Prior-Posterior Predictive P-values
Tihomir Asparouhov and Bengt Muthén
Mplus Web Notes: No. 22

Version 2

April 27, 2017



1 Introduction

The Bayesian SEM introduced in Muthén and Asparouhov (2012) uses small-
variance priors to expand standard SEM models into a more flexible and more
realistic set of models. When a hypothesized SEM model is rejected by the
data, a BSEM model can relax the rigid framework of the SEM model by
adding small-variance priors to parameters that are fixed to zero in the SEM
model. That way the conceptual framework of the SEM model is preserved,
and by allowing parameters to be approximately zero instead of being fixed to
zero the discrepancy between the SEM model and the data can be resolved.
In this process the BSEM model can also parse out meaningful model mis-
specifications from small model misspecifications that can also be the cause
of model rejections when such small misspecifications are in great number or
when the sample size is so large that even small misspecifications are enough
to reject the model.

The BSEM model estimation typically requires multiple model estima-
tions, see Asparouhov, Muthén and Morin (2015), varying the size of the
variance of the small priors and using the posterior predictive p-value (PPP)
to monitor the distance between the data and the model. In this process no
particular prior variance is preferred, rather, the prior variance is adjusted
gradually to maintain identifiability of the model while resolving model fit
and separating parameters that have minor deviations from zero from sub-
stantively important misspecifications. The choice of the variance of the small
prior is further complicated by the fact that they are sample size dependent,
i.e., a prior variance that works for one data set might not be appropriate for
similar data set of much larger sample size. This is because in the Bayesian
methodology as the sample size increases to infinity the prior influence is
lost. To resolve that problem the BSEM estimation requires the prior to be
set with much smaller variance to overcome the effect of the data. Typically
the BSEM estimation starts with a very small prior variance that is guar-
anteed to produce a well identified model close in meaning and parameter
estimates to the original SEM model and gradually increase the prior vari-
ance until the estimation no longer converges or the PPP value no longer
improves. The PPP values used with the BSEM model estimation is based
on the chi-square discrepancy function, see Scheines, Hoijtink and Boomsma
(1999) and Asparouhov and Muthén (2010).

Recently Hoijtink and van de Schoot (2017) point out that there is a
need for a different type of hypothesis testing than the one that the PPP



method provides which attaches a practical meaning to the prior variance
value. Consider a model M that has a set of major parameters 6; and a set
of minor parameters 6. If the 6, parameters are fixed to zero the data rejects
the model and thus we are interested in estimating a BSEM model where the
0, parameters are not-exactly zero but approximately zero, i.e., within small
deviations of zero. More specifically we want to test the specific hypothe-
sis that the 6y parameters are within a small range around 0, provided by
the normal distribution N(0,v) where v is a small variance, not any small
variance but a particular value of v that has some practical meaning. The
PPP testing in the BSEM estimation does not provide an answer for that
hypothesis as it generally does not attach a specific meaning to the small-
variance prior and the small-variance prior is not sample size independent.
Hoijtink and van de Schoot (2017) construct a method called the prior poste-
rior predictive p-value (PPPP) that accomplishes exactly that in the simple
case of a linear regression with one dependent variable and one predictor. In
this note we show how a slight modification of Hoijtink and van de Schoot
(2017) PPPP approach allows us to generalize the PPPP method for general
SEM models. In what follows we discuss the details of that modification, the
Mplus Version 8 implementation of the PPPP, and illustrate the performance
of the method with several simulation studies and empirical examples.

2 The prior posterior predictive p-value

Let’s again consider a model M with a set of major parameters 6; and a
set of minor parameters 6, where we want to test the hypothesis that the
minor parameters can be considered approximately zero within the range
of a N(0,v) distribution where v is a particular small variance. We use the
following notation M (6, 6>) to represent the model M with parameter values
0, and #,. We call the pure model the model where the minor parameters are
set to 0, i.e., M (6,0 = 0). Let 6 denote the vector of all model parameters
0 = (01, 60,) and G(Y, 61, 02) denote the chi-quare for the model M (6,, 6,) and
the data Y.

First let’s note that the PPP in a general Bayesian estimation can be
computed using any discrepancy function, not just the standard structural
equation model chi-square discrepancy function. A general discrepancy func-
tion is defined as a function of the data and the model parameters. Let f(Y,0)
be a general discrepancy function. The PPP for this discrepancy function is



defined as the .
PPP =P(f(Y.0) < f(Y.0)) (1)

where the probability is computed over the posterior distribution of 8 given
the prior of @ and observed data and Y is generated data assuming the
model and the 6 parameters. For a general discussion on posterior predictive
checking see Gelman et al. (2004). The discrepancy function generally is a
function that measures the distance between the data and the model. It can
be chosen for example to be the squared difference between the sample and
the model-implied means.

In what follows we define the discrepancy function to be the distance
between the data and the pure model, i.e., we define

f(K 01,92) = G(Y> 0170) (2)

Let F(0y) denote the PPP value using the above discrepancy function for
the Bayesian model estimation of model M where the minor parameters are
fixed to the values 6, while the parameters 6, are set free. The function
F(6) essentially compares the distance between the observed data and the
pure model and the distance between the pure model and data that are 6,
contaminated, i.e., data that originate from the M (6, 65) model, rather than
the pure M (6,0) model.
We define the prior posterior predictive p-values as

PPPP = E(F(6,)) (3)

where the expectation is taken over the N(0,v) distribution.

Hoijtink and van de Schoot (2017) illustrate this concept through a simple
example rather than define the PPPP as a general concept. However, there
is a slight difference in their definition and the definition given above. If we
replace equation (2) with the following equation

F(Y,01,05) = G(Y,6,,0) (4)

where él denotes the maximum-likelihood estimate for the #; parameter ob-
tained from the data Y for the pure model M (6;,0) then we arrive at the
definition used by Hoijtink and van de Schoot (2017) for the simple regression
example. This difference amounts to how the distance is measured between
the data and the pure model. Our definition uses the current value of #; while



the Hoijtink and van de Schoot (2017) definition uses the maximum likeli-
hood value of #;. Since it is impractical to compute the maximum-likelihood
value at each MCMC iteration we resort to the simplification in equation (2)
and the simulation studies shown below demonstrate that the performance of

this method is similar to the performance of the Hoijtink and van de Schoot
(2017) method.

3 The Mplus implementation of the PPPP

The PPPP in Mplus version 8 is computed for every model for which the PPP
is computed. To trigger this computation a small-variance normal prior has
to be specified for a parameter which is a slope, a loading or an intercept
parameter. A normal prior with variance smaller than 1 is considered a
small-variance prior. The computation of the PPPP is performed before the
general Bayes estimation, i.e., two separate MCMC sequences are conducted.
The first one results in the computation of the PPPP value while the second
MCMC chain results in the computation of the PPP value and model pa-
rameter estimates. Thus the PPPP methodology can be used simultaneously
with the BSEM model estimation.

Following the Hoijtink and van de Schoot (2017) algorithmic descriptions,
the computation of the PPPP amounts to two modifications of the PPP
computation. The first one is that the #, parameters are generated at each
iteration from their prior distribution rather than the posterior distribution.
The second modification is the switch in the discrepancy function, where the
chi-square function is replaced by the function in equation (2) measuring the
distance between the data and the pure model (where the standard PPP
would use the distance between the data and the contaminated model).

To compute F(6;) in equation (3) for a particular draw of 6y, a complete
MCMC sequence has to be run to convergence for that particular value of
0,. Hoijtink and van de Schoot (2017) instead suggest that just one MCMC
iteration is conducted for each 6y draw and point out that results remain
unchanged when compared to the case of much longer MCMC sequence for
each value of 0y. Ultimately this amounts to updating #, at each iteration or
updating it every k-th iteration assuming the MCMC sequence for a partic-
ular value of 65 converges in k iterations. The Mplus implementation of this
is as follows. Using the thin command a specification of thin=k will cause
the 6, parameters to be updated every k-th iteration. Note that the Mplus



default for the thin option is 1.

It is important to note that any prior that is not considered a small-
variance prior for the purpose of the computation of the PPPP is not included
in the 6, vector. Only those parameters that are given small-variance priors
in the model prior statement are included in the 6, vector. Note that the diff
priors are NOT included in the 05 vector either, but that may change in the
future.

Note that the PSR convergence criterion is used for both MCMC runs,
the PPP run and the PPPP run. The MCMC chain for the PPPP compu-
tation is technically not a proper Bayes MCMC chain but rather a random
Bayesian averaging of MCMC chains. Nevertheless the PSR can still be used
to monitor convergence. Many of the BSEM models where small-variance
priors are used are actually unidentified models that are used for exploratory
purposes. In many cases the BSEM estimation for such models will not con-
verge due to the prior not being strict enough. If the BSEM model does not
converge the PPPP will not be reported.

In other cases the PPPP run will not converge but the PPP run will.
The PPPP is still computed in these cases from the MCMC chain sequence.
Generally speaking the PPPP can be computed for unidentified models as
it is only based on model distance and doesn’t require the Bayesian mixed
MCMC chains to be converging and the model to be identified. However,
it should be fairly unusual that the more relaxed PPP run converges while
the PPPP run does not. We have found that using the thin command can
improve the convergence rate for the PPPP run. It is possible to prefix the
number of MCMC iterations run for both the PPP and the PPPP MCMC
chains, using the FBITER option, and deal with convergence separately.

4 Simulation Study: Regression Analysis

In this section we will replicate the simulation study results given in Table
5 in Hoijtink and van de Schoot (2017). The model is a simple regression
example

Y=a+pX +e. (5)

We are interested in testing the hypothesis that 3 is approximately zero. We
specify a small-variance prior N(0,0.01) for the 5 parameter. We generate
data according to the above model and various values of § to evaluate the
performance of the PPPP. The covariate X is generated from a standard
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Table 1: Simulation results for linear regression example: average PPPP
(percent rejection)

3 0 0.1 0.2 0.3 0.707
N=20 | .49(.01) | .46(.04) | .39(.09) | .32(.15) | .02(.90)
N=50 | .53(.03) | .51(.04) | .34(.13) | .19(.35) | .00(1.00)
N=100 | .58(.00) | .47(.07) | .25(.22) | .08(.55) | .00(1.00)

normal distribution. In this simulation study we generate the data using the
following parameters o = 0 and Var(e) = 1 — 5%, so that Var(Y) = 1. Data
is generated for several values of § = 0,0.1,0.2,0.3,0.707. We generate 100
samples of sizes 20, 50, and 100 for each value of 5. Table 1 shows the results
of this simulation study. We report the average PPPP value across the 100
replications as well as the percentage rejection of the hypothesis that g is
approximately zero at the 5% nominal level. Table 5 in Hoijtink and van de
Schoot (2017) is based on a single data set rather than the average across
100 replications so it is not possible to directly compare the results, however,
the results are fairly close and certainly the pattern is the same.

The most importantly result from Table 1 is the rejection rate for g = 0.3.
The PPPP rejection rate is .15, .35 and .55, i.e., they increase. The value
B = 0.3 is outside the range of the normal prior N(0,0.01) and therefore we
want the test to reject the hypothesis. The PPPP rejection rates increase
as the sample size increases just as a classic p-value would do. In that same
case PPP value rejection rates are .04, .06 and .00, i.e., as the sample size
increases the rejection rates decrease. This is counter intuitive as we would
expect that with an increase of the sample size and the information in the
data, the hypothesis testing would reach the right conclusion. To summarize
again the PPP value can not be used to test the hypothesis that a parameter
is approximately zero and it should be used within the BSEM framework as
it is outlined in Asparouhov, Muthén and Morin (2015). On the other hand
the PPPP value can be used to test that hypothesis and appears to behave
similar to the classic p-value when it comes to sample size. The advantage of
the PPPP value over the classic p-value based tests is that it allows the test
of an approximate hypothesis where minor deviations from the hypothesis
are not a reason to reject it.



5 Simulation Study: Factor Analysis

In this section we consider the factor analysis simulation study discussed in
Hoijtink and van de Schoot (2017) and we will compute the PPPP values for
the two hypotheses considered in that article. The factor analysis model is
a 2 factor model with 6 indicators, for p=1,...,6

Yy = vp + At + Agpipe + €5 (6)

We generate the data using the following parameter values v, = 0, 8, =
Var(e,) = .35 for p = 1,3,4, and 6, and ¢, = .51 for p = 2, and 5. The
loading matrix A is given by

[ 0.7 —0.4]
0.7 0
0.7 0.4

—0.4 0.7 |- (7)
0 0.7

04 0.7 |

The two hypotheses that were considered in Hoijtink and van de Schoot
(2017) are
H1: /\15, )\22 ~ N(07 00].)

and

H2 : A1y, Ais, M6, Aa1, Aar, Aeg ~ N(0,0.01).

We expect hypothesis H1 to not be rejected and hypothesis H2 to be rejected
as the value 0.4 is outside of the range of N(0,0.01). The Hoijtink and van
de Schoot (2017) critique of the PPP method is that the PPP values do not
reject either hypothesis as sample size increases, which is what one would
expect as a prefixed prior has no effect on the model estimation, including
test of fit, for sufficiently large sample size. The BSEM methodology relies
on reducing the variance of the prior as sample size increases, but here we
are holding it fixed as the above hypotheses require.

We also include the following two hypotheses for further illustration pur-
poses using a larger prior variance of 0.1

H3 . )\14, )\15, )\167 )\21, )\21, )\23 ~ N(0,0l)

and
H4 . )\14 ~ N(0,0l), )\15, )\21 = 0.

8



Table 2: Simulation results for factor analysis example: average PPPP (per-
cent rejection)

N H1 H2 H3 HA H5
50 | .42(.02) | .01(.93) | .11(.22) | .32(.04) | .45(.02)
100 | .51(.00) | .00(1.00) | .06(.52) | .32(.01) | .45(.02)
500 | .73(.00) | .00(1.00) | .03(.83) | .26(.01) | .37(.01)
1000 | .80(-00) | .00(1.00) | .03(.92) | .27(.00) | .33(.00)
5000 | .88(.00) | .00(1.00) | .02(.99) | .26(.00) | .34(.00)

Note that hypothesis H4 can be implemented in Mplus in two ways both of
which are equivalent. The parameters \i5, \o; can be treated as parameters
fixed to 0, or they can be treated as parameters having N(0,0) prior. The
second approach will essentially include them in the PPPP testing, however,
the two approaches are equivalent and yield identical results.

Finally, we include the hypothesis H5, which is identical to H2 but we
generate the data using this loading matrix

[ 0.7 —0.1]
0.7 0
0.7 0.1

—-0.1 0.7 |- (8)
0 0.7

0.1 0.7 |

Because the 0.1 cross-loadings are within the N(0,0.01) we expect hypothesis
H5 to not be rejected.

The results of this simulation are given in Table 2 for various sample sizes
and are computed over 100 replications for each sample size. Note that Table
2 corresponds to Table 4 in Hoijtink and van de Schoot (2017), where only the
PPP values are computed, as they did not include PPPP value computation
beyond the linear regression example.

Clearly the PPPP resolves the issue with the PPP and the PPPP behavior
is similar to the classic p-value behavior when it comes to sample size. The
PPPP value decreases as the sample size increases. Table 2 results show that
hypothesis H1 is not rejected while hypothesis H2 is rejected confirming our
expectations. Next we compare hypotheses H3 and H4. Hypothesis H4 is not
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rejected which is in line with our expectations that the true value of -0.4 is
within the range of the prior N(0,0.1). In addition, the PPPP value appears
to be close to the probability that a value as large as 0.4 by absolute value will
be drawn from the small-variance prior N(0,0.1), which is ®(0.4/v/.1) ~ .2,
where ® is the standard normal function. On the other hand the hypothesis
H3 is rejected. The interpretation of that is as follows. The 6 cross-loading
values that we tested are -0.4, -0.4, 0, 0, 0.4, 0.4. While one 0.4 value, by
absolute value, can occur as the draw from the N(0,0.1) distribution, 4 out
of 6 is not likely. The probability that 4 or more will be greater or equal
than 0.4 by absolute value is approximately .2%.82 (Z) + .25.8@) +.26 ~0.017
which is exactly what the PPPP value converges to as sample size increases.
This means that at the 5% nominal level we should expect H3 to be rejected
and indeed the PPPP results confirm that.

Finally we consider hypothesis H5. In this case the PPPP correctly does
not reject the hypothesis and it concludes that the cross-loading values -0.1, -
0.1, 0,0, 0.1, 0.1 are approximately zero and can be assumed to be white noise
parameters coming from the small-variance distribution N(0,0.01). The fact
that hypothesis H5 is not rejected is the real strength of the PPPP method
and it is where the real advantage of this method can be seen very clearly.

6 The difference between PPPP and PPP

The PPP is a test of model fit. It tests the fit to the data of the model with
the given priors and is based on comparing the model with the unrestricted
mean and variance covariance model.

The PPPP is not a test of model fit. It is a test for the minor parameters
0y in the model. If the test does not reject, this should NOT be interpreted
as a test of model fit result, i.e., it should NOT be interpreted as evidence
that the model fits the data. The PPPP is more similar, but not equivalent,
to the Wald test implemented in Mplus with the MODEL TEST command,
that is, a test for specific parameters.

The proper interpretation of the PPPP is as follows. If the test does not
reject, the minor parameters can be assumed to come from N (0, v) distribu-
tion. More broadly speaking, if the PPPP does not reject, that means that
there is no evidence in the data for the minor parameters in model M (6, 0s)
to be outside the N(0,v) distribution. The PPPP does not consider the fact
that another set of parameters f3 (minor or major) that are missing from
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Table 3: Simulation results for misspecified factor analysis example: average
value (percent rejection)

N PPP PPPP

50 | 28(.13) | .33(.07)
100 | 28(.08) | -39(.00)
500 | .02(.89) | .28(.01)
1000 | .00(1.00) | .26(.00)
5000 | .00(1.00) | .24(.00)

the model M (6, 6;) may not be zero and a reason for the model to be in-
adequate for this data. If such a parameter 63 indeed exists then the PPP
will reject the model correctly while the PPPP will not reject. Note that it
is not correct to say that the PPPP incorrectly does not reject the model,
rather, the proper interpretation is that it does not reject the hypothesis
that the 6, parameters are approximately zero. The PPPP does not make
inference about other model misspecifications that can not be resolved by
the 0, parameters being tested.

We will illustrate this point with the following simulation study. Consider
again the factor analysis example and data generation for hypothesis H1. We
modify the data generation by including a residual covariance between Y] and
Y5 and we set that to 0.3. Using multiple sample sizes N and 100 replicated
data sets for each sample size we obtain the average values and rejection rates
for PPP and PPPP. The results are reported in Table 3. The PPP correctly
rejects the model for sample size N = 500, 1000 and 5000. For smaller sample
sizes there is not enough power to reject the model and establish significance
of the misfit. On the other hand the PPPP never rejects. That is because it is
not a test of fit for the model. It is only a test for the A5 and A9y parameters.
These loadings are unrelated to the residual correlation between Y; and Y3
where the misfit occurs, i.e., there is nothing in the data that will cause these
loadings to be estimated as larger non-zero cross-loadings and thus the PPPP
does not reject.

In the above simulation study we illustrated the fact that the PPPP does
not replace the PPP. The PPPP is a targeted test for a set of minor pa-
rameters ¢, and a large p-value does not guarantee model fit. The PPP is
a test of model fit. The PPPP is a test for the hypothesis that the minor
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parameters 0y are approximately zero, while the PPP is a test for the hy-
pothesis that the structural model M(6q,0:), where the 6, parameters are
approximately zero, fits as well as the unrestricted mean and variance co-
variance model. The two hypotheses that the PPP and the PPPP address
could not be more different. However, the hypotheses become equivalent in
some special circumstance such as, for example, the case where the model
M (6,,0,) is the same as or equivalent to the unrestricted mean and variance
covariance model. For example this is the case of the regression example, but
it is not the case for the factor analysis example. If the minor parameters
0y include also all the residual covariance parameters in the factor analysis
example this would also be the case of equivalent hypotheses. Note that with
the current Mplus implementation only the intercept, slopes, and loadings
parameters can be included in the PPPP test.

The above simulation study is an example where the PPP rejects while
the PPPP does not not reject. The simulation study for hypothesis H2
in the previous section is an example of the opposite where the PPP does
not reject while the PPPP rejects. We did not include the PPP values for
that simulation study but these can be found in Hoijtink and van de Schoot
(2017). The PPP does not reject in that case because for sufficiently large
sample size the fixed prior N (0, v) is not strict enough to have an effect on
the estimation, which is dominates by the data, and any size cross-loadings
are allowed. As a result the estimated BSEM model becomes identical to
the data generating model and thus is not rejected. When the PPP and the
PPPP yield opposite conclusions proper interpretation is critical. Clearly
there is substantial room for misuse if these tests are interpreted incorrectly.

A proper utilization of the PPP and the PPPP would still involve first
fitting a model via the BSEM approach of Muthén and Asparouhov (2012)
that relies primarily on PPP for model evaluation. Once the model is fitted
and the PPP value does not reject the model we can separate the parameters
into major parameters ¢; and minor parameters 6y and test for the size of
the minor parameters using the PPPP test. Note that this may require a
separate run. The PPP prior variance value does not need to correspond to
the PPPP prior variance value. The PPP prior variance is guided by the
BSEM fitting process described in Asparouhov, Muthén and Morin (2015)
while the PPPP prior variance is guided by what is considered substantively
different from zero. In the next section we illustrate the proper use of the
PPP and the PPPP using empirical examples.
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7 Using the PPP and the PPPP with empir-
ical examples

In this section we revisit the Holzinger-Swineford mental abilities example
discussed in Muthén and Asparouhov (2012). The example consists of a four-
factor model where the factors are measured by 19 indicators. The sample
consists of two groups obtained from two separate schools: Grant-White
school (N = 145) and the Pasteur school (N = 156). A simple structure
for the factor loadings is rejected by the data in both groups and thus we
consider the model which includes a total of 19 - 3 = 57 cross-loading with
small-variance prior of N(0,0.01).

The PPP and the PPPP of these analyses are presented in Table 4 for
the two groups. No rejections are observed in either of the groups. The
proper interpretation of these results is as follows. The fact that the PPP
does not reject the model means that a four-factor model with some minor
cross-loadings fits the data well. Detailed analysis of the cross-loading results,
obtained from the posterior distribution in the BSEM estimation, can reveal
if the cross-loadings should be considered minor or major. The PPP doesn’t
carry such information. It only asserts that generally the cross loadings are
a sufficient model modification to resolve the model misfit of the simple four-
factor analysis structure and there is no need to add further modifications
such as adding an additional factor or adding additional residual covariances
between for the indicator variables. The fact that the PPPP test does not
reject means that the cross loadings can be considered approximately zero
and coming from a normal distribution N(0,0.01). Clearly the PPPP and
the PPP implications for the model are completely different. Note also that
the PPP values are smaller in both groups. This is because the PPP tests a
much stricter hypothesis than the PPPP. The PPP tests the hypothesis that
the cross-loadings are small and the residual covariances are zero, while the
PPPP tests only that the cross-loadings are small, although the meaning of
small is much stricter than it is for the PPP.

Now we repeat the above analysis on a sample that is created by dou-
bling the original sample, i.e., every observation is entered twice. This is an
artificially created data set and the analysis has no practical implications.
We only use it here to illustrate the proper use of the PPP and the PPPP
in empirical examples. The results of this analysis is presented in Table 5
when using the small-variance prior N(0,0.01) and in Table 6 when using
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Table 4: Holzinger-Swineford four-factor model

school PPP | PPPP
Grant-White | .36 .52
Pasteur .16 .25

Table 5: Holzinger-Swineford four-factor model with doubled sample and
prior N(0,0.01)

school PPP | PPPP
Grant-White | .00 .02
Pasteur .00 .00

the small-variance prior N(0,0.1). The PPP results in both tables indicate
that in these larger samples there is enough evidence to reject the four-factor
model and additional modifications are needed. The potential modifications
that can be explored are adding an additional factor or adding additional in-
dicator residual covariances. In addition the PPP confidence interval values
for the difference of the chi-square values for the observed and the replicated
data changed only slightly between the two prior variances, which indicates
that much of the model fit improvement is already gained at these prior levels
and no further gains can be expected.

The PPPP test rejects the hypothesis of N(0,0.01) cross-loadings but
does not reject the hypothesis of N(0,0.1) cross-loadings. Overall the con-
clusion is that allowing the cross-loadings to be a bit bigger will get us closer
to fitting the data but it will not be enough. This analysis again illustrates
the complementary nature of the two methods if interpreted correctly.

8 Conclusion

Hoijtink and van de Schoot (2017) proposed a new method for testing a hy-
pothesis that a set of parameters are approximately zero within the BSEM
framework. They defined the PPPP method only for simple regression mod-
els, however. In this note we generalized the method to the SEM modeling
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Table 6: Holzinger-Swineford four-factor model with doubled sample and
prior N(0,0.1)

school PPP | PPPP
Grant-White | .00 1.00
Pasteur .00 1.00

framework and illustrated its performance with simulation studies and em-
pirical examples.

We also clarified the difference between the PPPP and the PPP methods.
The PPP method is a test of fit, while the PPPP method is not a test of
fit. The PPPP method is a test for the hypothesis that a set of parameters
are approximately zero. Proper interpretation is essential for both the PPPP
and the PPP values. The two methods are not a contradiction of each other,
even when the two values are not the same. The PPP value should be strictly
used as it is outlined in Muthén and Asparouhov (2012) and Asparouhov,
Muthén and Morin (2015). That is, the prior variance is adjusted gradually
to maintain identifiability of the model while resolving model fit and sepa-
rating parameters that have minor deviations from zero from substantively
important misspecifications. Most importantly, the PPP value should not be
confused with the PPPP value or with being the result of hypothesis testing
such as the hypotheses H1-H5 illustrated in the factor analysis simulation
example. On the other hand the PPPP values should not be seen as being a
test of model fit.
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