Model fits linear latent growth model PreviousNext
Mplus Discussion > Growth Modeling of Longitudinal Data >
 Marianne Schuepbach posted on Sunday, May 06, 2012 - 11:38 pm
Hi, I have a question concerning the model fit.
I estimated latent linear growth curve models with three measurement time points. We estimated the effect of the variable comparison groups controlling for some variables, that is, for possible selection effects: individual and family background variables.
The clustering of the data was taken into account with the calculation of the standard error by using the “TYPE=COMPLEX” option. The statistical method used for model estimation and model fitting was maximum likelihood with robust standard errors (MLR); for dealing with missing values I used full information maximum likelihood (FIML) estimation.
I got a excellent model fit: Chi2= 4.16; df= 6; CFI= 1.000; RMSEA= .000.
This is the case for the most of the models with this dependent variable.
Is it often the case to get such model fits? Or is here something wrong?
Thank you for your answer!

 Linda K. Muthen posted on Monday, May 07, 2012 - 7:55 am
Overly good fit can be caused by a small sample or low correlations.
Back to top
Add Your Message Here
Username: Posting Information:
This is a private posting area. Only registered users and moderators may post messages here.
Options: Enable HTML code in message
Automatically activate URLs in message