Mplus
Thursday
April 25, 2024
HOME ORDER CONTACT US CUSTOMER LOGIN MPLUS DISCUSSION
Mplus
Mplus at a Glance
General Description
Mplus Programs
Pricing
Version History
System Requirements
Platforms
Mplus Demo Version
Training
Mplus Web Talks
Short Courses
Short Course Videos
and Handouts
Web Training
Mplus YouTube Channel
Documentation
Mplus User's Guide
Mplus Diagrammer
Technical Appendices
Mplus Web Notes
FAQ
User's Guide Examples
Mplus Book
Mplus Book Examples
Mplus Book Errata
Analyses/Research
Mplus Examples
Papers
References
Special Mplus Topics
Bayesian SEM (BSEM)
Complex Survey Data
DSEM – MultiLevel Time Series Analysis
Exploratory SEM (ESEM)
Genetics
IRT
Measurement Invariance
and Alignment
Mediation Analysis
Missing Data
Mixture Modeling
Multilevel Modeling
Randomized Trials
RI-CLPM
RI-LTA
Structural Equation Modeling
Survival Analysis
How-To
Using Mplus via R -
MplusAutomation
Mplus plotting using R
Chi-Square Difference
Test for MLM and MLR
Power Calculation
Monte Carlo Utility
Search
 
Mplus Website Updates
Mplus Privacy Policy
VPAT/508 Compliance

MODELING WITH MISSING DATA

Mplus has several options for the estimation of models with missing data. Mplus provides maximum likelihood estimation under MCAR (missing completely at random), MAR (missing at random), and NMAR (not missing at random) for continuous, censored, binary, ordered categorical (ordinal), unordered categorical (nominal), counts, or combinations of these variable types (Little & Rubin, 2002). MAR means that missingness can be a function of observed covariates and observed outcomes. For censored and categorical outcomes using weighted least squares estimation, missingness is allowed to be a function of the observed covariates but not the observed outcomes. When there are no covariates in the model, this is analogous to pairwise present analysis. Non-ignorable missing data (NMAR) modeling is possible using maximum likelihood estimation where categorical outcomes are indicators of missingness and where missingness can be predicted by continuous and categorical latent variables (Muthén, Jo, & Brown, 2003; Muthén et al., 2010 ).

In all models, missingness is not allowed for the observed covariates because they are not part of the model. The model is estimated conditional on the covariates and no distributional assumptions are made about the covariates. Covariate missingness can be modeled if the covariates are brought into the model and distributional assumptions such as normality are made about them. With missing data, the standard errors for the parameter estimates are computed using the observed information matrix (Kenward & Molenberghs, 1998). Bootstrap standard errors and confidence intervals are also available with missing data.

Mplus provides multiple imputation of missing data using Bayesian analysis (Rubin, 1987; Schafer, 1997). Both the unrestricted H1 model and a restricted H0 model can be used for imputation.

Multiple data sets generated using multiple imputation can be analyzed using a special feature of Mplus. Parameter estimates are averaged over the set of analyses, and standard errors are computed using the average of the standard errors over the set of analyses and the between analysis parameter estimate variation (Rubin, 1987; Schafer, 1997). A chi-square test of overall model fit is provided (Asparouhov & Muthén, 2008c; Enders, 2010).

Modeling with Complex Survey Data Estimators and Algorithms
Back Next