Mplus
Thursday
October 10, 2024
HOME ORDER CONTACT US CUSTOMER LOGIN MPLUS DISCUSSION
Mplus
Mplus at a Glance
General Description
Mplus Programs
Pricing
Version History
System Requirements
Platforms
Mplus Demo Version
Training
Mplus Web Talks
Short Courses
Short Course Videos
and Handouts
Web Training
Mplus YouTube Channel
Documentation
Mplus User's Guide
Mplus Diagrammer
Technical Appendices
Mplus Web Notes
FAQ
User's Guide Examples
Mplus Book
Mplus Book Examples
Mplus Book Errata
Analyses/Research
Mplus Examples
Papers
References
Special Mplus Topics
Bayesian SEM (BSEM)
Complex Survey Data
DSEM – MultiLevel Time Series Analysis
Exploratory SEM (ESEM)
Genetics
IRT
Measurement Invariance
and Alignment
Mediation Analysis
Missing Data
Mixture Modeling
Multilevel Modeling
Randomized Trials
RI-CLPM
RI-LTA
Structural Equation Modeling
Survival Analysis
How-To
Using Mplus via R -
MplusAutomation
Mplus plotting using R
H5 results
Chi-Square Difference
Test for MLM and MLR
Power Calculation
Monte Carlo Utility
Search
 
Mplus Website Updates
Mplus Privacy Policy
VPAT/508 Compliance

Chapter 11: Missing Data Modeling and Bayesian Analysis

Download all Chapter 11 examples

Example View output Download input Download data View Monte Carlo output Download Monte Carlo input
11.1: Growth model with missing data using a missing data correlate ex11.1 ex11.1.inp ex11.1.dat mcex11.1 mcex11.1.inp
11.2: Descriptive statistics and graphics related to dropout in a longitudinal study ex11.2 ex11.2.inp ex11.2.dat mcex11.2 mcex11.2.inp
11.3: Modeling with data not missing at random (NMAR) using the Diggle-Kenward selection model ex11.3 ex11.3.inp ex11.3.dat mcex11.3 mcex11.3.inp
11.4: Modeling with data not missing at random (NMAR) using a pattern-mixture model ex11.4 ex11.4.inp ex11.4.dat mcex11.4 mcex11.4.inp
11.5: Multiple imputation for a set of variables with missing values ex11.5 ex11.5.inp ex11.5.dat mcex11.5 mcex11.5.inp
11.6: Multiple imputation followed by the estimation of a growth model using maximum likelihood ex11.6 ex11.6.inp ex11.6.dat mcex11.6 mcex11.6.inp
11.7: Multiple imputation of plausible values using Bayesian estimation of a growth model ex11.7 ex11.7.inp ex11.7.dat mcex11.7 mcex11.7.inp
11.8: Multiple imputation using a two-level factor model with categorical outcomes followed by the estimation of a growth model (part 1) ex11.8part1 ex11.8part1.inp ex11.8.dat mcex11.8part1 mcex11.8part1.inp
11.8: Multiple imputation using a two-level factor model with categorical outcomes followed by the estimation of a growth model (part 2) ex11.8part2 ex11.8part2.inp ex11.8implist.dat none none
11.8: Multiple imputation using a two-level factor model with categorical outcomes followed by the estimation of a growth model (part 3) ex11.8part3 ex11.8part3.inp ex11.8implist.dat none none

Back to User's Guide Examples