = 0|C = c) =
1

1 + Exp(−τcj + λcjη)
, (1)

where τcj are the threshold parameters and λcj are the loadings parameters for

the latent variable η. In this example, λcj = 0 except for λ11 = λ12 = 1. The

variance of η is estimated only in class 1 and the mean of η is fixed to 0 in
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both classes. A distal outcome Y is regressed on the latent class variable C.

In the Mplus language, such a regression is specified via having class specific

means for the distal variable Y . To conduct a simulation study, where the distal

outcome regression is estimated with the automatic BCH method, we can use

the input file specified in Figure 2. In the input file the MODEL POPULATION

command gives all the parameters as expected, however, the MODEL command

is slightly intricate. To conduct the simulation study, we specify the Y variable

as AUXILIARY with the (BCH) specification. In addition, the Y variable must

be removed from the measurement model for the latent class variable, so that

the latent class variable is measured only by the categorical indicators. To do

that, we specify a model for Y that makes the variable independent of the LCA

model. This is accomplished by holding the mean and the variance of Y equal

across classes. The LCA model is then estimated as if Y is not in the model

at all. With this model specification, Mplus automatically estimates the LCA

model, essentially ignoring the Y variable, computes the BCH weights, and then

performs the regression of Y on C using these weight in a subsequent estimation.

This is repeated over all the replications. The results of the simulation study are

reported in Figure 3.

The input file necessary to conduct the BCH estimation for a distal outcome

with a single data set, i.e., not in a Montecarlo study, is given in Figure 4. The

distal outcome variable is listed in the AUXILIARY option using the (BCH)

specification. Note that the variable Y is not in the model at all. The results

of this analysis are shown in Figure 5.
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Figure 2: Montecarlo simulation for BCH with numerical integration: distal
outcome regressed on a latent class variable

Figure 3: Montecarlo output for BCH with numerical integration
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Figure 4: BCH with numerical integration
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Figure 5: BCH with numerical integration results

8 Using the BCH method with multiple latent

class variables

In latent transition analysis (LTA), several latent class variables are measured

at different time points and the relationship between these variables is estimated

through a logistic regression. A multi-step estimation procedure, based on the

BCH method, can be conducted for the LTA model where the latent class variables

are estimated independently of each other and are formed purely based on the

latent class indicators at the particular point in time. Although the BCH method

was originally developed for distal outcomes, distal outcomes are not needed in

the LTA application. This estimation approach is desirable in the LTA context

because the 1-step approach has the drawback that an observed measurement

at one point in time affects the definition of the latent class variable at another

point in time. We illustrate this estimation with two different examples. The

first example is a simple LTA model with three latent class variables. The second

example is an LTA model with covariates.

The estimation process is an extension of the manual BCH method. The first

step is to save the BCH weights for every latent class variable as discussed in
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Section 3. The measurement model for each latent class variable is estimated

separately and the BCH weights are saved. The final auxiliary model is then

estimated where the BCH weights are multiplied together to obtain the joint

BCH weights. For example, if there are three latent class variables with 2 classes

each, the final model will use 8 = 2×2×2 BCH weights computed as follows. Let

the BCH weights for the first latent class variable be b11 and b12, for the second

latent class variable be b21 and b22, and for the third variable be b31 and b32. The

joint BCH weights are computed as the following product

dijk = b1ib2jb3k, (2)

where the values of i, j and k are 1 and 2, representing the two classes for

each latent class variable. It is important to list the joint BCH weights in the

TRAINING option in the correct order. In the above example the weights

should be listed as d111, d112, d121, d122, d211, d212, d221, d222, i.e., the first index

stays constant as the values of the other indices are exhausted and in general the

right-most indices are exhausted first.

Prior to Mplus Version 8.5, the BCH weights had to be computed in separate

files and then the joint BCH weights had to be computed either manually

or through the DEFINE command in Mplus. This made the process rather

cumbersome. In Mplus Version 8.5, the computation of the joint BCH weights

is simplified substantially and can now be done with a single Mplus run. The

run must contain the measurement model for each latent class and nothing else.

That way the measurement models remain independent of each other and only the

latent class indicators at the particular time point affect the latent class formation.
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Next, we illustrate the BCH-LTA methodology with several examples.

8.1 Example 1: LTA model

In Figures 6-7 we show the input files for estimating an LTA model with 3 binary

latent class variables each measured by 4 binary indicators. Figure 6 shows the

input file for estimating the joint BCH weights for the three latent class variables.

Figure 7 shows the input file for the latent transition model. The STARTS

option setting to 0, combined with the starting values for the measurement models

ensures that the classes do not reverse and appear in the desired order. If the class

ordering is not important then the STARTS option and the starting values are

not needed. If measurement invariance is desired, the class specific models in

Figure 6 can be constrained to be equal across time. Holding the parameters

equal across time will not compromise the independent formation for the latent

class variables, i.e., each latent class variable would be measured solely by the

indicators at that point. In some particular situations, it may actually be helpful

to estimate each latent class separately as a preliminary step. For example, if

a large setting is used for the STARTS option, in order to find the best latent

class solution for each time point, it would be computationally more efficient if

this is done for each time point separately (assuming there is no measurement

invariance constraint). The option OUTPUT:SVALUES can be used in these

time specific models to get perfect starting values for the input in Figure 6.
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Figure 6: Estimating the joint BCH weights for C1,C2,C3

Figure 7: Final model estimation for the LTA model: the transition model

33



8.2 Example 2: LTA with covariates

Figures 8-9 show the input files for estimating an LTA model with 2 latent class

variables with 3 classes each. The latent class variables are also regressed on a

covariate. Both latent class variable are measured by 8 binary indicators. Figure

8 shows the input file for obtaining the joint BCH weights for the two latent

class variables. The starting values and the zero setting of the STARTS option

are needed only if a specific order of the latent classes is desired. Typically, a

large number of STARTS is needed. The covariate X is specified in the auxiliary

command. This has no estimation implications. The effect of the specification

is that the variable is included in the SAVEDATA file for use in the next step.

Without it, the variable will have to be manually added to the file. Figure 9 shows

the input file for the final LTA model with the covariate used as a predictor for

both latent class variables. Note that in Figure 9 the STARTS option is set to 0.

At this point in the estimation, when the BCH weights are already determined,

generally there is no need for generating random starting values. The estimation

in Figure 9 is similar to a multiple group estimation, where random starting values

are rarely used or needed. In practical applications, random starting values are

needed in determining the LCA models in Figure 8, regardless of whether these

LCA models are estimated simultaneously or not.
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Figure 8: Estimating the joint BCH weights for C1 and C2

Figure 9: Final model estimation for the LTA model with covariates
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8.3 Example 3: LTA with a distal outcome

In this section we illustrate the BCH-LTA estimation for a distal outcome Y . An

LTA model is estimated in the first step. In the second step we estimate the mean

of Y in every pattern/combination of latent class values. The first step in this

estimation is accomplished as in the previous section Figure 8. The second step

of the estimation is illustrated in Figure 10. Note here that the latent transition

part of the model is estimated in Figure 10. It is possible, however, to include the

C2 on C1 regression in Figure 8 and exclude it from Figure 10. Either approach

is valid and should produce the same distal outcome result.
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Figure 10: Final model estimation for the LTA model with a distal outcome
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9 Simplified 3-step estimation for LTA

Two illustrations are provided in Asparouhov and Muthén (2014) for the 3-step

estimation with multiple latent class variables. Input files are provided in the

online appendices. Appendices G, H and I illustrate the 3-step estimation for

a simple LTA model where the auxiliary model is the transition analysis model.

Appendices K, L, M and N illustrate the 3-step estimation for an LTA analysis

with measurement invariance and a covariate where the auxiliary model is the

transition model which also includes the covariate. Starting with Mplus version

8.6, a simplified implementation is available which reduces the estimation for

these illustrations down to just two input files. In the first file all of the LCA

measurement models are estimated simultaneously and independently of each

other. The most likely latent class variables Ni are saved in that estimation,

where i = 1, 2 is the index for the latent class variables. The logits for each of

the nominal indicators Ni are also computed in that step and are printed in the

output file. The final step remains unchanged, apart from the NAMES option in

the VARIABLE command which needs to identify the correct columns for the Ni

variables.

This simplified approach also illustrates that in the Mplus implementation of

the 3-step method there are essentially only 2 steps. The middle step in the 3-step

procedure is essentially incorporated in the first step because the logits for the

nominal variables are computed automatically.
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9.1 Replacement for appendices G, H and I

The two input files that replace these 3 appendices are given in Figures 11 and 13.

In Figure 11, the input file simply estimates the two LCA measurement models and

saves the most likely latent class variables. The output file from this estimation

contains the logits needed for the final estimation, see Figure 12. The input file

for the final step is given in Figure 13 and it is almost identical to Appendix I. The

only change is in the NAMES option. The results from this simplified approach

are identical to those obtained with Appendices G, H and I.
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Figure 11: Input file for 3-step LTA analysis, step 1: estimating LCA for C1 and
C2

Figure 12: Output file from step 1: locating the nominal indicator logits needed
for the final step
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Figure 13: Input file for 3-step LTA analysis, final step: estimating the transition
model
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9.2 Replacement for appendices K, L, M and N

The two input files that replace these 4 appendices are given in Figures 14 and

15. Figure 14 is essentially identical to Appendix K. The only difference is that

we also save the most likely latent class variables with the command SAVEDATA:

FILE=1.DAT; SAVE=CPROB. This figure is also nearly identical to Figure 11.

The only difference here is that we estimate the LCA measurement models under

the assumption of measurement invariance by holding the threshold parameters

equal in the two LCA models. Essentially this input file accomplishes the same

task that appendices K, L, and M were designed for, i.e., we estimate the LCA

measurement models with measurement invariance, save the most likely latent

class variables Ni, and obtain the logits for these indicators to be used in the

final step. Figure 15 is essentially identical to Appendix N and is the final step

in the estimation. The results obtained with the simplified approach described in

Figures 14 and 15 are identical to the results obtained with appendices K, L, M

and N.

42



Figure 14: Input file for 3-step LTA estimation with measurement invariance: step
1.
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Figure 15: Input file for 3-step LTA estimation with measurement invariance: final
step
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10 Auxiliary modeling for the RI-LTA model

The RI-LTA model has been discussed in details in Muthén and Asparouhov

(2020). The model is an extension of the traditional LTA model, where in addition

to the multiple latent class variables, the categorical indicators are correlated

through a time invariant continuous latent variable, i.e., the random intercept

(RI). The analysis involves both multiple latent class variables and numerical

integration. Since both of these features are now supported by the BCH method,

it is now possible to use the method with the RI-LTA model to estimate auxiliary

models such as distal outcomes and latent class regression on covariates.

A key feature of the RI-LTA model is that the model can separate the

correlation that is due to observations nested within subject (RI based correlation)

and the correlation that is due to observations taken in proximity of time (the

LTA implied correlation). This separation is key for the latent class formation.

Therefore, unlike the case of the standard LTA model, for the RI-LTA model, it

is not possible to estimate separate time-specific LCA models, for the purpose of

obtaining the BCH weights. To obtain the BCH weights, the RI-LTA model must

be estimated in its entirety, i.e., including the RI latent variable, all latent class

variables and the latent transition model. This observation applies not just to the

BCH method but also to the 3-step method (Asparouhov and Muthén, 2014) and

the 2-step method (Bakk and Kuha, 2018), where step 2 fixes the measurement

parameters to the estimates from step 1. With all multistage estimation methods,

in the first step, the entire RI-LTA model must be estimated. If some of the

components of the RI-LTA model are not included, the correlation separation will

be distorted and the latent class formation will be incorrect.
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The RI-LTA model can be viewed as a multilevel model. Thus, auxiliary model

estimation for the RI-LTA model provides an illustration for the complexities that

can be expected in the auxiliary model estimation for multilevel mixture models,

see Asparouhov and Muthén (2008) and Asparouhov, Hamaker and Muthén

(2017). However, unlike the multilevel models, the RI-LTA models are typically

used with a small number of time points, i.e., when the clusters sizes are small.

In a multilevel model, where the cluster sizes are 20 or more, it would be possible

in principle to incorporate the multilevel part of the model to reflect the cluster

specific latent class measurement error, i.e., with cluster specific BCH weights

or with cluster specific logits for the 3-step estimation. In the RI-LTA model,

however, due to the small cluster size, such adjustments are unlikely to yield

stable estimation and are not pursued here.

Next, we consider the possibility to apply the 3-step method to the RI-LTA

model in Mplus 8.5. The most likely latent class variables can be saved in the first

step. In the second step, however, the computation of the logits must be performed

manually. This computation involves the marginalization of the multivariate

latent class distribution table, which can be quite large for larger number of time

points. In that case, the manual computation will be prohibitive. On the other

hand, the BCH method and the 2-step method are easy to implement.

10.1 RI-LTA with auxiliary covariate

In this section we conduct a simulation study for an auxiliary latent class predictor

in the context of the RI-LTA model. We compare the BCH estimation method,

the 2-step estimation as well as the 1-step estimation. Simulation studies for
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the 2-step method are not automated easily in Mplus at this point because the

second step input file changes in every replication. In this simulation, we manually

repeated the 2-step estimation for 20 replications and summarized the results

outside of Mplus. For the BCH method as well as the 1-step method, we used 100

replications.

Figure 16 shows the input file for generating the data for this RI-LTA

simulation study. The model has T = 3 time points. A minimum of 3 time

points is generally recommended for the RI-LTA model. At each time point t, 8

binary indicators Utj measure a binary latent class variable Ct. The RI factor f is

measured by all binary indicators Utj. The covariate X effect on the latent class

variables is given by the following 3 equations

P (C1 = 1|X) =
Exp(α1 + β1X)

1 + Exp(α1 + β1X)
(3)

P (C2 = 1|X,C1) =
Exp(α2 + γ2,C1 + β2X)

1 + Exp(α2 + γ2,C1 + β2X)
(4)

P (C3 = 1|X,C2) =
Exp(α3 + γ3,C2 + β3X)

1 + Exp(α3 + γ3,C2 + β3X)
. (5)

For identification purposes, γ2,2 and γ3,2 are fixed to 0. The latent transition model

contains 8 parameters: αt and βt for t = 1, 2, 3 as well as γ2,1 and γ3,1. Using the

model parameter values given in Figure 16, we obtain a medium size entropy of

0.66. For higher entropy levels, such as 0.8 or above, the different estimation

methods are expected to be nearly identical as latent class measurement error

becomes negligible. All estimation methods would be similar to the multiple-

group (known class) estimation where the latent class measurement error is zero.

To obtain the 1-step estimation results, we augment the Figure 16 input file
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with a MODEL statement, which is identical to the MODEL POPULATION

statement. The MODEL statement must also include parameter constraints to

ensure time-invariance for the threshold and the loading parameters as in Figures

17.

As usual, the BCH estimation is conducted in 2 steps. In the first step, we

estimate the same model as in the 1-step method but with βt fixed to 0. The joint

BCH weights are saved and used in the second step, which estimates the latent

transition model (3-5).

The input files for the 2-step estimation are given in Figures 17 and 18. The

first step, given in Figures 17, is simply the RI-LTA estimation without the

covariate. As usual, the starting values of Figure 17 are not needed. This step is

identical to first step in the BCH method. In the 2-step estimation, however,

instead of saving the BCH weights, we use the OUTPUT: SVALUES option

to obtain the model needed for the second step. Replacing the * symbol with

the @ symbol in the model statements obtained with the OUTPUT: SVALUES

option, we obtain the second step input file given in Figures 18. In this model,

all parameters are held fixed to their first step estimates with the exception of

the parameters used in equations (3-5) which are estimated as unconstrained

parameters. For brevity, Figures 18 includes only MODEL C1. MODEL C2 and

MODEL C3 are identical to MODEL C1 but are based on the binary latent class

indicators for C2 and C3.

The results of the simulation study are reported in Table 8. All three method

perform fairly well, however, some larger bias is noticeable in the results for

the BCH method. This bias also results in a drop in the coverage rates. The

BCH method appears to perform well in evaluating the effect of the covariate X
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Table 8: RI-LTA with covariate: Absolute Bias(Coverage)

Parameter BCH 2-step 1-step

α1 .00(.91) .01(.95) .01(.93)

α2 .07(.79) .02(1.00) .00(.98)

α3 .00(.81) .00(.95) .01(.93)

β1 .01(.97) .02(.90) .00(.96)

β2 .04(.94) .01(1.00) .01(.99)

β3 .01(.93) .02(1.00) .00(.96)

γ21 .12(.72) .02(.95) .00(.96)

γ31 .03(.78) .05(.80) .01(.94)

through the parameters βt. The bias for those parameters is negligible and the

coverage is near the nominal levels. Nevertheless, the results in Table 8 indicate

that the 2-step method is preferable for the auxiliary estimation in the RI-LTA

model with covariates. The 2-step estimation used here does not include the

multistage standard error adjustment discussed in Bakk and Kuha (2018). The

2-step coverage rates appear to be near the nominal level. This indicates that

the effect of the standard error adjustment must be negligible and that the 2-step

method performs well even without the adjustment.
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Figure 16: Data generation for RI-LTA model with a covariate
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Figure 17: Step 1 in 2-step estimation for RI-LTA model with a covariate
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Figure 18: Step 2 in 2-step estimation for RI-LTA model with a covariate
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10.2 RI-LTA with a distal outcome

As shown earlier, see Table 5, the BCH method is the only reliable method for

distal outcomes estimation even for simple mixture models. In this section, we

study the performance of the BCH method for a distal outcome in the context

of the RI-LTA model. We also describe the steps necessary to conduct a Monte

Carlo simulation study for the BCH method and an arbitrary auxiliary model.

We use a setup similar to the one used in the previous section: the RI-LTA

model has 3 time points and at each time point a binary latent class variable is

measured by 8 binary indicators. All of the binary indicators also measure a time

invariant latent factor. The latent class predictor in this setup is replaced by a

concinnous distal outcome Y . In Section 8.3, the distal outcome is predicted by all

latent class patterns. Here we use a simpler setup where only the last latent class

variable affects the distal outcome. The input file needed for the data generation

is given in Figure 19. The simulation study utilizes the framework of Mplus

external montecarlo, where the data is generated separately from the analysis of

the data. Figure 19 input file generates 100 data sets with the names r1.dat,

r2.dat, etc; as well as a rlist.dat file which contains the names of all generated

data sets. The next step in the montecarlo simulation is to estimate the RI-LTA

model without the distal outcome and save the BCH weights for each of the 100

data sets. The input file for estimating the RI-LTA model and saving the BCH

weights is given in Figure 20. Because this step must be performed 100 times, it

should be automated. On the windows operating system, one way to do that is

with a batch file. A batch file is simply a text file with DOS commands, saved with

the extension .BAT and shown in Figure 21. The input file Step1.inp, referred to
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in Figure 21, is the input file given in Figure 20. The BAT file runs a DOS loop,

where the Mplus program is run 100 times, using the generated data files r1.dat,

r2.dat etc. and saves the files with the BCH weights in the files b1.dat, b2.dat

etc.

The final step of the Montecarlo study is to estimate the auxiliary model where

the distal outcome variable is regressed on the last latent class variable. The input

file for this step is given in Figure 22. Here all 100 data sets b1.dat, b2.dat etc are

analyzed and are summarized automatically by Mplus. The names of the data

sets must be listed in a file with the name blist.dat. The easiest way to construct

this file is to simply use a copy of the existing rlist.dat file and replace the letter

”r” with the letter ”b”. The results of the simulation study are given in Figure 23

and show that the BCH method performs well for the distal outcome estimation

for the RI-LTA model.

To conduct this analysis with a single data set, only steps 1 and 2 are needed,

i.e., Figures 20 and 22. Typically, the STARTS option will be used in Step 1

to ensure that the best solution is found for the RI-LTA model. For example,

STARTS=200 40 can be used in Step 1. In Step 2, random starting values

are generally not needed, i.e., the STARTS=0 setting remains unchanged. In

Step 2, the DATA command must be changed to DATA: FILE IS B.DAT and

TYPE=MONTECARLO must be deleted, so that a single data set is analyzed.

Starting values for the parameters can be omitted in both steps.
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Figure 19: Data generation for RI-LTA model with a distal outcome
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Figure 20: Step 1: Estimating RI-LTA model and saving the BCH weights

Figure 21: Estimating RI-LTA model and saving the BCH weights for multiple
files using a batch file
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Figure 22: Step 2: Estimating the distal outcome variable in the RI-LTA model

Figure 23: Montecarlo results for the distal outcome variable in the RI-LTA model

11 Missing Data

In this section we discuss practical issues that arise in the application of the BCH

and the 3-step estimation methods due to missing data. The first issue we address

is how to deal with missing values for latent class predictors. First, we consider
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the case when the latent class regression on the predictors in estimated in the last

stage of the estimation. One possible approach to deal with the missing predictors

is to impute the missing values with the Bayesian methodology. We illustrate this

approach using the BCH method. The same approach can be applied also in the

3-step estimation.

In Mplus Version 8.5, the Bayesian estimator has been expanded and now

includes nominal variables as well as the possibility to regress a latent class

variable on covariates that have missing values, see Asparouhov and Muthén

(2020). These new features create the possibility to resolve the missing data

problem, simply by estimating the last step in the 3-step estimation using the

Bayesian estimator. Such an approach is simpler than the multiple imputation

approach and we illustrate that method as well. Note, however, that this simplified

approach is not available for the BCH method because the Bayesian estimation is

not available with weights. The method applies only to the 3-step estimation.

A somewhat different situation arises when the missing latent class covariates

are indented to be used as a part of the latent class measurement model, i.e.,

in the first step in the estimation. This situation can also be resolved with the

multiple imputation methodology but the approach is slightly more intricate than

when the covariates are used in the last step. The approach is illustrated below

using the BCH methodology.

Another issue that we discuss here is the situation when the measurement

model is missing at some of the time points in an LTA analysis. By missing

measurement model at a given time point, we mean that all of the latent class

indicators at that time point have missing data. We use the 3-step estimation for

this illustration.
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11.1 Missing values for latent class predictors: BCH with

Multiple Imputations

In this section we illustrate how to utilize the multiple imputation methodology

implemented in Mplus to deal with missing data for latent class predictors. This

method is preferable to other alternatives such as montecarlo integration because

not only does it avoid heavy numerical integration computations but it can

seamlessly deal with different type of covariates that have missing values, i.e.,

the method can incorporate categorical and continuous predictors in the most

optimal way. The multiple imputation method will take advantage of existing

correlations in the data to more accurately impute the missing values.

Figure 24 shows how we generate the data for this illustration. We generate

data from a two-class model with 5 binary indicators. The latent class variable

has 3 predictors: U0 which is a binary variable, X1 and X2 which are continuous

variables. Both X1 and U0 have missing values and are correlated with X2 which

does not have any missing values. The MODEL MISSING specified in the input

file shows that the probability of missing for X1 and U0 depends on the value

of X2, i.e., the generated missing data is MAR, i.e., not MCAR. This is the

more challenging type of missing data but likelihood-based methods are generally

able to deal with it accurately. The Mplus input here does not have an actual

MODEL statement (it only has MODEL POPULATION) because in this case it

is not needed to generate the data. Note, however, that in general, before any

simulation study is undertaken, we recommend that both MODEL and MODEL

POPULATION are used as a preliminary step, using identical models. Such a

preliminary step can ensure that latent variables are sufficiently measured, i.e.,
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entropy is in a desired range and can also prevent accidental errors and typos in the

model construction. Using identical MODEL and MODEL POPULATION acts

as a benchmark for how well a model can be estimated under perfect conditions.

Figure 25 shows the input file that is needed as a first step in this analysis.

We estimate the LCA model and we save the BCH weights. The AUXILIARY

option here is used to store the predictors in the same file as the BCH weights.

Figure 26 shows the input file for the imputation of the missing values for

the covariates. In this stage of the estimation any number of variables can be

used to aid the imputation process. Variables that could be connected to the

covariates that have missing values should be included. We have included here

the BCH weights as well. Since the covariates are related to the latent class

variable, that connecting information can be utilized in the imputation process

by including the BCH weights in the model. This is essential and if the BCH

weights are not included, the final results could be biased. Other variables not

related to the LCA model can be included in the imputation as well. The

more variables are included in the imputation process the more accurate the

imputation will be. Note, however, that including variables that are not correlated

with the covariates will not be helpful and could cause convergence problems

in the imputation process. Thus, the choice of which variables to include in

the imputation process should be carefully considered. Some general practical

guidelines on the imputation methodology are given is Section 4 of Asparouhov

and Muthén (2010b). In our example, the BCH weights and the variable X2

provide essential information on the missing values and are therefore included.

The imputation model could potentially use the latent class indicators as well,

but this would be useful only if there are direct effects from the covariates to the
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latent class indicator because otherwise the BCH weights carry all the information

of the latent class indicators.

In the IMPUTE option of the DATA IMPUTATION command the categorical

variable U0 is listed with the (c) specification. This tells Mplus to impute this

variable as a categorical variable rather than as continuous. As a result of that,

all imputed values for U0 will be categorical, i.e., 0 or 1 in our example. We used

100 imputations in this example, specified in the NDATASETS option. Limited

simulation studies indicate that there is a small but important benefit in using

a larger number of imputations, rather than the typical choice of 5 imputations.

All 100 imputed data sets are saved and ready to be used in the final estimation.

Figure 27 shows the input file that can be used to perform the BCH analysis

with multiple imputations. In this model we simply regress the latent class variable

on the imputed covariates. All 100 data sets are analyzed and the results are

combined according to the multiple imputation rules. Further information on

the Multiple imputation methodology can be found in Asparouhov and Muthén

(2010a) and Asparouhov and Muthén (2010b). This input file can include

additional MODEL TEST and MODEL CONSTRAINT commands to obtain any

particular tests that are needed.
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Figure 24: Data generation for LCA with missing values for the latent class
predictors
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Figure 25: Estimating the LCA model and saving the BCH weights

Figure 26: Imputing the missing latent class predictors
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Figure 27: BCH analysis with multiple imputations

11.2 Missing values for latent class predictors: 3-step

estimation with Bayesian third step

In this section we describe a completely different method for resolving the problem

with the missing latent class predictors. The method can be used with the 3-

step estimation and is described as follows. The manual 3-step procedure is

implemented, where the third step is estimated with the Bayesian estimator

instead of the ML estimator. We illustrate this method using the example

discussed in the previous section. The first step in the 3-step estimation is as in

Figure 25, where instead of saving the BCH weights, we save the most likely latent

class variable using the option SAVEDATA: FILE=2.DAT; SAVE=CPROB. The

input file for the third stage is given in Figure 28. This input file is identical to

the input file that would be used if there were no missing values for the covariates.

There is one change: all the covariates are correlated with each other. The impact

of this statement is two-fold. First, the covariates are now treated as dependent

variables that are modeled. A model for the covariates is needed, so that the

missing values can be modeled and imputed internally as part of the Bayesian
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Figure 28: Using the Bayesian estimator to deal with missing covariates in 3-step
estimation

estimation. Second, correlating all the covariates gives an unrestricted model that

will be used for internally imputing the missing values. This is important in those

situations when the covariates are correlated with each other and some observed

covariates can be used to imply/impute more accurately the missing values. Using

the Figure 28 input file in the above example, we obtain results nearly identical

to the results obtained with the multiple imputation method described in the

previous section.

It is important to note here that the method used in Figure 28 treats all covariates

as continuous variables. The method assumes a multivariate normal distribution

for all covariates. This is not ideal when some of the covariates are categorical.

The multiple imputation methodology described in the previous section can most

properly treat categorical covariates. However, we expect that in most practical
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situations, the results obtained by the two methods would be quite close. Unless

the amount of missing data is substantial, it would be difficult for distributional

misspecifications to manifest into bias for the parameter estimates.

11.3 Missing values for latent class predictors used in the

first step, i.e., in the LCA measurement model

Suppose that the missing covariate is intended to be used in the first step of

the BCH estimation (Figure 25), while in the final step of the BCH estimation

(Figure 27) we have a distal outcome variable Y that is regressed on the latent

class variable C, i.e., the means of Y are estimated across the different classes.

This situation must be addressed differently. The multiple imputations must be

performed prior to step 1, i.e., Figure 26 analysis must be conducted prior to

Figure 25.

The multiple imputation process in this case (Figure 26) should include all

latent class indicators and the BCH variables will not be used as they are

not available yet. The multiple imputation can be done again as an H1 type

imputation, i.e., using TYPE=BASIC. Next, the first step estimation, i.e., the

Figure 25 analysis where the LCA measurement model is estimated, must be

completed for all imputed data sets and the BCH weights must be saved for all

imputed data sets. If the number of imputed data sets is M , this would require

manually creating M input files which would result in M saved data files that

include the BCH weights. The structure of the final step, i.e., Figure 27 analysis,

should remain as is (with a different model where the latent class predictor is

no longer included as a latent class predictor). Note that for this final step,
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the 2implist.dat file should be manually created and it should include all of the

M saved data files that include the BCH weights (and not the original multiple

imputation files produced from the Mplus multiple imputation). Because this

process requires some manual manipulation, the number of imputations M should

be set to a lower value, for example 10 or 20.

11.4 Missing measurement model in LTA analysis using

the 3-step estimation

In this section, we will consider missing data on all of the latent class indicators

at a certain time point in Latent Transition Analysis. We will refer to this as a

missing measurement model. We build upon the 3-step LTA estimation described

in Section 4 of Asparouhov and Muthén (2014), see also Appendices F-I. We

will essentially repeat the 3-step estimation with the added complexity that the

measurement model is entirely missing for certain observations at certain time

points. In this illustration we use 3 time points instead of 2 time points as it was

done in Appendices F-I.

We begin with Figure 29 which describes the input file we use to generate

the data. There are 3 latent class variables measured by 5 binary indicators

in this LTA analysis. We use this data set and insert missing values for the

measurement model as follows. The total sample size in this illustration is 2000.

We insert missing values for the measurement model at time point 1 for the first

500 observations. We also insert missing values for the measurement model at

time point 2 for the next 500 observations. Finally, we insert missing values for

the measurement model at time point 3 for the next 500 observations. The last
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500 observations have no missing values at any of the three measurement models.

In the next 7 figures we illustrate the proper and most optimal way to use the

3-step estimation in this context.

Figures 30-32 amounts to simply estimating the LCA at each of the three time

points. We will only be using these runs to obtain the error structure for the

most likely class variable for each of the three LCA analyses, i.e., we only need

the results in the tables ”Logits for the Classification Probabilities for the Most

Likely Latent Class Membership (Column) by Latent Class (Row)”. These values

will be used as the nominal variable parameters in the final stage. Note also that

in these three runs we are actually not saving the most likely class variables. This

will be done separately as a part of the more complex data management that is

needed.

Figures 33-35 describe the same models as Figures 30-32 but with an added

level of data management that aligns the data in the most suitable way for the final

estimation. The models in Figures 30-32 are not suitable for saving the most likely

class variables because in these run the missing measurement model observations

at a particular time point will be removed and the data sets will be misaligned and

will present a challenge to combine. Figures 33-35 use one additional observed

variable P . This variable can be any/arbitrary variable which has no missing

values. This can for instance be the ID variable. In each LCA model, the

parameters for this new variable are held equal across class so that the new

variables does not change the measurement model for the latent class variable. The

measurement model parameter estimates of Figure 33-35 should match exactly

the results obtained with the input files of Figures 30-32. The primary purpose

of the new variable P is to prevent Mplus from removing entire observations from
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the data when the measurement model is missing at the particular time point.

Essentially Figures 33-35 are the same as Figures 30-32 but they are based on

the full data set. In the full data set estimation, the data sets are linked across

time, meaning that after we run the LCA at time point one, we save the data

and proceed to the next time point with the new data set that contains all the

variables, including the most likely class variables from the previous time points.

Figure 36 shows the final model where the LTA transition model is estimated

and the most likely class variables at each time point are as usual used as

measurements for the latent class variables with certain misclassification errors

specified in the nominal variables. There are two things to note here. First, the

nominal parameters means are obtained from the results of the inputs of Figures

30-32, and not those in Figures 33-35. The second thing to note is that we use

the DEFINE statements to specify missing values for the nominal variables for

those cases where the measurement model is missing. This uses the MISSING

option described in the Mplus User’s Guide, see Muthén and Muthén (1998-

2017) page 643. In this example, missing value on the first latent class indicator

implies missing values on all the latent class indicators, which implies a missing

measurement model and therefore missing value for the most likely latent class

variable. If the missing data is more complex and some latent class indicators at

a particular time point are missing while other are not, these DEFINE statements

must be modified. The most likely latent class variable should be set to missing

only if all of the latent class indicators are missing.
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Figure 29: Data generation for LTA with 3 time points
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Figure 30: Estimating the LCA at time point 1

Figure 31: Estimating the LCA at time point 2
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Figure 32: Estimating the LCA at time point 3
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Figure 33: Estimating the LCA at time point 1 on the full data set

Figure 34: Estimating the LCA at time point 2 on the full data set
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Figure 35: Estimating the LCA at time point 3 on the full data set

Figure 36: Estimating the final LTA model
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12 Summary

Many methods have been proposed in recent years for mixture modeling with

auxiliary variables. To clarify the choice of method, Tables 9 and 10 list the Mplus

options, give their intended use, and give recommendations on which method

should be used for which purpose.
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Table 9: Alternative auxiliary settings for mixture modeling

BCH

Useage: Continuous and categorical distal outcomes

Description; reference: Measurement-error weighted; Bakk and Vermunt (2014)

Pros and cons: Avoids class changes. Avoids the DCON shortcomings with class-varying variances for distals.

Manual version also available for an arbitrary auxiliary model, including controlling for covariates.

Possible SE underestimation with low entropy.

Recommendation: Preferred method for continuous and binary distal outcomes.

Preferred method for non-binary categorical distal outcomes via the manual BCH

DU3STEP

Useage: Continuous distal outcomes

Description; reference: Classification-error corrected; Vermunt (2010) and Asparouhov-Muthén (2014)

Pros and cons: Susceptible to class changes. Mplus will not report results if the class formation changes.

Manual version also available for an arbitrary auxiliary model, including controlling for covariates.

Estimates unequal distal variances across classes.

Recommendation: Good method for continuous distal outcomes

Use when Mplus reports results, i.e., there are no class formation changes, otherwise use BCH.

R3STEP

Useage: Covariates

Description; reference: Classification-error corrected; Vermunt (2010)

Pros and cons: Works well

Recommendation: Recommended method with covariates

2-STEP

Useage: Covariates

Description; reference: Bakk, Z. and Kuha, J. (2018)

Pros and cons: Works well

Recommendation: Recommended method with covariates, particularly with multiple latent class variables
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Table 10: Alternative auxiliary settings for mixture modeling, continued

DE3STEP

Useage: Continuous distal outcomes. Equal distal variances across classes

Description; reference: Classification-error corrected; Vermunt (2010) and Asparouhov-Muthén (2014)

Pros and cons: Susceptible to class changes and class-varying variances.

Mplus will not report results if the class formation changes.

Recommendation: Inferior to BCH and DU3STEP.

Use only when DU3STEP does not converge.

DCAT

Useage: Categorical distal outcomes

Description; reference: Distal treated as covariate; Lanza et al. (2013)

Pros and cons: Avoids class changes. Automated Mplus analysis, as compared to the manual BCH.

Recommendation: Use only if conditional independence can be verified

DCON

Useage: Continuous distal outcomes

Description; reference: Distal treated as covariate; Lanza et al. (2013) and Asparouhov-Muthén (2014)

Pros and cons: Avoids class changes. Sensitive to class-varying variances for distals when entropy is low

Recommendation: Inferior to BCH and DU3STEP when DU3STEP does not change the class formation.

Use only when entropy is higher than 0.6 or for methods research purposes.

If variance appears to be varying across class more than a factor of 2 do not use this method.

This check can be done using most likely class assignment - it is not done automatically by Mplus.

E

Useage: Continuous distal outcomes

Description; reference: Pseudo-class (PC) method; Wang et al. (2005)

Pros and cons: Gives biased results

Recommendation: Superseded by BCH and DU3STEP. Use only for methods research purposes

R

Useage: Covariates

Description; reference: Pseudo-class (PC) method; Wang et al. (2005)

Pros and cons: Gives biased results

Recommendation: Superseded by R3STEP. Use only for methods research purposes

77



References

[1] Asparouhov, T. & Muthén, B. (2008). Multilevel mixture models. In G. R.

Hancock & K. M. Samuelsen, K. M. (Eds.). Advances in Latent Variable

Mixture Models. Charlotte, NC: Information Age Publishing, Inc.

[2] Asparouhov T. & Muthén B. (2010a). Chi-square statistics with multiple

imputation. https://www.statmodel.com/download/MI7.pdf

[3] Asparouhov T. & Muthén B. (2010b). Multiple imputation with Mplus.

http://www.statmodel.com/download/Imputations7.pdf

[4] Asparouhov T. & Muthén B. (2014). Auxiliary variables in mixture

modeling: Three-step approaches using Mplus. Structural Equation

Modeling: A Multidisciplinary Journal, 21, 329-341. Online Appendicies:

http://statmodel.com/download/AppendicesOct28.pdf

[5] Asparouhov, T., Hamaker, E. L., & Muthén, B. (2017). Dynamic

latent class analysis. Structural Equation Modeling, 24, 257–269. doi:

10.1080/10705511.2016.1253479

[6] Asparouhov T. & Muthén B. (2020). Expanding the Bayesian Structural

Equation, Multilevel and Mixture Models to Logit, Negative-Binomial and

Nominal Variables. http://statmodel.com/download/PGpaper.pdf

[7] Bakk, Z., Tekle, F.B., & Vermunt, J.K. (2013). Estimating the association

betwen latent class membership and external variables using bias adjusted

three-step approaches. In T.F. Liao (ed.), Sociological Methodology.

Thousand Oake, CA: SAGE publications.

78



[8] Bakk, Z. and Vermunt, J.K. (2015). Robustness of stepwise latent class

modeling with continuous distal outcomes. Structural Equation Modeling:

A Multidisciplinary Journal, 23, 20-31.

[9] Bakk, Z. and Kuha, J. (2018). Two-step estimation of models between latent

classes and external variables. Psychometrika, 83, 871–892.

[10] Bray, B.C., Lanza, S. T. & Tan, X. (2014) Eliminating Bias in

Classify-Analyze Approaches for Latent Class Analysis. Structural Equation

Modeling: A Multidisciplinary Journal. 22, 1-11.

[11] Lanza S. T., Tan X., & Bray B. C. (2013). Latent Class Analysis With

Distal Outcomes: A Flexible Model-Based Approach. Structural Equation

Modeling, 20, 1-26.

[12] Muthén, B., & Asparouhov, T. (2006). Item response mixture modeling:

Application to tobacco dependence criteria. Addictive Behaviors, 31,

1050–1066.

[13] Muthén, B., & Asparouhov, T. (2007). Growth mixture analysis: Models with

non-Gaussian random effects. Forthcoming in Fitzmaurice, G., Davidian,

M., Verbeke, G., & Molenberghs, G. (eds.), Advances in Longitudinal Data

Analysis. Chapman & Hall/CRC Press.

[14] Muthén, B., & Asparouhov, T. (2020). Latent transition analysis with

random intercepts (RI-LTA). Psychological Methods. Advance online

publication. https://doi.org/10.1037/met0000370

79



[15] Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User’s Guide. Eighth

Edition. Los Angeles, CA: Muthén & Muthén.

[16] Qu T., Tan M., & Kutner M.H. (1996). Random-effects models in latent class

analysis for evaluating accuracy of diagnostic tests. Biometrics, 52, 797–810.

[17] Vermunt, J. K. (2010). Latent Class Modeling with Covariates: Two

Improved Three-Step Approaches. Political Analysis, 18, 450-469.

[18] Wang C.P., Brown, C.H., Bandeen-Roche, K. (2005). Residual diagnostics

for growth mixture models: Examining the impact of preventive intervention

on multiple trajectories of aggressive behavior. Journal of the American

Statistical Association, 100 (3), 1054-1076.

80


