Modeling a quadratic term with three ... PreviousNext
Mplus Discussion > Growth Modeling of Longitudinal Data >
 Tim Seifert posted on Wednesday, February 21, 2007 - 1:13 pm
The data I would like to model is children's recognition of printed words. At pretest (t=0), posttest (2 months), and follow-up (8 months) the number of words children could identify was recorded. The pretest data was normally distributed, a little less so at the other time points. Two questions.

1) Should the data be modelled as Poisson or continuous distributions? If modelled as a continuous (normal) distribution, the intercept = the meannumber of words at pretest (5.5). When modelled as Poisson, I am not sure what the intercept represents since its value is about 1.3.

2) Examination of the data suggests a quadratic term would be useful. I noticed in previous posts that four time points are preferred to three, and in adding a quadratic term the number of free parameters is zero. But I tried constraining the intercept and linear means, variances and covariances, but still have no free parameters. Can a quadratic term be modelled with only three time points?
 Bengt O. Muthen posted on Saturday, February 24, 2007 - 10:18 pm
This question was posted twice.
Back to top
Add Your Message Here
Username: Posting Information:
This is a private posting area. Only registered users and moderators may post messages here.
Options: Enable HTML code in message
Automatically activate URLs in message