Why do fit indices change? PreviousNext
Mplus Discussion > Latent Variable Mixture Modeling >
 Pamela Kaliski posted on Tuesday, March 17, 2009 - 6:07 am
I conducted mixture modeling on 5 subscale scores 2 ways:

1. Using raw subscale scores.

2. re-scaling the scores by dividing them by the number of items on the subscale, because there was a different number of items on each subscale. This re-scaling made the means within class comparable.

Fit indices (e.g., log-likelihood, BIC)weren’t the same across the two ways. Why? When will fit indices be the same and when will they differ?
 Bengt O. Muthen posted on Friday, March 20, 2009 - 1:19 pm
LogL and BIC will be the same only when you use the same set of dependent variables and when the metric of those variables is the same.
 Jonathan Larson posted on Friday, December 13, 2013 - 1:03 pm
For many of the mixture models we've created, the BIC, SSA-BIC, CAIC, and BLRT never settle on a class solution. They continue getting smaller (or, in the case of the BLRT, remain significant) as more classes are attempted, even when the smallest class contains as few as two subjects. The LMR-LRT is the only index that picks a solution.

Do you know why this might be?

Thank you!
 Bengt O. Muthen posted on Friday, December 13, 2013 - 4:48 pm
I often use BIC where this is a common occurrence. It probably implies that either the model type is wrong (perhaps a factor model is better), or model details are wrong (e.g. within-class correlations between some items), or there just isn't a simple model to be found for the data at hand.
 Jonathan Larson posted on Monday, December 16, 2013 - 6:00 am
Thank you very much for your help!
Back to top
Add Your Message Here
Username: Posting Information:
This is a private posting area. Only registered users and moderators may post messages here.
Options: Enable HTML code in message
Automatically activate URLs in message