Mplus
Thursday
October 10, 2024
HOME ORDER CONTACT US CUSTOMER LOGIN MPLUS DISCUSSION
Mplus
Mplus at a Glance
General Description
Mplus Programs
Pricing
Version History
System Requirements
Platforms
Mplus Demo Version
Training
Mplus Web Talks
Short Courses
Short Course Videos
and Handouts
Web Training
Mplus YouTube Channel
Documentation
Mplus User's Guide
Mplus Diagrammer
Technical Appendices
Mplus Web Notes
FAQ
User's Guide Examples
Mplus Book
Mplus Book Examples
Mplus Book Errata
Analyses/Research
Mplus Examples
Papers
References
Special Mplus Topics
Bayesian SEM (BSEM)
Complex Survey Data
DSEM – MultiLevel Time Series Analysis
Exploratory SEM (ESEM)
Genetics
IRT
Measurement Invariance
and Alignment
Mediation Analysis
Missing Data
Mixture Modeling
Multilevel Modeling
Randomized Trials
RI-CLPM
RI-LTA
Structural Equation Modeling
Survival Analysis
How-To
Using Mplus via R -
MplusAutomation
Mplus plotting using R
H5 results
Chi-Square Difference
Test for MLM and MLR
Power Calculation
Monte Carlo Utility
Search
 
Mplus Website Updates
Mplus Privacy Policy
VPAT/508 Compliance

Chapter 8: Mixture Modeling with Longitudinal Data

Download all Chapter 8 examples

Example View output Download input Download data View Monte Carlo output Download Monte Carlo input
8.1: GMM for a continuous outcome using automatic starting values and random starts ex8.1 ex8.1.inp ex8.1.dat mcex8.1 mcex8.1.inp
8.2: GMM for a continuous outcome using user-specified starting values and random starts ex8.2 ex8.2.inp ex8.2.dat mcex8.2 mcex8.2.inp
8.3: GMM for a censored outcome using a censored model with automatic starting values and random starts ex8.3 ex8.3.inp ex8.3.dat mcex8.3 mcex8.3.inp
8.4: GMM for a categorical outcome using automatic starting values and random starts ex8.4 ex8.4.inp ex8.4.dat mcex8.4 mcex8.4.inp
8.5: GMM for a count outcome using a zero-inflated Poisson model and a negative binomial model with automatic starting values and random starts (part 1) ex8.5part1 ex8.5part1.inp ex8.5a.dat mcex8.5part1 mcex8.5part1.inp
8.5: GMM for a count outcome using a zero-inflated Poisson model and a negative binomial model with automatic starting values and random starts (part 2) ex8.5part2 ex8.5part2.inp ex8.5b.dat mcex8.5part2 mcex8.5part2.inp
8.6: GMM with a categorical distal outcome using automatic starting values and random starts ex8.6 ex8.6.inp ex8.6.dat mcex8.6 mcex8.6.inp
8.7: A sequential process GMM for continuous outcomes with two categorical latent variables ex8.7 ex8.7.inp ex8.7.dat mcex8.7 mcex8.7.inp
8.8: GMM with known classes (multiple group analysis) ex8.8 ex8.8.inp ex8.8.dat mcex8.8 mcex8.8.inp
8.9: LCGA for a binary outcome ex8.9 ex8.9.inp ex8.9.dat mcex8.9 mcex8.9.inp
8.10: LCGA for a three-category outcome ex8.10 ex8.10.inp ex8.10.dat mcex8.10 mcex8.10.inp
8.11: LCGA for a count outcome using a zero-inflated Poisson model ex8.11 ex8.11.inp ex8.11.dat mcex8.11 mcex8.11.inp
8.12: Hidden Markov model with four time points ex8.12 ex8.12.inp ex8.12.dat mcex8.12 mcex8.12.inp
8.13: LTA for two time points with a binary covariate influencing the latent transition probabilities (part 1) ex8.13part1 ex8.13part1.inp ex8.13.dat mcex8.13 mcex8.13.inp
8.13: LTA for two time points with a binary covariate influencing the latent transition probabilities (part 2) ex8.13part2 ex8.13part2.inp ex8.13.dat N/A N/A
8.14: LTA for two time points with a continuous covariate influencing the latent transition probabilities ex8.14 ex8.14.inp ex8.14.dat mcex8.14 mcex8.14.inp
8.15: Mover-stayer LTA for three time points using a probability parameterization ex8.15 ex8.15.inp ex8.15.dat mcex8.15 mcex8.15.inp
8.16: Discrete-time survival mixture analysis with survival predicted by growth trajectory classes (data for this example cannot be created with Monte Carlo so only the input is provided) N/A ex8.16.inp N/A N/A N/A
8.17: Continuous-time survival mixture analysis using a Cox regression model ex8.17 ex8.17.inp ex8.17.dat mcex8.17 mcex8.17.inp

Back to User's Guide Examples