Mplus
Tuesday
September 02, 2014
HOME ORDER CONTACT US CUSTOMER LOGIN MPLUS DISCUSSION
Mplus
Mplus at a Glance
General Description
Mplus Programs
Pricing
Version History
System Requirements
Platforms
FAQ
Mplus Demo Version
Training
Short Courses
Short Course Videos
and Handouts
Web Training
Documentation
Mplus User's Guide
Mplus Diagrammer
Technical Appendices
Mplus Web Notes
User's Guide Examples
Analyses/Research
Mplus Examples
Papers
References
Special Mplus Topics
Alignment (MG CFA)
BSEM (Bayesian SEM)
Complex Survey Data
ESEM (Exploratory SEM)
Genetics
IRT
Mediation
Missing Data
Randomized Trials
How-To
Using Mplus via R
Mplus plotting using R
Chi-Square Difference
Test for MLM and MLR
Power Calculation
Monte Carlo Utility
Search
 
Mplus Website Updates

ESTIMATORS AND ALGORITHMS

Mplus provides both Bayesian and frequentist inference. Bayesian analysis uses Markov chain Monte Carlo (MCMC) algorithms. Posterior distributions can be monitored by trace and autocorrelation plots. Convergence can be monitored by the Gelman-Rubin potential scaling reduction using parallel computing in multiple MCMC chains. Posterior predictive checks are provided.

Frequentist analysis uses maximum likelihood and weighted least squares estimators. Mplus provides maximum likelihood estimation for all models. With censored and categorical outcomes, an alternative weighted least squares estimator is also available. For all types of outcomes, robust estimation of standard errors and robust chi-square tests of model fit are provided. These procedures take into account non-normality of outcomes and non-independence of observations due to cluster sampling. Robust standard errors are computed using the sandwich estimator. Robust chi-square tests of model fit are computed using mean and mean and variance adjustments as well as a likelihood-based approach. Bootstrap standard errors are available for most models. The optimization algorithms use one or a combination of the following: Quasi-Newton, Fisher scoring, Newton-Raphson, and the Expectation Maximization (EM) algorithm (Dempster et al., 1977). Linear and non-linear parameter constraints are allowed. With maximum likelihood estimation and categorical outcomes, models with continuous latent variables and missing data for dependent variables require numerical integration in the computations. The numerical integration is carried out with or without adaptive quadrature in combination with rectangular integration, Gauss-Hermite integration, or Monte Carlo integration.

Modeling with Missing Data Monte Carlo Simulation Capabilities
Back Next